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Abstract—Finding the number of triangles in a graph (net-
work) is an important problem in graph analysis. The number
of triangles also has important applications in graph mining.
Big graphs emerging from numerous application areas pose a
significant challenge for the analysis and mining since these
graphs consist of millions, or even billions, of nodes and edges.
Graphs of such scale necessitate the development of efficient
parallel algorithms. Existing distributed memory parallel al-
gorithms for counting exact triangles are either Map-Reduce
or message passing interface (MPI) based. Map-Reduce based
algorithms generate prohibitively large intermediate data and
do not demonstrate reasonably good runtime efficiency. The
MPI based algorithms offer fast computation of the number of
triangles. However, the partitioning and load balancing schemes
these algorithms employ are static in nature– the partitions are
precomputed based on some estimations.

In this paper, we present an efficient MPI-based parallel
algorithm for counting triangles in large graph. We consider
the case where the main memory of each compute node is
large enough to contain the entire graph. We observe that for
such a case, computation load can be balanced dynamically
and present a dynamic load balancing scheme which improves
the performance of the algorithm significantly. Our algorithm
demonstrates very good speedups and scales to a large number
of processors. The algorithm computes the exact number of
triangles in a network with 1 billion edges in 2 minutes
with only 100 processors. Our results demonstrate that the
algorithm is significantly faster than the related algorithms
with static partitioning. In fact, for the real-world networks
we experimented on, our algorithm achieves at least 2 times
runtime efficiency over the fastest algorithm with static load
balancing.

Keywords-triangle-counting; parallel algorithms; large
graphs; graph mining; social networks.

I. INTRODUCTION

Counting triangles in a graph is a fundamental and

important algorithmic problem in graph analysis, and its

solution can be used in solving many other problems such

as the computation of clustering coefficient, transitivity, and

triangular connectivity [1], [2]. Existence of triangles and

the resulting high clustering coefficient in a social network

reflect some common theories of social science, e.g., ho-

mophily where people become friends with those similar

to themselves and triadic closure where people who have

common friends tend to be friends themselves [3]. Further,

triangle counting has important applications in graph mining

such as detecting spamming activity and assessing content

quality [4], uncovering the thematic structure of the web [5],

query planning optimization in databases [6], and detecting

communities or clusters in social and information networks

[7].

Graph is a powerful abstraction for representing un-

derlying relations in large unstructured datasets. Examples

include the web graph [8], various social networks [9], bio-

logical networks [10], and many other information networks.

In the era of big data, the emerging graph data is also

very large. Social networks such as Facebook and Twitter

have millions to billions of users [2], [11]. Such big graphs

motivate the need for efficient parallel algorithms.

Counting triangles and related problems such as com-

puting clustering coefficients has a rich history [12]–[20].

Despite the fairly large volume of work addressing this prob-

lem, only recently has attention been given to the problems

associated with big graphs. Several techniques can be em-

ployed to deal with such graphs: streaming algorithms [21],

[22], sparsification based algorithms [15], [23], external-

memory algorithms [2], and parallel algorithms [16], [22],

[24], [25]. The streaming and sparsification based algorithms

are approximation algorithms. External memory algorithms

can be very I/O intensive leading to a large runtime. Efficient

parallel algorithms can solve such a problem of a large

running time by distributing computing tasks to multiple

processors. Over the last couple of years, several parallel

algorithms, either shared memory or distributed memory

(MapReduce or MPI) based, have been proposed.

In [22], a shared memory parallel algorithm is proposed

for counting triangles in a streaming setting. The algorithm

provides approximate counts. Over the last couple of years,

few more shared memory algorithms have been proposed

[18], [19].

Although the algorithms for shared memory paradigm

are useful, shared memory systems with a large number of

processors and at the same time sufficiently large memory

per processor are not widely available. Further, the overhead

for locking and synchronization mechanism required for

concurrent read and write access to shared data might



restrict its application to big graphs. A GPU-based parallel

algorithm is proposed recently in [17] which achieves an

speedup of 32 with 2880 streaming processors.

There exist several algorithms based on MapReduce

framework: in [16], two parallel algorithms for exact triangle

counting using the MapReduce framework are presented.

The first algorithm generates huge volumes of intermediate

data, which are all possible 2-paths centered at each node.

Shuffling and regrouping these 2-paths require a significantly

large amount of time and memory. The second algorithm

suffers from redundant counting of triangles. An improve-

ment of the second algorithm is given in a very recent

paper [26]. Although this algorithm reduces the redundant

counting to some extent, the redundancy is not entirely

eliminated. In fact, for P partitions, the algorithm over-

counts (P -1 times) triangles whose vertices lie in the same

partition. In another recent work [20], Park et al. propose a

randomized MapReduce algorithm for triangle enumeration

which gives an approximate count.

A MapReduce based parallelization of a wedge-based

sampling technique [23] is proposed in [25], which is an

approximation algorithm.

MapReduce framework provides several advantages such

as fault tolerance, abstraction of parallel computing mecha-

nisms, and ease of developing a quick prototype or program.

However, the overhead for doing so results in a larger

runtime. On the other hand, MPI based systems provide

the advantages of defining and controlling parallelism from

a granular level, implementing application specific opti-

mizations such as load balancing, memory and message

optimization.

An MPI based parallel algorithm for counting the exact

number of triangles in massive networks is proposed in

[24]. The algorithm employs an overlapping partitioning

scheme and a novel load balancing scheme. This algo-

rithm does not require any inter-processor communication

and is demonstrated to be very fast. Another MPI based

parallel algorithm is proposed in [27], which employs a

non-overlapping partitioning and provide a space efficient

algorithm. Both of these algorithms partition the network

such that each processor works on a single partition. This

allows these algorithm to work on very large graphs. Further,

both algorithms offer very fast computation. However, both

algorithms are based on static load balancing. Besides, the

second algorithm [27] involves exchanging data messages

among processors, which reduces its runtime efficiency to

some extent.

Now, with the overlapping partitioning scheme in [24], if

average degree of input network is large (or the network has

few high degree nodes), the largest partition contains almost

the entire network. Thus the algorithm requires to store the

whole network in the memory of a single machine (which

is assigned the largest partition). In such a case, we observe

that if the system being used can accommodate the entire

network in the main memory of a single machine, we can

apply a dynamic load balancing scheme to further improve

the runtime efficiency.
In fact, due to the advancement of hardware technology,

big-memory machines are becoming increasingly available

and affordable. In a recent paper [28], Leskovec et al.

reported, a machine with 1TB of main memory and 80

cores costs around $35K. The paper also mentioned, most

of the graphs we analyze today comfortably fit in the

memory of one such big-memory machine. Among the 71

graphs publicly available in the Stanford Large Network

Collection [29], 90% of graphs have less than 100M edges.

Thus, it is often more useful to provide fast algorithms

for commonly used big graphs, rather than to provide very

scalable algorithms for extremely large and rare graphs.
Contributions. In this paper, we present an efficient MPI-

based parallel algorithm for finding the exact number of

triangles in a graph where the memory of each machine

is large enough to contain the entire network. We present a

dynamic load balancing scheme which improves the perfor-

mance of the algorithm significantly. Further, we not only

assign computational task dynamically among processors,

but also vary the task granularity on-the-fly. This dynamic

re-adjustment of task granularity offers additional runtime

efficiency. Our algorithm achieves very good speedups and

scales well to a large number of processors. The algorithm

computes the exact number of triangles in a network with

1B edges in only 2 minutes using 100 processors. Our

results demonstrate that the algorithm is the fastest among

the algorithms for counting exact number of triangles. In

fact, the algorithm is more than twice as fast as the previous

fastest algorithm.
Note that this paper presents an exact algorithm which can

be used to count triangles incident on individual nodes (local

triangles). Such local counts facilitate computing clustering

coefficient of nodes and finding vertex neighborhood and

community seeds [30]. On the other hand, approximation

algorithms only provide an overall (global) estimate of

number of triangles in the graph and might fail to provide

local statistics of triangles with reasonable accuracy. To the

best of our knowledge, among all exact algorithms, our

algorithm offers the best runtime efficiency.
The rest of the paper is organized as follows. The prelimi-

nary concepts, notations and datasets are briefly described in

Section II. In Section III, we discuss some background work

on counting triangles. We present our parallel algorithms in

Section IV and conclude in Section V.

II. PRELIMINARIES

Below are the notations, definitions, datasets, and exper-

imental setup used in this paper.

Basic definitions. The given graph (network) is denoted

by G(V,E), where V and E are the sets of vertices and

edges, respectively, with m = |E| edges and n = |V |



Table I
DATASET USED IN OUR EXPERIMENTS. K, M AND B DENOTE

THOUSANDS, MILLIONS AND BILLIONS, RESP.

Network Nodes Edges Source

web-Google 0.88M 5.1M SNAP [29]
web-BerkStan 0.69M 6.5M SNAP [29]

Miami 2.1M 50M [31]
LiveJournal 4.8M 43M SNAP [29]
Twitter 42M 2.4B [33]

PA(n, d) n 1

2
nd Pref. Attachment

vertices labeled as 0, 1, 2, . . . , n−1. We use the words node

and vertex interchangeably. We assume that the input graph

is undirected. If (u, v) ∈ E, we say u and v are neighbors

of each other. The set of all neighbors of v ∈ V is denoted

by Nv , i.e., Nv = {u ∈ V |(u, v) ∈ E}. The degree of v is

dv = |Nv|.
A triangle is a set of three nodes u, v, w ∈ V such that

there is an edge between each pair of these three nodes,

i.e., (u, v), (v, w), (w, u) ∈ E. The number of triangles

containing node v (in other words, triangles incident on

v) is denoted by Tv. Notice that the number of triangles

containing node v is same as the number of edges among

the neighbors of v, i.e.,

Tv = | {(u,w) ∈ E | u,w ∈ Nv} |.

We use K, M and B to denote thousands, millions and

billions, respectively; e.g., 1B stands for one billion.

Datasets. We use both real world and artificially gener-

ated networks for our experiments. A summary of all the

networks is provided in Table I. Miami [31] is a synthetic,

but realistic, social contact network for Miami city. Twitter,

LiveJournal, web-BerkStan, and web-Google are real-world

networks. Artificial network PA(n, d) is generated using

preferential attachment (PA) model [32] with n nodes and

average degree d. Both real-world and PA(n, d) networks

have very skewed degree distributions. Networks having

such distributions create difficulty in partitioning and bal-

ancing loads and thus give us a chance to measure the

performance of our algorithms in some of the worst case

scenarios. Note that in our experiments we consider edges

of the input graph to be undirected– we ignore the original

directionality of edges for web-Google, web-BerkStan, and

LiveJournal networks.

Computation Model. We develop parallel algorithms for

MPI based distributed-memory parallel systems where each

processor has its own local memory. The processors do

not have any shared memory, and they communicate via

exchanging messages.

III. A BACKGROUND ON COUNTING TRIANGLES

First, we describe the state-of-the-art sequential algorithm

for counting triangles, which our parallel algorithm is based

on. A brief discussion of some related parallel algorithms

follows.

1: for each edge (u, v) do
2: if u ≺ v, store v in Nu

3: else store u in Nv

4: for v ∈ V do
5: sort Nv in ascending order
6: T ← 0 {T is the count of triangles}
7: for v ∈ V do
8: for u ∈ Nv do
9: S ← Nv ∩Nu

10: T ← T + |S|

Figure 1. The state-of-the-art sequential algorithm for counting triangles.

A. Efficient Sequential Algorithm

A naı̈ve approach to count triangles in a graph G(V,E)
is as follows: check, for all possible triples (u, v, w),
u, v, w ∈ V , whether (u, v, w) forms a triangle; i.e., check

if (u, v), (v, w), (u,w) ∈ E. There are
(

n

3

)

such triples,

and thus this algorithm takes Ω(n3) time, which is very

expensive. A simple but efficient algorithm is: for each node

v ∈ V , find the number of pairs of neighbors that complete a

triangle with vertex v. In this method, each triangle (u, v, w)
is counted six times – all six permutations of u, v, and

w. A total ordering ≺ of the nodes (e.g., ordering based

on node IDs or any arbitrary ordering) makes sure each

triangle is counted exactly once. However, algorithms in

[13], [14] incorporate an interesting node ordering based on

the degrees of the nodes, with ties broken by node IDs, as

defined as follows:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (1)

These algorithms are further improved in a recent paper

[24] by a simple modification. The algorithm [24] defines

Nv ⊆ Nv as the set of neighbors of v having a higher order

≺ than v,

Nv = {u : (u, v) ∈ E, v ≺ u}. (2)

That is, for an edge (u, v), the algorithm stores u in Nv if

v ≺ u, and consequentially, u ∈ Nv ⇐⇒ v /∈ Nu. Then

the triangles containing node v and any u ∈ Nv can be

found by set intersection Nu ∩Nv . The above state-of-the-

art sequential algorithm is presented in Fig. 1. Our parallel

algorithm is based on this sequential algorithm.

B. Parallel Algorithms Counting Exact Triangles

In Section I, we mentioned several MapReduce and MPI

based algorithms [16], [24], [26], [27] that count exact num-

ber of triangles. Here, we briefly discuss these algorithms

along with their shortcomings to further clarify the context

of our work.

The MapReduce based algorithm proposed in [16] works

in two rounds of Map and Reduce phases. In Map phases,

the algorithm generates a huge amount of intermediate

data which are all possible 2-paths w-v-u centered around

each node v ∈ V , such that u,w ∈ Nv. The algorithm



then check whether such 2-paths are closed by an edge,

i.e. if (w, u) ∈ E. Since the number of these 2-paths is

very large, even larger than the network size, shuffling and

regrouping these data requires a large runtime and enormous

memory. As instance, for Twitter network, 300B 2-paths

are generated whereas the network has only 2.4B edges.

Even for smaller networks, if there are few nodes with high

degrees, say O(n), this algorithm generates O(n2) 2-paths

centered at those nodes, which is quite unmanageable. Many

real networks demonstrate power-law degree distributions

where some nodes have very large degrees (See dmax in

Table II).

The MPI based algorithm in [24] divides the input

graph into a set of P overlapping partitions as follows.

First, V is partitioned into P disjoint subsets V c
i , such

that
⋃

0≤k<P
V c
k

= V . Then, a set Vi is constructed as

Vi = V c
i ∪

(

⋃

v∈V c

i

Nv

)

. Now, set of edges Ei, defined

as Ei = {(u, v)|u ∈ Vi, v ∈ Nu}, constitutes the i-th
overlapping partition which pi works on. Note that edges in

Ec
i = {(u, v)|u ∈ V c

i , v ∈ Nu} constitute the disjoint (non-

overlapping) portion of the partition i. Rest of the edges

(u, v) ∈ Ei − Ec
i overlaps across multiple partitions.

Now, the overlapping partitions allow the algorithm to

count triangles without any communication among proces-

sors leading to faster computation. However, if average

degree of input network is large (or the network has few high

degree nodes), the largest partition contains almost the entire

network. Table II shows that real world networks have high

degree nodes. In many cases, average degrees of networks

are also high.

Another algorithm presented in [27] divides the input

networks into non-overlapping partitions. This partitioning

provides the best space efficiency among the related algo-

rithms. Space required to store individual partitions add up

to the space required to store the whole network. However,

such partitioning requires inter-processor communications

for counting triangles. Although the paper [27] presents an

efficient method to reduce the communication cost dras-

tically making it reasonably a fast algorithm, exchanging

messages still reduces its runtime efficiency to some extent.

Note that algorithms in both [24], [27] employ static load

balancing schemes based on some estimates for the cost

of counting triangles. Different estimations (as referred to

as cost functions in those papers) offer varying degree of

performance in load balancing, and none of them are entirely

precise. Thus, some processors might experience idle time.

Now consider that each computing machine has enough

memory for storing the whole network. For such a case,

we observe, unlike the algorithms [24], [27], we can apply

a dynamic load balancing scheme to reduce idle time of

processors drastically and make the computation even faster.

Further, since all processors store the whole network, we do

not require to exchange data messages as required in [27].

In the following section, we present an efficient parallel

algorithm with dynamic load balancing, which is faster

than the algorithm with static partitioning. Our algorithm

exchanges only small control messages (request, response, or

termination messages). This has a very little communication

overhead comparing with [27]. To the best of our knowledge,

this algorithm is the fastest among algorithms producing

exact count of triangles in big graphs.

Table II
MEMORY REQUIRED FOR STORING NETWORKS ALONG WITH THEIR

AVERAGE AND MAXIMUM DEGREE STATISTICS.

Network Memory (GB) Avg. d dmax

web-Google 0.127 11.6 6332
Miami 2.7 47.6 425
LiveJournal 2.4 18 20333
Twitter 23.7 57.1 1001159
PA(10M, 100) 18.3 100 25068

IV. A FAST PARALLEL ALGORITHM WITH DYNAMIC

LOAD BALANCING

We present our parallel algorithm for counting triangles

with an efficient dynamic load balancing scheme. First, we

provide an overview of the algorithm, and then a detailed

description follows.

A. Overview of the Algorithm

Let P be the number of processors used in our computa-

tion. Our algorithm distributes the computation of counting

triangles on all nodes v ∈ V in the network among

these processors. We refer the computation assigned to and

performed by a processor as a task. For the convenience

of future discussion, we present the following definitions

related to computing tasks.

Definition 1. Task: Given a graph G = (V,E), a task

denoted by 〈v, t〉, refers to counting triangles incident on

nodes v ∈ {v, v+1, . . . , v+ t− 1} ⊆ V . The task referring

to counting triangles in the whole network is 〈0, n〉.

Definition 2. An atomic task: A task 〈v, 1〉 referring to

counting triangles incident on a single node v is an atomic

task. An atomic task cannot be further divided.

Definition 3. Task size: Let, f : V →R be a cost function

such that f(v) denotes some measure of the cost for counting

triangles on node v. We define the size S(v, t) of a task 〈v, t〉
as follows.

S(v, t) =
t−1
∑

i=0

f(v + i).

We consider the cost functions f(v) = 1 and f(v) = dv
since those are known for all v ∈ V and have no compu-

tational overhead. The function f(v) = 1 corresponds to

same cost for each node, whereas f(v) = dv implies that



the cost is proportional to the degree of node v. We recall

that for the purpose of static load balancing, the paper [24]

estimated several cost functions with varying computational

overhead. However, since our algorithm balances load dy-

namically, using a computationally expensive cost function

for computing task granularity is not required at all– this

might even lead to poor performance of the algorithm.

Now in a static load balancing scheme, each processor

works on a pre-computed partition. Since the partitioning is

based on estimated computing cost which might not equal to

the actual computing cost, some processors will remain idle

after finishing computation ahead of others. Our algorithm

employs a dynamic load balancing scheme to reduce idle

time of processors leading to improved performance. The

algorithm divides the total computation into several tasks

and assign them dynamically. How and when to assign a

task require communication among processors. The scheme

for communication and decision about task granularity are

crucial to the performance of our algorithm. In the following

subsection, we describe the details of our dynamic load

balancing.

B. An Efficient Dynamic Load Balancing Scheme

We design a dynamic load balancing scheme with a

dedicated processor for coordinating balancing decisions.

We distinguish this processor as the coordinator and the rest

as workers. The coordinator assigns tasks, receives notifica-

tions and re-assigns tasks to idle workers, and workers are

responsible for actually performing tasks. At the beginning,

each worker is assigned an initial task. Once any worker i
completes its current task, it sends a request to coordinator

for an additional task. From the available un-assigned tasks,

coordinator assigns a new task to worker i.
The coordinate may divide the computation into tasks

of equal size and assign them dynamically. However, the

size of tasks is a crucial determinant of the performance

of the algorithm. Assume time required by some worker

to compute the last completed task is q. The amount of

time a worker remains idle, denoted by a continuous random

variable X , can be assumed to be uniformly distributed over

the interval [0, q], i.e., X ∼ U(0, q). Since E[X ] = q/2, a

worker remains idle for q/2 amount of time on average. If

the size S(v, t) of tasks 〈v, t〉 is large, time q required to

complete the last task becomes large, and consequently, idle

time q/2 also grows large. In contrast, if S(v, t) decreases,

the idle time is expected to decrease. However, if S(v, t)
is very small, total number of tasks becomes large, which

increases communication overhead for task requests and re-

assignments.

Therefore, instead of keeping the size of tasks S(v, t)
constant throughout the execution, our algorithm adjusts

S(v, t) dynamically, initially assigning large tasks and then

gradually decreasing them. In particular, initially half of

the total computation 〈0, n〉 is assigned among the workers

in tasks of almost equal sizes. That is, a total of 〈0, t′〉
task, such that S(0, t′) = 1

2
S(0, n), is assigned initially,

and the remaining computations 〈t′, n− t′〉 are assigned dy-

namically with the granularity of tasks decreasing gradually.

Next, we describe the steps of our dynamic load balancing

scheme in detail.
Initial Assignment. The set of (P −1) initial tasks corre-

sponds to counting triangles on nodes v ∈ {0, 1, . . . , t′− 1}
such that S(0, t′) ≈ S(t′, n− t′). Thus we need to find node

t′ which divides the set of nodes V into two disjoint subsets

in such a way that
∑t

′−1

v=0
f(v) ≈

∑n−1

v=t′
f(v), given f(v)

for each v ∈ V . Now if we compute sequentially, it takes

O(n) time to perform the above computations. However,

we observe that a parallel algorithm for computing balanced

partitions of V proposed in [24] can be used to perform the

above computation which takes O(n/P +logP ) time. Once

t′ is determined, the task 〈0, t′〉 is divided into (P −1) tasks

〈v, t〉, one for each worker, in almost equal sizes.

S(v, t) =
1

P − 1

t
′−1
∑

v∈0

f(v). (3)

That is, set of nodes {0, 1, . . . , t′ − 1} is divided into (P −
1) subsets such that for each subset {v, v + 1, . . . , t − 1},
∑t−1

i=0
f(v + i) ≈ 1

P−1

∑t
′−1

v∈0
f(v). This computation can

also be done using the parallel algorithm [24] mentioned

above.

Note that all P processors work in parallel to determine

initial tasks. Since the initial assignment is deterministic,

workers pick their respective tasks 〈v, t〉 without involving

the coordinator.
Dynamic Re-assignment. Once any worker completes its

current task and becomes idle, the coordinator assigns it

a new task dynamically. This re-assignment is done in the

following steps.

• The coordinator divides the un-assigned computations

〈t′, n− t′〉 into several tasks and stores them in a queue

W . How the coordinator decides on the size S(v, t) of

each task 〈v, t〉 will be described shortly.

• When any worker i finishes its current task and be-

comes idle, it sends a task request 〈i〉 to the coordinator.

• If W 6= ∅, the coordinator picks a task 〈v, t〉 ∈W , and

assigns it to worker i.

Our algorithm decreases the size S(v, t) of each dynam-

ically assigned tasks gradually for the reasons discussed at

the beginning of this subsection. Let, V ′ be the set of nodes

remaining to be assigned as tasks. Since at every new as-

signment V ′ decreases our algorithm uses V ′ to dynamically

adjust task sizes. This is done using the following equation.

S(v, t) =
1

P − 1

∑

v∈V ′

f(v). (4)

Note that the size S(v, t) of a dynamically assigned task

〈v, t〉 decreases at every new assignment. By the definition



of atomic task (in definition 2) we have a finite number

of tasks. When the coordinator has no more unassigned

tasks, i.e., W = ∅, it sends a special termination message

〈terminate〉 to the requesting worker. Once the coordinator

completes sending termination messages to all workers, it

aggregates counts of triangles from all workers, and the

algorithm terminates.

Note that while workers are performing the initial assign-

ment, the coordinator proceeds to compute task granularity

for subsequent assignments and fills a task queue. Thus when

any worker requests further tasks, the coordinator can readily

respond. Further, responding and receiving task requests

have low communication overhead. Thus, the coordinator

does not become a bottleneck in this algorithm

C. Counting Triangles

Once a processor i has an assigned task 〈v, t〉, it uses the

algorithm presented in Fig. 2 to count the triangles incident

on nodes v ∈ {v, v + 1, . . . , v + t− 1}.

1: Procedure COUNTTRIANGLES(v, t) :
2: T ← 0 //T is the count of triangles

3: for v ∈ {v, v + 1, . . . , v + t− 1} do

4: for u ∈ Nv do

5: S ← Nv ∩Nu

6: T ← T + |S|
7: return T

Figure 2. A procedure executed by processor i to count triangles
corresponding to the task 〈v, t〉.

The complete pseudocode of our algorithm for counting

triangles with an efficient dynamic load balancing scheme

is presented in Fig. 3.

D. Correctness of the Algorithm

We establish the correctness of our algorithm as follows.

Consider a triangle (x1, x2, x3) with x1 ≺ x2 ≺ x3, without

the loss of generality. Now, the triangle is counted only when

x1 ∈ {v, v + 1, . . . , v + t − 1} for some task 〈v, t〉. The

triangle is never counted again since x1 /∈ Nx2
and x1, x2 /∈

Nx3
by the construction of Nx (Line 1-3 in Fig. 1).

E. Performance

We perform our experiments using a high performance

computing cluster with 64 computing nodes (QDR Infini-

Band interconnect), 16 processors (Sandy Bridge E5-2670,

2.6GHz) per node, memory 4GB/processor, and operating

system CentOS Linux 6. The experimental evaluation of the

performance our parallel algorithm for counting triangles

with dynamic load balancing is presented below.

Strong Scaling. Strong scaling of a parallel algorithm

shows how much speedup a parallel algorithm gains as

the number of processors increases. We present the strong

scaling of our algorithm on Miami, LiveJournal, and web-

BerkStan networks with both cost functions f(v) = 1 and

1: All processors initially do the following:
2: Determine initial tasks (see discussion of Eqn. 3)
3:

4: The coordinator does the following:
5: W ← ∅
6: for all remaining tasks 〈v, t〉 do
7: ENQUEUE (W , 〈v, t〉 )
8: while W is not ∅ do
9: Receive task requests 〈i〉

10: 〈v, t〉 ← DEQUEUE (W )
11: Send message 〈v, t〉 to worker i
12: Send 〈terminate〉 to proc. i for requests 〈i〉
13:

14: Each worker i does the following:
15: Ti ← 0
16: Ti ← Ti + COUNTTRIANGLES(v, t) //for initial task
17: while worker i is idle do
18: Send message 〈i〉 to coordinator
19: Receive message M from coordinator
20: if M is 〈terminate〉 then
21: Stop execution
22: else if M is a task 〈v, t〉 then
23: Ti ← Ti + COUNTTRIANGLES(v, t)
24:

25: MPIBARRIER

26: Find Sum T ←
∑

i
Ti using MPIREDUCE

27: return T

Figure 3. An algorithm for counting triangles with dynamic load balancing.
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Figure 4. Speedup factors of our algorithm on Miami, LiveJournal and
web-BerkStan networks with both f(v) = 1 and f(v) = dv cost functions.

f(v) = dv in Fig. 4. Our algorithm demonstrates very good

speedups and scales almost linearly to a large number of

processors. Further, speedup factors are significantly higher

with the function f(v) = dv than with f(v) = 1. The

function f(v) = 1 refers to equal cost of counting triangles

for all nodes whereas the function f(v) = dv relates the

cost to the degree of v. Distributing tasks based on the sum

of degrees of nodes (Eqn. 3 and 4) reduces the effect of

skewness of degrees and makes tasks more balanced leading

to higher speedups. Our subsequent experiments will be

based on cost function f(v) = dv.

We also observe that the larger networks Miami and

LiveJournal achieve higher speedups than web-BerkStan.

This is, in fact, a desirable advantage when we want to

process big graphs. For small networks, the communication

overhead in load balancing becomes relatively significant
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affecting the speedups to some extent.

Comparison with Previous Algorithms. We compare the

runtime of our parallel algorithm with the algorithms in [24]

and [27] on a number of real and artificial networks. Note

that both algorithms in [24] and [27] are demonstrated to

be faster than the MapReduce based algorithms discussed

in section I and III (Fig. 4 in [27]). We compare the

runtime of our algorithm with dynamic load balancing with

these two state-of-the-art fast parallel algorithms. As shown

in Table III, our algorithm is more than 2× faster than

[24] and about 3× than [27] for all these networks. The

algorithm in [24] and [27] are based on static partitioning

whereas our algorithm employs a dynamic load balancing

scheme to reduce idle time of processors leading to improved

performance. We also present a comparison of speedup

factors for our algorithm and the algorithms in [24] and [27]

on Miami and LiveJournal networks. Our algorithm achieves

significantly higher speedups than the others.

Table III
RUNTIME PERFORMANCE OF OUR ALGORITHM AND ALGORITHM [24].

Networks
Runtime

Triangles
[27] [24] Our algo.

web-BerkStan 0.14 0.10s 0.041s 65M
LiveJournal 1.24 0.8s 0.384s 286M
Miami 0.79 0.6s 0.301s 332M
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Figure 8. Comparison of speedup factors of our algorithm with [24] and
[27] on Miami and LiveJournal networks.

We also notice the reported performance of several shared

memory algorithms. The parallel approximation algorithm

in [22] demonstrates a speedup of ≈ 11 with 12 cores.

However, it is not shown how the algorithm will scale for a

larger number of cores (or processors). As we demonstrated,

our algorithm scales almost linearly to a large number of

processors. Another shared memory based parallel approx-

imation algorithm is proposed in [18]. The paper reports

speedups using only 32 cores. Further, these speedups are

due to both approximation and parallel threads. For example,

with a sample factor p = 0.01, the paper reports a speedup

of 837.74 for Wiki-1 graph with 32 threads, where the

approximation contributes a factor of 33.54 in the speedup.

The results for other networks demonstrate a parallelization

speedup between 1.44 and 24 with 32 threads, which is not

impressive for many networks. Further, results for a larger

number of cores are not shown in the paper. Similarly, the

shared memory algorithm in [19] is reported to scale to 64
cores and achieves speedups ranging from 17 to 50 .

Effect of Dynamic Adjustment of Task Granularity.

We show how the granularity of tasks affects idle time of

worker processors for Miami and LiveJournal networks. As

Fig. 5 shows, with tasks of static size, the distribution of

runtime among processors are very uneven leading to large

idle times of some processors. However, dynamic adjustment

of task granularity provides an almost even distribution of

runtime leading to very short idle times. This allows bal-

anced computing loads among processors and consequently

improves the runtime performance of the algorithm. Note

that we used 100 processors for this experiment. Although

we could use a higher number of processors, using fewer

processors helped demonstrate the differences in idle times

for static and dynamic adjustment of task granularity more

clearly. In our next experiment, we show that our algorithm

scales to higher number of processors when networks grow

larger.

Scaling with Processors and Network Size. Our algo-

rithm scales to a higher number of processors when networks

grow larger, as shown in Fig. 6. This is, in fact, a highly

desirable behavior since we need a large number of proces-

sors when the network size is large and computation time

is high. Scaling of our algorithm with number of processors



is very comparable to that of [24]. To our advantage, our

algorithm achieves significantly higher speedup factors than

[24].

Weak Scaling. Weak scaling of a parallel algorithm

shows the ability of the algorithm to maintain constant

computation time when with the increase of the number of

processors, the problem size also grows proportionally. The

weak scaling of our algorithm is shown in Fig. 7. With the

addition of processors, communication overhead increases

since idle workers exchange messages with the coordinator

for new tasks. However, since the overhead for requesting

and assigning tasks is very small, the increase of runtime

with additional processors is rather slow (not drastic). Thus,

our algorithm demonstrates a reasonably good weak scaling.

V. CONCLUSION

We present a fast parallel algorithms for counting

triangles in large graphs. When the main memory of each

computing machine is large enough to store the whole

graph, our parallel algorithm with dynamic load balancing

can be used for faster analysis of the graph. We believe

that for emerging big graphs, this algorithm will be proven

very useful.
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