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Abstract—Topology control in ad hoc networks is a multi- large. The adversarial model has been studied in both random
criteria optimization problem involving (contradictory) objectives and arbitrary node distributions. In the stochastic faitur
of connectivity, interference, and power minimization. Addition- ,44e| nodes are assumed to fail independently with some
ally, nodes can be unreliable, which adds another dimension bability. Under thi del. th fivit e
to an already challenging problem. In this paper, we study proba ”Y' naer this mo el, econnep |\{|ypr0pe$_ ve
topology control problems in ad hoc networks under node bPeen studied as a function of the transmission range in e ca
failures for arbitrary node distributions. We consider a simple of random node distributions [8].
and natural stochastic failure model, in which each node carfail In this paper, we study topology control problems in the
independently with a given probability. The Topology Control  14chastic node failures model, for arbitrary node digtiins.

Problem Under Stochastic Failures is to choose a power level for = I . t of nod t : | d arbi
each node and a subset of edges such that the residual graphe(i ormally, given a set of nodes (transceivers) placed arbi-

the graph formed by the nodes which have not failed) is connéed  trarily in the plane, wherein each nodefails independently
and can be scheduled efficiently, with high probability. We with probability 1 — p(v) € [0,1], the Topology Control

develop provably efficient bi-criteria approximation algorithms — Problem under Stochastic Failures (TCPSH is to choose a
for this problem that simultaneously minimize power, redue topology (i.e., a subset of edges) and power levels for all

interference, and ensure that the surviving graph is connded d that th d bset of - des f
with high probability. Our algorithms can be implemented noaes, so that the random Subset of surviving nodes form

efficiently in a distributed manner. a “well connected” graph with low interference (formally
defined later), with probability at leadt — ¢, wheree is a
|. INTRODUCTION parameter. We consider a specific time horizon, and each node
: can fail and can come back again at any time; the power levels
A. Overview

for nodes are determined at the beginning, and when a nodes
Topology control is a fundamental problem in multi-hopecovers, it uses the power level specified initially. In tcast
ad hoc wireless networks where it is undesirable for nodas random node distributions, in which many connectivity
to transmit at the maximum power levels — in addition tproperties can be mathematically analyzed very accurately
wasting energy, which is an important constraint, it leaals stochastic failures in arbitrary node distributions letmlsiew
high interference. However, reducing power levels can thpachallenges. For instance, we prove that even determiniag th
connectivity, and so topology control involves a trade-offrobability that there is a component containing-fraction of
between the (contradictory) objectives of connectivitgw| the surviving nodes for a given constanfor approximating it
interference, and energy minimization [1], [2]. The focuUs owithin a small constant factor) is #P-complete. In contremss
this paper is on topology control imreliable sensor networks, results of [8] yield tight bounds for this quantity for rando
in which nodes can fail — this is especially important in apaode distributions. To the best of our knowledge, this is the
plications involving large scale deployment of such networ first work that addresses the topology control problem under
e.g., in habitat monitoring [3]. stochastic node failures for arbitrary node distributions
There has been a lot of work on topologies which remain Similar issues arise in the design of sleep scheduling
connected even when some nodes fail [4], [5], [6], [7]. Twerotocols, which try to minimize energy consumption by
classes of failure models have been studediersarial and cycling nodes between sleep and active modes, and schegdulin
stochastic. In the adversarial failures model, the topology isransmissions to achieve convergecast [9], [10]. While ynan
required to be well-connected no matter whiclodes fail; references present protocols that involve a careful choice
in other words, the topology should be(a + 1)-connected of schedules for nodes to sleep, transmit, and receive [10],
graph. The cost of such solutions (relative to the optimunothers such as Chiasserini et al. [9] study the performance
typically depends ork, and can become weak whénis of protocols in which nodes randomly go to sleep for some



(randomly chosen) duration and then wake up. Solving tifehich is related to how efficiently the edges i can be
TCPSF problem will also yield topologies that would workscheduled) and thenergy cost.
well under such sleep scheduling models. We assume adaptive power control, meaning that to transmit
Early work on the theoretical foundations of topolog@n edgee = (u,v), nodeu uses the minimum poweP(u) =
control, e.g., [11], [1], [6], [12] involved optimizationfo ¢(u,v) required for transmission on this link. We use the Tx-
transmission power levels so that the resulting topologyeld  Rx model for interference (see [16] for the definitions), erhi
connected. However, it has been observed that focusing reughly means that edgesande’ can be used simultaneously,
the transmission power alone is not very insightful [13], [2 provided they do not have a common end point, and there is
and in recent years there has been interest in desigoieg N0 edge connecting their end points. We seek to construct
interference topologies, in addition to optimizing the transmisedge setd” with low “scheduling complexity” or interference
sion powers [2], [14], [15]. We focus on both these metric§0st, i.e., they can be scheduled in the Tx-Rx model (or other
and develop algorithms to construct a topology formed byt a séémilar models) efficiently. There have been several prapos
E' of edges that can be scheduled efficiently, while minimizinigr combinatorial measures for the interference cost, &g.
different functions of the transmission power levels neette “coverage” measure of [2] and the slightly different cortges

realize the sef®’ of links. measure of [16], [17]. Our interference cost is based on,[16]
[17], since it seems to be better measure of the scheduling
B. Preliminaries and Network Model complexity if adaptive power levels are allowed (i.e., n®de

can vary the transmission power level on different linksjr O
Let V be the set ofx nodes on the plane, and létu,v) algorithms produce topologies with low interference. @ize

denote the distance betweﬁmndv, i.e., the Iength of edge set £ of edgeS, for edge c E, define interference of =
(u,v), for all u,v € V. We will assume throughout that(y, ), denoted byl(e, E), as

min{l(u,v) : w,v € V} = 1 and max{l(u,v) : u,v € , . , ,

V1) = 0(nPW). For nodev € V, let Bv,r) = {w e v : L& E)={c =, v): ek, (e <), and
{(v,w) < r} be the set of nodes within distancefrom v. min{f(u,u’), £(u,v"), L(v,u'), L(v,v")} < ()},
Following [11], [12], we assume that transmission on a “nfla(\nd]I(E) — maxee s [I(e, E)|. When the sefE is clear from

(ur; v) requ:jres a powetr IetvePV\(lu) 3” M“’% - é(h“’?);’ the context, we will refer to the sdi(e, E) simply by I(e).
wherec andy are constants. We will consider graphs inducegh ;s ey, I(e) consists of edges that are located “close” to

by e|th(|ar algl\f/en Sef of Il_'ggs_on ‘I;,;r gy atve;:rt]orP of h € and interfere with it, and are longer in length; this measur
]E)owerd %Ve S OIEnOf (Ie'S.k F = ( N ) e%oef i ?( grlaE) is motivated by the following result from [16], [17]:
ormed Dy a Setlv 0T links. For-a given Sel ot 1inks, 1e Lemma 1: Given a setF of edges, it is possible to construct

P(u, E) = max{$(u,v) : .(u’v) € E} de.noFe power level an interference-free schedule of leng¥il(E)) in the Tx-Rx
needed for node: to realize the edges incident an and model (see, e.g., [16] for definitions)

ﬁ(E) denote the resulting vector of. power levels. Designing It has also been shown in [16], [17] that the above lemma
Ia;topolo_gy cotrrespo_nd§ to constructm%)rsulc? ggf'f e&ig}gs. holds for many different interference models, and this in-
dor i gtl\r:en ranhsT|55|og pr\;\tqer s\fﬁeti E g T (V. P) " terference metric is stronger than the one in [2] if adaptive
enote | ]S grag orme fy ”e ol (d) - {(u’l_v)deb power levels are used; the/(¢') > ¢(e)" restriction in the
Vox Vi Plu) > ¢(u,v)} of all possible edges realize Ydefinition is crucial in this case, as illustrated in Figurérhe

P. If P(u) = ¢ for all nodesu, we also refer to the Qfaph second measure we consider is the energy ecost(P(E)),
G(V, P) by G(V, ¢). Let G(V') denote the complete weighted

, i s and we are interested in two objectives: the maximum power,
graph onV with each edgé€u,v) having weight/(u,v). We max(ﬁ) — maxeey P(u) and the total powergum(ﬁ) _
let M ST (V) denote a minimum spanning tree G{V). S P(u)
We assume that each node can fail with probability uev
1 — p(v); for simplicity, we assume a uniform probability
p(v) = p, though all the results in this paper extend to the ; ./. y e
/ e ! \ N
more general case. L&f(p) denote a random subset qf / [ e x{
containing eachy € V' with probability p. Let G(V (p), P) .e\‘{,f.
denote a random subgraph 6f(V, P) induced by the ran- I62 R\ig
dom subse¥/ (p); similarly, let G(V (p), E) denote a random .
subgraph ofG = (V, E). . . . .
. . Fig. 1. An example illustrating the interference measurensider the set
The TCPSF problem involves FonStrUCtmg a Beof ed.ges E = {e,e1,e2,e3,e4,e5} and let P(E) denote the power level vector.
so that the subgrapt(V(p), E) induced by the surviving Then,I(e) = {es}, I(e4) = {e,es}, andI(E) = 3, so that all the edges

nodes has some desired propelty which could be. for shown can be scheduled in three time slats;...,es can be scheduled
’ simultaneously, whilee and e5 can be scheduled in two separate slots. In

inStance_' the property théi(V(p), E) is_ strongly connected, contrast, the coverage defined in [2] is higher, and leadsldager schedule.
has a giant component or has low diameter. In most of this

paper,IP will be the property of strong connectivity. We are For a given parametet, let E = E,,; denote a set of
interested in two objectives related #: the interference edges with the minimum possibIEE), so thatG(V (p), E)



is strongly connected with high probabifltyamong mul- O(nlog®n). This algorithm is a non-trivial extension of a
tiple such E,,; which may be possible, we consider oneesult by Goemans and Vondrak [19], who develop an elegant
that minimizes the cost of power, i.ecost(ﬁ(EOpt)). The technique for covering minimum spanning trees (MSTs) of
TCPSF problem is a bi-criteria optimization problem thatandom subgraphs of a given gragh While their result
involves constructing a sef of edges so thaG(V (p), E) implies that the solution computed by the algorithm is sfitgn

is strongly connected with high probability such tH&#) connected with probability at least— 1/n3, it does not give
and cost(P(E)) are both small, relative tdi(E,,) and any bounds on the cost of the resulting solution. Our proof of
cost(P(E,y)), respectively. The algorithms we study will bethis bound crucially uses the geometric structure.
randomized bi-criteria approximations: we say our aldponit ~ Next, we show that at the expense of larger running time, the
produces ana;, a)-approximation to the TCPSF problemapproximation factor of the above algorithm can be improved
if it produces a solutior® such thatl(F) < a;I(E,,) and to (O(log®n), 1) for the max objective. This algorithm is a

cost(ﬁ(E)) < QQCOSt(ﬁ(Eopt)), with high probability. simpler Monte-Carlo algorithm than the one above, and has
a running time ofO(n3logn). For any “testable” monotone
C. Summary of Results propertylP (such as strong connectedness, existence of giant

component or low diameter; this is defined formally in Sattio

ous versions of this problem are computationally hard %5B): tis aIg:rithm can thused to find a good power level
solve exactly. We prove in Section Il that even computin}jeCto_rP SOt_ atG(V(p),P_) as propertyP. )
Pr[G(V(p), #) has a component of size at leagV/|] is #P- This algorithm works with the same guarantees, even in a

complete, for a given constant- this is in contrast with results s$ttr|]ng whlere_tﬂe fallureb progablhf\l/le;_rare non—ur_nform).thd
on stochastic failures in random node distributions [18], | of these algorithms are based on computations, and can

where this quantity can be estimated analytically. be eff_iciently_impl_emented in a distributed manner follogvin
echniques given in [20].

Therefore, we focus on approximation algorithms witg Empirical Results. W | th irical perf
provable approximation guarantees of the form described In mpirical REsUlls. We analyze Ineé empirical pertormance
of our algorithms for both the objective functions. We olvser

Section I-B. In all our results, the interference complhexit . o
will be polylogarithmic, and so we classify the results lmhse? SParP threshold in the variation of the max power level as a

on the energy objective. To avoid trivialities, we assumneg thfunction ofe, th.e probability thalz(V (p), P) is not st.rongly

p > 1/n%/? i.e., the failure probability is not very close to 1 connected; a similar, though less sharp, threshold is wbder
2. The Sum of Powers Objective We present an algorithm]cor the sum ObJ_eCt'.Ve also. We also implement our "?"90””‘"‘
that gives an(O(log?n),0(log?*2 n))-approximatioR for for the_ sum opjegtlvg, ap_d find that the approximation guar-
the sum objective for energy; in other words, our algoritht"f]imee N practlge IS ;lgnlflcgntly better than what we are abl
chooses a sef of edges such thdi( E) = O(log? n)(Eopt), 1o prove analytically in Section IV.

and sum(ﬁ(E))/sum(ﬁ(Eopt)) — O(log’*2n). Our ak- The main focus of this paper is a theoretical analysis of this

gorithm is based on a local labeling algorithm, in whicr?Iass of problems. The approximation guarantees we prove

each node chooses a s&t of edges to some number there areworst case guarantees, which hold fany instance.

higher labeled nodes. We prove that famy choice of dis- In p_ract_lce, the ap_p_roxmatlon guaran_tees are much bester,
. . we find in our empirical results. We believe that the framéwor
tinct label numbers, the resulting sét of edges guaran-

tees thatPr[G(V (p), E) is strongly connectdd> 1 — 1/n’ of stochastic failures can help model many applicationsd, an

and I(E) = O(log?n)I(E,,). However, the energy cost.the proof techniques_, we develop here are Iikely. to be useful
of the solution, relative ?c)) the optimt,Jm ie., the ratio" MO general settings, such as sleep scheduling prtocol

sum(P(E))/sum(P(E,p)), can be bounded only by choos- 1. RELATED WORK
ing the labels carefully. We show that this algorithm can be

efficiently implemented in a distributed fashion. As men&d control, e.g., [11], [1], [6], [12] involved optimization fo

earlier, the above bounds hold for any node distributiothéf L . .
o . transmission power levels so that the resulting topologyah
nodes are distributed randomly on a plane, it can be shown . o AT
connected. The maximum power objective can be minimized

o et car o shosen, andoml 1€ 100es Wity for any moncton oraph prapery tatc et

3 The Maximum Power Objectivé We develop an efficiently [12]. Under the total power minimization opjaﬁ,

((')(10 2 ), O(log n))-approximation for the max power Ob_topology control problems for many graph properties (e.g.
&1, g n))-app P connectedness, bounded diameter) are known tbiBdard

jective. This algorithm is randomized and is based on Montghd approximation algorithms for many such problems have

Carlo sampling. However, a crucial aspect of our algoritem b
o : . : een developed, e.g., [6], [21], [4].
that the sampling is done with probability natbut a different There haspbeen g Io[t ]of[wc])rk[ c]>n findigconnected net-

valueg < p. The overall running time of this algorithm ISWorks, to deal with deterministic failure models, e.qg., [,
Lusually we take this to mean a probability of at least % but this can [7] These al_gorlthm§ pl’OVIde per_formance guaranFeeS twhic

be any parameter n are polynomial functions ok. Bredin et al. [22] consider the
2\We uselog” n to mean(logn)”. problem of adding a minimum number of sensor nodes to a

1. Computational hardness of TCPSF problem Vari-

Early work on the theoretical foundations of topology



given sensor network so that the augmented netwdtkiede- be connected, but would have a total cost@ffn?/log” n)
connected. Since this problem MP-hard, they present antimes the optimum described above. Thus, algorithms that
approximation algorithm with a performance guarantee Wwhi@nsurek-connectivity do not necessarily give good solutions
is a polynomial ink. for stochastic failures.

To our knowledge, under the stochastic failure model, the However, from a theoretical perspective, the stochasific fa
topology control problem has not received much attentiag. Aires add a different kind of complexity to the TCPSF problem.
mentioned earlier, some results when nodes are arrangedroninstance, even determining the probability kﬁ’af/(p),ﬁ)

a grid, or placed randomly in the plane have been reporteds a large connected component (which seems to be much
in the literature. For example, Li et al. [18] consider a setimpler than the TCPSF problem, and would be needed to
of n points placed randomly in the unit square and establisterify” a solution) is hard, as shown in the following lemma
bounds on the transmission radius to be used for each nodéts@roof is a simple extension of a resultin [24] and is oedtt

that the resulting graph i8 connected with high probability. Lemma2: Let x > 1/2 be a constant. For an ar-
Shakkottai et al. [8] analyze a configuration of nodes duitrary set V' of nodes and power levet, determining

a grid with stochastic failures. They establish relatiopsh Pr[G(V(p), ¢) has a component with at leastl’| node$ is
between the failure probability and the transmission radi#P-complete.

to be used for each node to ensure coverage, connectivity and
low diameter. Kumar et al. [23] obtain similar results fohet
random distributions of nodes. We describe Algorithm MNSumM-TCPSF for approxi-

In recent years, some papers such as [13] have pointed B\@ting the TCPSF problem with the sum objective. The
several issues arising out of focusing on transmission pov@dorithm consists of two steps. A distinct label is cho-
alone. Therefore, there has been interest in desighomg Sen for each node in the first step. The second step uses
interference topologies, in addition to optimizing the transihese labels to choose the sgt of edges, and it is in-
mission powers [2], [14], [15]. These papers have developt&festing to note thaany choice of distinct labels ensures
interference measures, which are related to the complexitythat Pr[G(V(p), E) is strongly connectdd> 1 — 1/n?, and
scheduling the set of chosen edges, and have designed appkok) = O(log” n). However, the costsum(P(E)) depends
imation algorithms for optimizing the interference. Howeyv ©N how the labels are chosen. The simplest method would be

these papers do not consider unreliable ad hoc networks. t0 choose the labels randomly for each node - this, in fact,
works well if the nodes are distributed uniformly at random
I1l. CHALLENGES OFANALYZING STOCHASTICFAILURE  in the unit square, as we discuss in the full version of this

MODELS paper. However, for arbitrary distributions of nodes, cing

Most algorithms for topology control either allow no fail-labels randomly could lead to a high power cost (though, in
ures, or consider worst case models for failures, in whigh affict, the interference is small). In Section IV-A, we dekseri
k nodes can fail, as mentioned earlier. We now discuss to wiglistributed implementation of Algorithm MSum-TCPSF.
extedntI these algorithms can be used for the stochastiadailygorithm MinSUM-TCPSF:
models.

IV. THE TOTAL POWER OBJECTIVE

1) Run algorithm GloosH.ABELNUMBERSto choose dis-

Conlgider a_ltrrl] exz.:;mple oh _node; V1, .d..,vn arranlgedI tinct labels for all nodes.
on a fine, with ‘uniform spacing ot, and a power leve 2) Run algorithm GoosSEEDGESto find a setE of edges,
d(vi,vi41) = ¢ = c - €7 for all i. Suppose each node

fails with probability 1/2. Then, it can be shown that the .and the corresponding power.levdl’e{E).

random surviving subgraph is strongly connected with higj‘hlgomhm CHOOSELABE_LNUMBE_R.S' )
probability if and only if every node has a power level of 1) Construct an Euclidean minimum spanning tféeon
¢ = Q(¢log” n). Therefore, in order to be robust to stochastic the setV” of nodes. _

failures, the power levels have to be much higher than what2) Root the treél” at some arbitrary node.

is chosen in a “failure-free” setting. The right power lewel 3) TraverseT' in depth-first order starting at. Let

depend crucially on the probability with which we want to v1,...,vn be the nodes in this order, with = 7.
ensure the random surviving subgraph be connected, making) For each node;, we defineL(v;) = n +1 — .
this a non-trivial problem. Algorithm CHOOSEEDGES

A number of papers on topology control [5], [7], [4], 1) Letk = cilog;,;_, n for some constant;. Let the
[18] have considered a “worst-case” notion of failures for nodes inV be orderedvs,...,v, such thatL(v;) <
arbitrary node distributions - they give algorithms for pw L(vg) < ... < L(vp).
choice to ensure connectivity wheamy set of £ nodes fail. 2) For each node;, find the smallest radius(v;) such
These results do not directly lead to efficient solutionstier that ball B(v;, r(v;)) containsmin{k,n —i} nodes with
TCPSF problem. For the instance described above, with high labels larger than.(v;). For each such larger-labeled
probability, ©(n) nodes will fail. If we run the algorithms nodev;, add the edgesv;, v;) and(v;,v;) to setq.

from [5] or [7] with & = ©(n), the resulting power level 3) Setr'(v;) = maxe_(y, v, eqif(e)} and P(v;) = c-
choice will indeed guarantee that the surviving subgragh wi r(v;)7.



v; € S. By construction, we haveH (v;)|] = k, and so
Pr[all nodes inH (v;) fail to be inV(p)] = (1 — p)* = L.
By the union bound, the probability that there is a node
v; € S such that all nodes it/ (v;) fail is ——r, and so with
probability 1 — # corresponding to each nodg € S,
some nodes € H(v;) survives in a random subsgt(p).

By a similar argument, sincél’| = k, at least one node
Fig. 2. An illustration of Algorithm Choose-Label-Numbeed some from 7' survives inV(p) with probability at leasti N anl
of the terms used in Lemma 4 on an instance witmodesu; ,...,v;. L€t w be the node of the largest label that survives from
The dashed line shows the traversal order, leading to theieseq set 7' in the random sef/(p). By construction, we have

T = wvi,v2,v3,v2,v4, V2,01, V5,06, Vs, vy and the order of the nodes H(v:) = {v; v for eachwv; € T. Therefore, with
v1,v2,v3,v4, V5,6, v7. Thus the resulting labels of the nodes are (vi) {vit1, . vn} ¢ ) '

L) = 7. L(vs) = 6 L(vs) = 5 L(va) = 4, L(vs) — 3, probability 1 — —+ — —-, for each nodev € V(p),

L(vg) = 2, and L(v7) = 1. The reverse sequence af is = = o # w, some nodew € H(v) survives. By construction
v7,Us, V6, Us, U1, V2, V4, U2, U3, V2, V1. of the topology in Algorithm GOOSEEDGES, we have the
v1,5 edges(v,u) and (u,v) in G(V(p),Q), which implies that
G(V(p),Q) is connected, since there is a path from any
\ surviving nodev € V(p) to nodew (and back), passing
Us, 2 v2,3 through nodes of increasing label numbers. By choosging
to be greater than 4, we have the result stated in the theorem.
|
vs, 1 We now bound the interference of the ggtchosen by the
va,4 algorithm.
Fig. 3. An illustration of Algorithm Choose-Edges with= 1. The number  Lemma 3: I(Q) = O(log® n)L(Eopt ).
next to each nodey; indicates its label numbek (v;). The directed edge Proof: (Sketch) Consider an edge = (u,v). We will

() e It = the closest o wih el larger 80) 0= s thatl(e) = O(log’n). Let @ = {¢/ = (/1)
£(vg,v1) andr(vs) = £(vs, v4). I(e) : L(u') < L(v")}, where L() denotes the labels chosen
by Algorithm CHooSE_ABELNUMBERS; then|Q’| = I(e)/2.
Let A; = {e¢' = (uv/,v') € Q" : v’ € B(u,l(e)) UB(v,{(e))}.
Recall the notation defined in Section I-B. We first descrilleet A5(i) = {¢’ € Q' — Ay : {(e') € [2¢,2iT1)}, for
the two steps of our algorithm at an intuitive level here. Let < clogn for some constant. We will show that the
L(v) denote the label chosen using AlgorithnH@oSELA- sets A; and A, (i) all have size at mosO(log”n). First,
BELNUMBERS. Algorithm CHOOSEEDGES is really simple consider the setd;. Let V; denote the set of end points of
- for each nodev, it chooses edges to certain number afdges inA; that lie in B(u,£(e)) U B(v,£(e), and letu;
closest nodes of higher labels; lefv) be the length of the denote the node of smallest label ¥a. There is a constant
longest edge chosen hy The power level for node is then ¢, such that if V3| > cologn, then B(uq,£(e)/2) would
P(v) = ¢ r(v)?, following the model described in Sectioncontain & nodes of higher label, and therefore, Algorithm
I-B. We show in Theorem 1 that for this sé&, G(V(p), E) CHOOSEEDGESWwould chooser(ui) < £(e). This contradicts
is strongly connected with high probability. To construct ¢he fact that there is an edga = (ui,v1) € Q' with
“good” labeling of the nodes in Algorithm KDOSELABEL-  {(e;) > {(e). Therefore,|Vi| = O(logn). By construction,
NUMBERS, we first build a minimum spanning tree (MST)each node has an outdegregxdtog n) in the setQ chosen by
and order the nodes based on a depth-first traversal orderAdgorithm CHOOSEEDGES, and so|A4;| = O(log?n). Next,
this MST. This type of labeling ensures that for each nodegpnsider the setl»(i) and letV;(i) denote the set of all end
the radiusr(v) chosen for it is small on average. points ' such that(u’,v") € As(i) for some nodev’. Let
The two steps of Algorithm MvSUM-TCPSF are illus- u, denote the node of the smallest label lia(:), and let
trated in Figures 2 and 3. The running time of this algorithrfus,vo) € As(i). As before, if |[V2(i)| > c3logn for some
is O(n?logn) if implemented sequentially. The following constantcs, B(us,2°~') would containk nodes of higher
theorem shows that the power levels chosen by this algorithatel thanus, which contradicts the assumption that Algorithm
ensure that the surviving subgraph is strongly connectétl, WCHOOSEEDGES added the edgéus,vs) to Q’. Therefore,
high probability. [V2(i)] = O(logn). Again, since the outdegree of each node
Theorem 1: Let Q be the set of edges chosen by Algorithnin Q' is O(logn), we have|A;(i)| = O(log® n). Therefore,
CHOOSEEDGES. Then, Pr[G(V (p),Q) is connected> 1 — 1I(e) = O(log®n). Next, observe thal(E,,;) = Q(logn).

1/n3. This is because the optimum solutiéf,, must have at least
Proof: Let vy, ve, ..., v, be the nodes in increasing ordeone node; with degre&?(log n), in order forE,,; to be robust

or theirs label numbers, i.eL(v;) = 4. For each node;, to failures. It then follows that for the shortest edgmcident

let H(v;) = {v; € B(v;,r(v;)) + L(v;) > L(v;)}. Let onuw, |I(e)] = Q(logn). [ |

S = {v1,...,vn_x} and T = V \ S. Consider any node Next, we bound the costum(P) of the solution produced



by Algorithm CHOOSEEDGES, relative to the optimum in the < 2k3(2k)Y Zé(wf,wfﬂ)”

following lemma. The specific labeling assigned by Algarith s>1

CHoosELABELNUMBERS turns out to be crucial. < 22K%(2k) Zg(e)w
Lemma 4: Let @ be the set of edges computed in g

Algorithm CHOOSEEDGEs We have ., {(e)” <

(2k)7+2 > ecrt(e)?, where T is the Euclidean minimum ) ) ) u
spanning tree on the s&t of nodes. Theorem 2: Algorithm MinSum-TCPSF is an
Proof: Let = be the in-order traversal ofi’, which (O(log”n), O(log”** n))-approximation  algorithm  for

contains the exact sequence of nodes visited - this includB§ sum objective.

nodes repeated during the traversal (see Figure 2).rfet Proof: Since any edge € @ can contribute to the radii
denote the reverse sequencerof of at most two nodes, the two end points @f we have

Consider any node; and the minimal subsequen@g"‘,
7y, ..., 7 such that: ()7f = v; and 7 is the last
occurrence ofy; in % (i) there arek’

min{k,n — i}
7f}. For simplicity

sum(P(Q)) <2) o clle).

It is easy to see that if we construct an MST using the
weights ¢/(e)” for all edgee, it would be the same MST
using the weightd(e). Along with this fact, using Theorem

distinct nodes in the sequeneg’, |, ..., _ :
of notation, definew; = warl,wQ =Tk Wiy = ﬂ'ﬁ. 3.2 (le“m 1) in [25], we have, for any ZeEM/ST(V) cl(e)” <
As the degree of any node in an Euclidean MST can be atm(P°?"). Thus using Lemma 4, we haveum(P)
most 5, some node may occur as much &adimes in this 2(2k)"*2y° | o cl(e)” < 2(2k)"2sum(PP). With k
subsequence. However, a subsequence of2dizes sufficient O(logn) the result now follows from Lemma 3.

to havek’ distinct nodes; because each edge is traversed at

most twice, and each traversed edge introduce a new nggepistributed |mplementation

to the sequence. Thug — j < 2k’ < 2k. Let A denote
the set of distinct nodes that occur in this subsequence. B

m A

Igorithm CHOOSEEDGES and (HOOSH ABELNUMBERS

construction, all these nodes have label numbers larger t52dS to an efficient implementation in a distributed sgtas

L(v;), since they appear before the first occurrence;oin
sequencer. Consider the radius(v;) computed in Algorithm

described below.
1. Constructing MST and choosing root.Construct an MST

CHOOSEEDGES Radiusr(v;) denotes the smallest radius suchSing the distributed algorithm due to Gallager, Humblet an

that ball B(v;,r(v;)) containsk’ nodes with label numbers

larger thanL(v;). That is,r(v;) < max{{(v,w): w € A}.
Next, observe that

o

s=1

f_j1

> tws,weia)

5
J
£(ws, ws+1)> < (Qk)’y
s=1

because of the fact that—; < 2k. By tbe triangle inequal-
ity, we havemax{£(v,w) : w € A} < 37 77 0wy, wei1),
which impliesr(v:)” < (2k)? 377" £(ws, we11)7. Let H (v;)
denote the set of nodes with label numbers larger than)
in the setB(v;, r(v;)). By definition, for eachv € H(v;), we
have £(v;, w) < r(v;), which impliesy” . €(vi,w)” <
k(2k)7 277 0w, we41)7. I this case, we say that node
places a charge of(2k)” on each of the edge@u,, ws41)

along this subsequence.
By construction, we hav€) = U,, {(v;,w) : w € H(v;)},

Spira (GHS) [26]. This algorithm taked(n logn) time and
O(|E|+nlogn) messages. (Reference [27] discusses how this
algorithm can be adapted to run in a wireless network sejting
The GHS algorithm also elects a leader, which serves as a root
of the MST.

2. Node counting.The root broadcasts@unt message using
the tree edges to all other nodes. A leaf-node after reagivin
the count message, immediately sends backcaunt-reply
message to its parent with count = 1. Any intermediate node
waits until it receivegount-reply from all of its children, then
aggregates the count and sendsoant-reply message to its
parent with count equal to the aggregated count. Thus, thte ro
can determine the total number of nodesEach intermediate
node (and the root) also stores the counts received fronf all o
its children; thus it knows the number of nodes in the subtree
rooted at each of its children.

3. Label number selection.The root picks the label number

and thereforey_ ., £(e)” can be expressed in terms of the,q givides the rangfe..b] = [1..n— 1] as follows: let the root

costs of the edges in the subsequenteThe only problem is paves children and the node counts received from its children

that edges in this subsequence could appear in the summati } : ; ;
of a number of nodes, and we need to bound this charge. WI‘%%C“ G2, ..., Cy; the order of the children is determined by

we consider a node;, we only consider the subsequence ghe reverse depth-first grder. Then the root sends 1the range
7 starting atv; of length at most2k. Therefore, an edge [L;, L; + C; — 1] to its it child, whereL; = a + Z;;l C;.
(ws, ws41) could get charged by at mo8k such nodes;.  Similarly, an intermediate node, after receiving the rajagé]

This implies from its parent, picks the label numbgrand distributes the
Z((e)w _ Z Z (v, w)" rangela..b — 1] to its descendants.
e€Q v; wEH(vy) Example. In Figure 2, the root = v; has total count 7.

In reverse depth-first order, cou@y is the number nodes in
the subtree rooted at; and Cy the number of nodes in the
subtree rooted at,. Root v; picks the label number and

IN

Z k(2k)Y Z O(ws (vi), ws g1 (v:)”



sends the rangf..3] to vs and [4..6] to vo. Nodevs selects
3 and send$l..1] to v; and[2..2] to vg, and so on.
4. Finding the k the Nearest Nodes with Larger Labels.

Theorem 3 ([19]): Let @ be the set computed in the above
algorithm. Then, we haveéQ| < 10enlog,n + O(n), and
Pr{MST(V(p)) CQ} >1— 5

n3"

Each node executes the following algorithm to find the closes We first show that the interference complexity@fis low.

nodes with larger label numbers. Léte the largest possible
distance between any two nodes.

1) Initialize R to be the distance to the closest neighbor.

2) Each nodev repeats the following untiR/2 > d or k
nodes with larger label numbers are found.
a) Set transmission radius to R and broadcast a
message containing(v).
b) Any nodeu, on receiving the message from
sends bacld(u) to v iff L(u) > L(v).
c) SetR « 2R.

V. THE MAXIMUM POWERLEVEL

We now discuss algorithms for the max objective. In Se

Lemma 5: 1(Q) = O(log® n)I(Eyp).
Proof: (Sketch) For any edgee (u,v
we prove thatl(e) O(log®n). Let A;(e)
I(e) : £(e') € [2¢,2¢Th)}, for eachi, and letV;
v’ : F' such that(v/,v") € I(e), andv’ € B(u,l(e)) U
B(v,£(e))} be the set of end points of edgesAn(e) that do
not lie in B(u, £(e)) U B(v,£(e)). If [Vi(e)| > calog®n for
some constant,, there would exist a node, € V;(e) such
that | B(u4, £(e)/2) N V;(e)| > ¢slogn. A direct application
of Chernoff’s bound implies thatB(uq4, £(e)/2) N Vi(e) N
V(g)| = Q(logn) with high probability, and therefore, many
nodes inB(ug,{(e)/2) N V;(e) will survive in step 1l(1) of
Algorithm MINMAX-TCPSF. This implies that the Euclidean
®AST in Step II(2) will not end up choosing many edges

S
{e
(e

tion V-A, we describe a randomized algorithm that gives aetween nodes iB(u4, ¢(e)/2) N Vi(e) N V(g) and nodes

(O(log® n), O(log n))-approximation for the max objective,in B(u,£(e)) U B(v,£(e)), which contradicts the assump-
with a running time ofO(nlog®n). In Section V-B, we tion that each node ifV;(e) has an edge to some node in
describe another algorithm which gives an improved appro®{u, £(e)) U B(v, £(e)). Since there ar®(logn) values ofi,
imation of (O(log?n),1), but with a higher running time we havel(e) = O(log®n). By the same argument as in the
of O(n*logn), thus illustrating the tradeoff between theroof of Lemma 3, the proof now follows. [ |
quality of approximation and running time. Both algorithms Theorem 4: The solution @ produced by Algorithm
are simple, and involve Monte Carlo sampling. However, thdINMAX-TCPSF is ar{O(log® n), O(log n))-approximation
analysis, is non-trivial. for the max power objective.

Proof: By Theorem 3, it follows that
Pr[G(V(p),Q) is strongly connectéd > 1 — L. Let
ropt D€ the transmission radius corresponding to the optimum
solution. We show that with probability at lealst- % every

edges can “cover’ the MST of the surviving subgraph, witRd9€ ¢ chosen inQ safisfiest(e) < ci7op logy n, where
high probability. However, we need a non-trivial extensign €1 IS @ constant to be specified later, abld= 1/(1 — g).
their analysis to bound the approximation guarantee for ti order to do this, we first bound the probability that an
algorithm, which crucially uses the geometric properties. €d9€¢ = (u,v) With £(¢) > ciroy logy, 1 is added to the
Recall the notation from Section I-B. We assume that tf‘?@tQ in the algorithm. R_ecall our assumption n Section |-B
power thresholdp(u, v) for any pair of nodesu,v € V is that p* > 1/n°. We claim thatG(V, ;) contains a path

iven b 0) = c-£(u,v)" for some constants and-y. connectingu and v - if there is no such path connecting
g yo(u,v) =c-fu,v) 7 u and v, G(V(p),ropt) Would be disconnected whenever

both « and v survive, which happens with probability
p? > 1/n3, implying that Pr[G(V (p),ropt) iS connected
I.Letb=1/(1 —p) andk = [5log, n] + 1. ] < 1—1/n3, which contradicts the definition of,,;. Let
II. Fori =1 to 32¢k%1lnn do P = (wy,...,w;) be any such path between, = v and

1) Generate a random subdét=V (¢) by choosing each @k = v N G(V,7op). By definition of G(V, 7op1), every edge
vertex independently frony’ with probability ¢ = 1/k. € = (wi,wit1) € P must havel(e’) < rop < 15;),/71-

2) Find a Euclidean minimum spanning trée of the By the triangle inequality, we haveP| > c;log, n. Let
complete graph ori;, with the length of each edgec: be a constant such th@t, < c¢;. We partition P into
(u,v) equal tol(u, v). k/k' = Tc1/cz] blocks By, ..., By, €ach of size roughly

3) For each edge, includee in Q if it appears in at least &' = c2log, n. We do the analysis assuming thidtis an
161Inn different7}’s. integer; if this is not true, the analysis can be modifiedlgasi

Ill. Set r — max £(e) for all nodesv € V. to deal with the slight non-uniformity in size_s. Therefore,
e€Q B; = {w—1)k'+41, - - -, wirs }. These are shown in Figure 4.
The probability that all the nodes in any bloék fail in a
We need the following result due to [19], which shows thagndom sampld/(q) is (1 — q)/Bil = (1 — ¢)®2'°81/a-0" =
the set@ constructed in the above algorithm contains an MS;I;{__2_ By the union bound, the probability that there is a block
of the random subgrap¥ (¢), with high probability. B; in which all nodes fail inV(q) is therefore at most-.

Con€2’?

A. An (O(log®n), O(log n))-approximation algorithm

Our algorithm MNMAX-TCPSF builds on an interesting
result by [19], who show that a small subset®fr log, n)

Algorithm: MINMAX-TCPSF




and so with probabilityl — c;l/‘” at least one node survives inthreshold¢ is found, we use the algorithm of [19] to find the

cy 1

each blockB; in V(q). Consider one such samplié&q), and setQ of edges.

let wy(; denote the node that survives iy, i = 1,...,k'.
By the triangle inequality, we have Algorithm:  Testg)
gGi+1)—1 / Input: SetV of nodes on the plane, survival probabiljiyfor
E(wg(iy, wy(i+1)) < Z Uwj, wip1) < 2k rop each node, and a common power leyel
7=9(%) Output: YES, if G(V(p), ¢) has propertyP with probability
2¢o at leastl — 1/n.

< 2K 1 < ==l(e).

- (€)/(c1logn) < c1 () l. Fori =1 ton? do
Since we hav&c; < c1, we would havel(wy .y, wy(it1)) < 1) Generate a random sub3ét= V' (p) of V' by choosing
{(e), for eachi = 1,...,k/k’. This means we have an each vertex fronl/ with probability p.
alternate pathu, wg), ..., wyu),v from u to v in V(q), 2) ComputeX; = 1-Ap(G(V;, ¢)), whichis1 if G(V;, ¢)
each of whose edges are shorter tharwith probability at does not have propert.

least1 — 01/02 . We setc; = 5 andce = 2. Then, in our ||, |f Z . X; < 3n, output YES.
algorithm VA Pr[e € T;] < 1/n, whereT; is the MST on
the random subsét (q). By a Chernoff bound, it follows that  Thegrem 5: I Pr[G(V(p), ¢) has propertyP] > 1 — L

for any specific edge with ((e) > ciropt logy, . We have thenPr[Test) does not return YES< e~". The solutlonQ
Prle appears in at leastt Inn differentTi’s] < 5. By the computed by algorithnTest() and the result of [19] is an
union bound, it follows that the probabilit§) contalns any (O(log? n), 1)-approximation to the max objective. It requires

n2
edgee’ with ((¢') > ciroplogy n is at mostls = 5. O(n?) invocations of algorithmAp; for strong connectivity,
Therefore, the radiug chosen by our algorlthm satlsﬂesthIS takes timeO(n? log n).

r < cirope logy o with probability at leastl — 1/n. By

definition of r,,; and by Lemma 5, the theorem follows® VI. EMPIRICAL RESULTS
B We present empirical results for the TCPSF problem. For
most of our experiments, we use an instance consisting of
o @ o a set of nodes distributed along the streets of the downtown
By Portland, OR, generated by the TRANSIMS mobility model

[28]. We discuss the results for the max and sum objectives

separately. In these experiments, we used 2.

1. The max objective function Figure 5 shows

Pr[G(V(p),r) is connectef versus radiusr, for different

Fig. 4. Edge(u, v) with £(c) > c1rope logy, n. The black circles denote yalues of the surviving probability.for the node distributipn

the nodeswy. ... wy, and B1, ... Bys are the blocks on pati, referred 1N Portland. Observe that there is a sharp threshold in the

to in the proof. Nodew, ;) is the survivor in blockB;. connectivity radius (or equivalently, the max power level
needed) even in this setting. This threshold is known in the
case of nodes distributed randomly on the plane [18], [29],

B. A (O(log?n), 1)-approximation algorithm or arranged on a grid [8], but it is surprising to observe this

In this section, we describe a simpler Monte-Carlo sampliigreshold even in this non-random setting.

based algorithm for the min objective, that works not just f@. The sum objective function Figure 6 shows the variation

connectivity, but any “testable” monotone property, aneegi of an approximation to the total power objective witlfior an

an (O(log® n), 1)-approximation, at the cost of a higher runinstance of the Portland data. Observe that this has a simila

ning time, and a lower probability of reliability. L& denote threshold behavior as that for the max objective, though it

a monotone property that can be tested in polynomial timggeems to be a little less sharp.

and let Ap denote such an algorithm to test for propelty For v = 2, Theorem 2 gives an worst case bound of

examples of such properties are strong connectivity, exést O(log* n) on the approximation factor ofumn(P) given by

of a giant component, low diameter, etc. For gragtV, ﬁ), our algorithm MinSum-TCPSF to the optimum. In the average

let Ap(G(V,P)) be 1 if G(V,P) has propertyP, and 0 case, this bound can be much better. For randomly chosen 50-

otherwise. For a given power levg) the following algorithm, 5000 nodes in a unit square, we computed this approximation

Algorithm Testg), determines if a given candidate power leveiactor for v = 2. Figure 7 shows this experimental result.

¢ is adequate for all nodes. Using Algorithm Tegtés a query To understand its growth rate, we also plotted the function

function, a binary search on the set of power thresholdslfor &g n and log? n. We observe that the growth rate of the

edges{¢(u,v) | u,v € V}, can find the required minimum approximation factor is even smaller than the growth rate of

¢ by calling Test) at mostO(logn) times, since there arelog®n. In fact, the growth rate is pretty much close to that of

at mostn? distinct power thresholds. Once the correct powéog n.
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Fig. 5.  Connectivity ofG(V (p),r) using a
structured topology withh = 1749 nodes.

VII. CONCLUSION [11]

In this paper, we designed and analyzed algorithms for
topology control for unreliable ad hoc networks that simuf*2
taneously achieves provably good approximations to mialtip
objective criteria, namely, connectivity, power efficigrand [13]
interference reduction. Empirically, we find that our alfon
has significantly better performance guarantees in pectig 4
than what we show analytically. Improving the performance
guarantees, and extending our results to other topologi€&l
properties (e.g., spanner) are interesting open problems. [1¢
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