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Abstract—Topology control in ad hoc networks is a multi-
criteria optimization problem involving (contradictory) objectives
of connectivity, interference, and power minimization. Addition-
ally, nodes can be unreliable, which adds another dimension
to an already challenging problem. In this paper, we study
topology control problems in ad hoc networks under node
failures for arbitrary node distributions. We consider a simple
and natural stochastic failure model, in which each node canfail
independently with a given probability. The Topology Control
Problem Under Stochastic Failures is to choose a power level for
each node and a subset of edges such that the residual graph (i.e.,
the graph formed by the nodes which have not failed) is connected
and can be scheduled efficiently, with high probability. We
develop provably efficient bi-criteria approximation algorithms
for this problem that simultaneously minimize power, reduce
interference, and ensure that the surviving graph is connected
with high probability. Our algorithms can be implemented
efficiently in a distributed manner.

I. I NTRODUCTION

A. Overview

Topology control is a fundamental problem in multi-hop
ad hoc wireless networks where it is undesirable for nodes
to transmit at the maximum power levels — in addition to
wasting energy, which is an important constraint, it leads to
high interference. However, reducing power levels can impact
connectivity, and so topology control involves a trade-off
between the (contradictory) objectives of connectivity, low
interference, and energy minimization [1], [2]. The focus of
this paper is on topology control inunreliable sensor networks,
in which nodes can fail — this is especially important in ap-
plications involving large scale deployment of such networks,
e.g., in habitat monitoring [3].

There has been a lot of work on topologies which remain
connected even when some nodes fail [4], [5], [6], [7]. Two
classes of failure models have been studied:adversarial and
stochastic. In the adversarial failures model, the topology is
required to be well-connected no matter whichk nodes fail;
in other words, the topology should be a(k + 1)-connected
graph. The cost of such solutions (relative to the optimum)
typically depends onk, and can become weak whenk is

large. The adversarial model has been studied in both random
and arbitrary node distributions. In the stochastic failures
model, nodes are assumed to fail independently with some
probability. Under this model, the connectivity properties have
been studied as a function of the transmission range in the case
of random node distributions [8].

In this paper, we study topology control problems in the
stochastic node failures model, for arbitrary node distributions.
Formally, given a set ofn nodes (transceivers) placed arbi-
trarily in the plane, wherein each nodev fails independently
with probability 1 − p(v) ∈ [0, 1], the Topology Control
Problem under Stochastic Failures (TCPSF) is to choose a
topology (i.e., a subset of edges) and power levels for all
nodes, so that the random subset of surviving nodes form
a “well connected” graph with low interference (formally
defined later), with probability at least1 − ǫ, where ǫ is a
parameter. We consider a specific time horizon, and each node
can fail and can come back again at any time; the power levels
for nodes are determined at the beginning, and when a nodes
recovers, it uses the power level specified initially. In contrast
to random node distributions, in which many connectivity
properties can be mathematically analyzed very accurately,
stochastic failures in arbitrary node distributions leadsto new
challenges. For instance, we prove that even determining the
probability that there is a component containing aµ-fraction of
the surviving nodes for a given constantµ (or approximating it
within a small constant factor) is #P-complete. In contrast, the
results of [8] yield tight bounds for this quantity for random
node distributions. To the best of our knowledge, this is the
first work that addresses the topology control problem under
stochastic node failures for arbitrary node distributions.

Similar issues arise in the design of sleep scheduling
protocols, which try to minimize energy consumption by
cycling nodes between sleep and active modes, and scheduling
transmissions to achieve convergecast [9], [10]. While many
references present protocols that involve a careful choice
of schedules for nodes to sleep, transmit, and receive [10],
others such as Chiasserini et al. [9] study the performance
of protocols in which nodes randomly go to sleep for some



(randomly chosen) duration and then wake up. Solving the
TCPSF problem will also yield topologies that would work
well under such sleep scheduling models.

Early work on the theoretical foundations of topology
control, e.g., [11], [1], [6], [12] involved optimization of
transmission power levels so that the resulting topology iswell
connected. However, it has been observed that focusing on
the transmission power alone is not very insightful [13], [2],
and in recent years there has been interest in designinglow-
interference topologies, in addition to optimizing the transmis-
sion powers [2], [14], [15]. We focus on both these metrics,
and develop algorithms to construct a topology formed by a set
E′ of edges that can be scheduled efficiently, while minimizing
different functions of the transmission power levels needed to
realize the setE′ of links.

B. Preliminaries and Network Model

Let V be the set ofn nodes on the plane, and letℓ(u, v)
denote the distance betweenu andv, i.e., the length of edge
(u, v), for all u, v ∈ V . We will assume throughout that
min{ℓ(u, v) : u, v ∈ V } = 1 and max{ℓ(u, v) : u, v ∈
V } = O(nO(1)). For nodev ∈ V , let B(v, r) = {w ∈ V :
ℓ(v, w) ≤ r} be the set of nodes within distancer from v.
Following [11], [12], we assume that transmission on a link
(u, v) requires a power levelP (u) ≥ φ(u, v) = c · ℓ(u, v)γ ,
wherec andγ are constants. We will consider graphs induced
by either a given setE of links on V , or by a vector~P of
power levels for nodes. LetG = (V, E) denote the graph
formed by a setE of links. For a given setE of links, let
P (u, E) = max{φ(u, v) : (u, v) ∈ E} denote power level
needed for nodeu to realize the edges incident onu, and
~P (E) denote the resulting vector of power levels. Designing
a topology corresponds to constructing such a setE of edges.
For a given transmission power vector~P , let G = (V, ~P )
denote the graph formed by the setE = E(G) = {(u, v) ∈
V × V : P (u) ≥ φ(u, v)} of all possible edges realized by
~P . If P (u) = φ for all nodesu, we also refer to the graph
G(V, ~P ) by G(V, φ). Let G(V ) denote the complete weighted
graph onV with each edge(u, v) having weightℓ(u, v). We
let MST (V ) denote a minimum spanning tree ofG(V ).

We assume that each nodev can fail with probability
1 − p(v); for simplicity, we assume a uniform probability
p(v) = p, though all the results in this paper extend to the
more general case. LetV (p) denote a random subset ofV ,
containing eachv ∈ V with probability p. Let G(V (p), ~P )
denote a random subgraph ofG(V, ~P ) induced by the ran-
dom subsetV (p); similarly, let G(V (p), E) denote a random
subgraph ofG = (V, E).

The TCPSF problem involves constructing a setE of edges
so that the subgraphG(V (p), E) induced by the surviving
nodes has some desired propertyP, which could be, for
instance, the property thatG(V (p), E) is strongly connected,
has a giant component or has low diameter. In most of this
paper,P will be the property of strong connectivity. We are
interested in two objectives related toE: the interference

(which is related to how efficiently the edges inE can be
scheduled) and theenergy cost.

We assume adaptive power control, meaning that to transmit
on edgee = (u, v), nodeu uses the minimum powerP (u) =
φ(u, v) required for transmission on this link. We use the Tx-
Rx model for interference (see [16] for the definitions), which
roughly means that edgese ande′ can be used simultaneously,
provided they do not have a common end point, and there is
no edge connecting their end points. We seek to construct
edge setsE with low “scheduling complexity” or interference
cost, i.e., they can be scheduled in the Tx-Rx model (or other
similar models) efficiently. There have been several proposal
for combinatorial measures for the interference cost, e.g., the
“coverage” measure of [2] and the slightly different congestion
measure of [16], [17]. Our interference cost is based on [16],
[17], since it seems to be better measure of the scheduling
complexity if adaptive power levels are allowed (i.e., nodes
can vary the transmission power level on different links). Our
algorithms produce topologies with low interference. Given a
set E of edges, for edgee ∈ E, define interference ofe =
(u, v), denoted byI(e, E), as

I(e, E) = {e′ = (u′, v′) : e′ ∈ E, ℓ(e) ≤ ℓ(e′), and

min{ℓ(u, u′), ℓ(u, v′), ℓ(v, u′), ℓ(v, v′)} ≤ ℓ(e′)},

andI(E) = maxe∈E |I(e, E)|. When the setE is clear from
the context, we will refer to the setI(e, E) simply by I(e).
Intuitively, I(e) consists of edges that are located “close” to
e, and interfere with it, and are longer in length; this measure
is motivated by the following result from [16], [17]:

Lemma 1: Given a setE of edges, it is possible to construct
an interference-free schedule of lengthO(I(E)) in the Tx-Rx
model (see, e.g., [16] for definitions).

It has also been shown in [16], [17] that the above lemma
holds for many different interference models, and this in-
terference metric is stronger than the one in [2] if adaptive
power levels are used; the “ℓ(e′) ≥ ℓ(e)” restriction in the
definition is crucial in this case, as illustrated in Figure 1. The
second measure we consider is the energy cost,cost(~P (E)),
and we are interested in two objectives: the maximum power,
max(~P ) = maxu∈V P (u) and the total power,sum(~P ) =
∑

u∈V P (u).

e1

e2
e3

e4

e5

e

Fig. 1. An example illustrating the interference measure: Consider the set
E = {e, e1, e2, e3, e4, e5} and let ~P (E) denote the power level vector.
Then, I(e) = {e5}, I(e4) = {e, e5}, and I(E) = 3, so that all the edges
shown can be scheduled in three time slots:e1, . . . , e4 can be scheduled
simultaneously, whilee and e5 can be scheduled in two separate slots. In
contrast, the coverage defined in [2] is higher, and leads to alonger schedule.

For a given parameterǫ, let E = Eopt denote a set of
edges with the minimum possibleI(E), so thatG(V (p), E)



is strongly connected with high probability1; among mul-
tiple such Eopt which may be possible, we consider one
that minimizes the cost of power, i.e.,cost(~P (Eopt)). The
TCPSF problem is a bi-criteria optimization problem that
involves constructing a setE of edges so thatG(V (p), E)
is strongly connected with high probability such thatI(E)
and cost(~P (E)) are both small, relative toI(Eopt) and
cost(~P (Eopt)), respectively. The algorithms we study will be
randomized bi-criteria approximations: we say our algorithm
produces an(α1, α2)-approximation to the TCPSF problem
if it produces a solutionE such thatI(E) ≤ α1I(Eopt) and
cost(~P (E)) ≤ α2cost(~P (Eopt)), with high probability.

C. Summary of Results

1. Computational hardness of TCPSF problem. Vari-
ous versions of this problem are computationally hard to
solve exactly. We prove in Section III that even computing
Pr[G(V (p), φ) has a component of size at leastµ|V |] is #P-
complete, for a given constantµ - this is in contrast with results
on stochastic failures in random node distributions [18], [8],
where this quantity can be estimated analytically.

Therefore, we focus on approximation algorithms with
provable approximation guarantees of the form described in
Section I-B. In all our results, the interference complexity
will be polylogarithmic, and so we classify the results based
on the energy objective. To avoid trivialities, we assume that
p > 1/n3/2 i.e., the failure probability is not very close to 1.
2. The Sum of Powers Objective. We present an algorithm
that gives an(O(log2 n), O(logγ+2 n))-approximation2 for
the sum objective for energy; in other words, our algorithm
chooses a setE of edges such thatI(E) = O(log2 n)I(Eopt),
and sum(~P (E))/sum(~P (Eopt)) = O(logγ+2 n). Our al-
gorithm is based on a local labeling algorithm, in which
each node chooses a setE of edges to some number of
higher labeled nodes. We prove that forany choice of dis-
tinct label numbers, the resulting setE of edges guaran-
tees thatPr[G(V (p), E) is strongly connected] ≥ 1 − 1/n3,
and I(E) = O(log2 n)I(Eopt). However, the energy cost
of the solution, relative to the optimum, i.e., the ratio
sum(~P (E))/sum(~P (Eopt)), can be bounded only by choos-
ing the labels carefully. We show that this algorithm can be
efficiently implemented in a distributed fashion. As mentioned
earlier, the above bounds hold for any node distribution. Ifthe
nodes are distributed randomly on a plane, it can be shown
that the labels can be chosen randomly by the nodes, with a
little worse approximation guarantees.
3. The Maximum Power Objective. We develop an
(O(log2 n), O(log n))-approximation for the max power ob-
jective. This algorithm is randomized and is based on Monte-
Carlo sampling. However, a crucial aspect of our algorithm is
that the sampling is done with probability notp, but a different
value q < p. The overall running time of this algorithm is

1usually we take this to mean a probability of at least1− 1
n3 , but this can

be any parameter
2We uselogr n to mean(log n)r .

O(n log3 n). This algorithm is a non-trivial extension of a
result by Goemans and Vondrak [19], who develop an elegant
technique for covering minimum spanning trees (MSTs) of
random subgraphs of a given graphG. While their result
implies that the solution computed by the algorithm is strongly
connected with probability at least1− 1/n3, it does not give
any bounds on the cost of the resulting solution. Our proof of
this bound crucially uses the geometric structure.

Next, we show that at the expense of larger running time, the
approximation factor of the above algorithm can be improved
to (O(log2 n), 1) for the max objective. This algorithm is a
simpler Monte-Carlo algorithm than the one above, and has
a running time ofO(n3 log n). For any “testable” monotone
propertyP (such as strong connectedness, existence of giant
component or low diameter; this is defined formally in Section
V-B), this algorithm can be used to find a good power level
vector ~P so thatG(V (p), ~P ) has propertyP.

This algorithm works with the same guarantees, even in a
setting where the failure probabilities are non-uniform. Both
of these algorithms are based on MST computations, and can
be efficiently implemented in a distributed manner following
techniques given in [20].
4. Empirical Results. We analyze the empirical performance
of our algorithms for both the objective functions. We observe
a sharp threshold in the variation of the max power level as a
function of ǫ, the probability thatG(V (p), ~P ) is not strongly
connected; a similar, though less sharp, threshold is observed
for the sum objective also. We also implement our algorithm
for the sum objective, and find that the approximation guar-
antee in practice is significantly better than what we are able
to prove analytically in Section IV.

The main focus of this paper is a theoretical analysis of this
class of problems. The approximation guarantees we prove
here areworst case guarantees, which hold forany instance.
In practice, the approximation guarantees are much better,as
we find in our empirical results. We believe that the framework
of stochastic failures can help model many applications, and
the proof techniques we develop here are likely to be useful
in more general settings, such as sleep scheduling protocols.

II. RELATED WORK

Early work on the theoretical foundations of topology
control, e.g., [11], [1], [6], [12] involved optimization of
transmission power levels so that the resulting topology iswell
connected. The maximum power objective can be minimized
efficiently for any monotone graph property that can be tested
efficiently [12]. Under the total power minimization objective,
topology control problems for many graph properties (e.g.
connectedness, bounded diameter) are known to beNP-hard
and approximation algorithms for many such problems have
been developed, e.g., [6], [21], [4].

There has been a lot of work on findingk-connected net-
works, to deal with deterministic failure models, e.g., [4], [5],
[7]. These algorithms provide performance guarantees which
are polynomial functions ofk. Bredin et al. [22] consider the
problem of adding a minimum number of sensor nodes to a



given sensor network so that the augmented network isk-node-
connected. Since this problem isNP-hard, they present an
approximation algorithm with a performance guarantee which
is a polynomial ink.

To our knowledge, under the stochastic failure model, the
topology control problem has not received much attention. As
mentioned earlier, some results when nodes are arranged on
a grid, or placed randomly in the plane have been reported
in the literature. For example, Li et al. [18] consider a set
of n points placed randomly in the unit square and establish
bounds on the transmission radius to be used for each node so
that the resulting graph isk connected with high probability.
Shakkottai et al. [8] analyze a configuration of nodes on
a grid with stochastic failures. They establish relationships
between the failure probability and the transmission radius
to be used for each node to ensure coverage, connectivity and
low diameter. Kumar et al. [23] obtain similar results for other
random distributions of nodes.

In recent years, some papers such as [13] have pointed out
several issues arising out of focusing on transmission power
alone. Therefore, there has been interest in designinglow-
interference topologies, in addition to optimizing the trans-
mission powers [2], [14], [15]. These papers have developed
interference measures, which are related to the complexityof
scheduling the set of chosen edges, and have designed approx-
imation algorithms for optimizing the interference. However,
these papers do not consider unreliable ad hoc networks.

III. C HALLENGES OFANALYZING STOCHASTIC FAILURE

MODELS

Most algorithms for topology control either allow no fail-
ures, or consider worst case models for failures, in which any
k nodes can fail, as mentioned earlier. We now discuss to what
extent these algorithms can be used for the stochastic failure
models.

Consider an example ofn nodes v1, . . . , vn arranged
on a line, with uniform spacing ofℓ, and a power level
φ(vi, vi+1) = φ = c · ℓγ for all i. Suppose each node
fails with probability 1/2. Then, it can be shown that the
random surviving subgraph is strongly connected with high
probability if and only if every node has a power level of
φ′ = Ω(φ logγ n). Therefore, in order to be robust to stochastic
failures, the power levels have to be much higher than what
is chosen in a “failure-free” setting. The right power levels
depend crucially on the probability with which we want to
ensure the random surviving subgraph be connected, making
this a non-trivial problem.

A number of papers on topology control [5], [7], [4],
[18] have considered a “worst-case” notion of failures for
arbitrary node distributions - they give algorithms for power
choice to ensure connectivity whenany set of k nodes fail.
These results do not directly lead to efficient solutions forthe
TCPSF problem. For the instance described above, with high
probability, Θ(n) nodes will fail. If we run the algorithms
from [5] or [7] with k = Θ(n), the resulting power level
choice will indeed guarantee that the surviving subgraph will

be connected, but would have a total cost ofΘ(nγ/ logγ n)
times the optimum described above. Thus, algorithms that
ensurek-connectivity do not necessarily give good solutions
for stochastic failures.

However, from a theoretical perspective, the stochastic fail-
ures add a different kind of complexity to the TCPSF problem.
For instance, even determining the probability thatG(V (p), ~P )
has a large connected component (which seems to be much
simpler than the TCPSF problem, and would be needed to
“verify” a solution) is hard, as shown in the following lemma;
its proof is a simple extension of a result in [24] and is omitted.

Lemma 2: Let µ > 1/2 be a constant. For an ar-
bitrary set V of nodes and power levelφ, determining
Pr[G(V (p), φ) has a component with at leastµ|V | nodes] is
#P-complete.

IV. T HE TOTAL POWER OBJECTIVE

We describe Algorithm MINSUM-TCPSF for approxi-
mating the TCPSF problem with the sum objective. The
algorithm consists of two steps. A distinct label is cho-
sen for each node in the first step. The second step uses
these labels to choose the setE of edges, and it is in-
teresting to note thatany choice of distinct labels ensures
that Pr[G(V (p), E) is strongly connected] ≥ 1 − 1/n2, and
I(E) = O(log3 n). However, the cost,sum(~P (E)) depends
on how the labels are chosen. The simplest method would be
to choose the labels randomly for each node - this, in fact,
works well if the nodes are distributed uniformly at random
in the unit square, as we discuss in the full version of this
paper. However, for arbitrary distributions of nodes, choosing
labels randomly could lead to a high power cost (though, in
fact, the interference is small). In Section IV-A, we describe
a distributed implementation of Algorithm MINSUM-TCPSF.

Algorithm M INSUM-TCPSF:
1) Run algorithm CHOOSELABELNUMBERS to choose dis-

tinct labels for all nodes.
2) Run algorithm CHOOSEEDGES to find a setE of edges,

and the corresponding power levels~P (E).
Algorithm CHOOSELABELNUMBERS:

1) Construct an Euclidean minimum spanning treeT on
the setV of nodes.

2) Root the treeT at some arbitrary noder.
3) Traverse T in depth-first order starting atr. Let

v1, . . . , vn be the nodes in this order, withv1 = r.
4) For each nodevi, we defineL(vi) = n + 1− i.

Algorithm CHOOSEEDGES:
1) Let k = c1 log1/(1−p) n for some constantc1. Let the

nodes inV be orderedv1, . . . , vn such thatL(v1) <
L(v2) < . . . < L(vn).

2) For each nodevi, find the smallest radiusr(vi) such
that ballB(vi, r(vi)) containsmin{k, n− i} nodes with
labels larger thanL(vi). For each such larger-labeled
nodevj , add the edges(vi, vj) and (vj , vi) to setQ.

3) Set r′(vi) = maxe=(vi,vj)∈Q{ℓ(e)} and P (vi) = c ·
r′(vi)

γ .



v1

v2 v5

v3

v4 v6

v7

Fig. 2. An illustration of Algorithm Choose-Label-Numbersand some
of the terms used in Lemma 4 on an instance with7 nodesv1, . . . , v7.
The dashed line shows the traversal order, leading to the sequence
π = v1, v2, v3, v2, v4, v2, v1, v5, v6, v5, v7 and the order of the nodes
v1, v2, v3, v4, v5, v6, v7. Thus the resulting labels of the nodes are
L(v1) = 7, L(v2) = 6, L(v3) = 5, L(v4) = 4, L(v5) = 3,
L(v6) = 2, and L(v7) = 1. The reverse sequence ofπ is πR =
v7, v5, v6, u5, v1, v2, v4, v2, v3, v2, v1.

v1, 5

v2, 3

v3, 1
v4, 4

v5, 2

Fig. 3. An illustration of Algorithm Choose-Edges withk = 1. The number
next to each nodevi indicates its label numberL(vi). The directed edge
(v, w) implies thatw is the closest node with label larger thanL(v). In this
example, we have radiusr(v2) = ℓ(v2, v1), r(v3) = ℓ(v3, v2), r(v4) =
ℓ(v4, v1) andr(v5) = ℓ(v5, v4).

Recall the notation defined in Section I-B. We first describe
the two steps of our algorithm at an intuitive level here. Let
L(v) denote the label chosen using Algorithm CHOOSELA-
BELNUMBERS. Algorithm CHOOSEEDGES is really simple
- for each nodev, it chooses edges to certain number of
closest nodes of higher labels; letr(v) be the length of the
longest edge chosen byv. The power level for nodev is then
P (v) = c · r(v)γ , following the model described in Section
I-B. We show in Theorem 1 that for this setE, G(V (p), E)
is strongly connected with high probability. To construct a
“good” labeling of the nodes in Algorithm CHOOSELABEL-
NUMBERS, we first build a minimum spanning tree (MST)
and order the nodes based on a depth-first traversal order on
this MST. This type of labeling ensures that for each node,
the radiusr(v) chosen for it is small on average.

The two steps of Algorithm MINSUM-TCPSF are illus-
trated in Figures 2 and 3. The running time of this algorithm
is O(n2 log n) if implemented sequentially. The following
theorem shows that the power levels chosen by this algorithm
ensure that the surviving subgraph is strongly connected, with
high probability.

Theorem 1: Let Q be the set of edges chosen by Algorithm
CHOOSEEDGES. Then,Pr[G(V (p), Q) is connected] ≥ 1 −
1/n3.

Proof: Let v1, v2, . . . , vn be the nodes in increasing order
or theirs label numbers, i.e.,L(vi) = i. For each nodevi,
let H(vi) = {vj ∈ B(vi, r(vi)) : L(vj) > L(vi)}. Let
S = {v1, . . . , vn−k} and T = V \ S. Consider any node

vi ∈ S. By construction, we have|H(vi)| = k, and so
Pr[all nodes inH(vi) fail to be in V (p)] = (1 − p)k = 1

nc1
.

By the union bound, the probability that there is a node
vi ∈ S such that all nodes inH(vi) fail is 1

nc1−1 , and so with
probability 1 − 1

nc1−1 , corresponding to each nodevi ∈ S,
some nodeu ∈ H(vi) survives in a random subsetV (p).

By a similar argument, since|T | = k, at least one node
from T survives inV (p) with probability at least1 − 1

nc1
.

Let w be the node of the largest label that survives from
set T in the random setV (p). By construction, we have
H(vi) = {vi+1, . . . , vn} for eachvi ∈ T . Therefore, with
probability 1 − 1

nc1−1 −
1

nc1
, for each nodev ∈ V (p),

v 6= w, some nodeu ∈ H(v) survives. By construction
of the topology in Algorithm CHOOSEEDGES, we have the
edges(v, u) and (u, v) in G(V (p), Q), which implies that
G(V (p), Q) is connected, since there is a path from any
surviving nodev ∈ V (p) to node w (and back), passing
through nodes of increasing label numbers. By choosingc1

to be greater than 4, we have the result stated in the theorem.

We now bound the interference of the setQ chosen by the
algorithm.

Lemma 3: I(Q) = O(log2 n)I(Eopt).
Proof: (Sketch) Consider an edgee = (u, v). We will

show thatI(e) = O(log3 n). Let Q′ = {e′ = (u′, v′) ∈
I(e) : L(u′) < L(v′)}, whereL() denotes the labels chosen
by Algorithm CHOOSELABELNUMBERS; then|Q′| = I(e)/2.
Let A1 = {e′ = (u′, v′) ∈ Q′ : u′ ∈ B(u, ℓ(e)) ∪B(v, ℓ(e))}.
Let A2(i) = {e′ ∈ Q′ − A1 : ℓ(e′) ∈ [2i, 2i+1)}, for
i ≤ c logn for some constantc. We will show that the
sets A1 and A2(i) all have size at mostO(log2 n). First,
consider the setA1. Let V1 denote the set of end points of
edges inA1 that lie in B(u, ℓ(e)) ∪ B(v, ℓ(e), and let u1

denote the node of smallest label inV1. There is a constant
c2 such that if |V1| ≥ c2 log n, then B(u1, ℓ(e)/2) would
contain k nodes of higher label, and therefore, Algorithm
CHOOSEEDGES would chooser(u1) < ℓ(e). This contradicts
the fact that there is an edgee1 = (u1, v1) ∈ Q′ with
ℓ(e1) ≥ ℓ(e). Therefore,|V1| = O(log n). By construction,
each node has an outdegree ofO(log n) in the setQ chosen by
Algorithm CHOOSEEDGES, and so|A1| = O(log2 n). Next,
consider the setA2(i) and letV2(i) denote the set of all end
points u′ such that(u′, v′) ∈ A2(i) for some nodev′. Let
u2 denote the node of the smallest label inV2(i), and let
(u2, v2) ∈ A2(i). As before, if |V2(i)| > c3 log n for some
constantc3, B(u2, 2

i−1) would containk nodes of higher
label thanu2, which contradicts the assumption that Algorithm
CHOOSEEDGES added the edge(u2, v2) to Q′. Therefore,
|V2(i)| = O(log n). Again, since the outdegree of each node
in Q′ is O(log n), we have|A2(i)| = O(log2 n). Therefore,
I(e) = O(log3 n). Next, observe thatI(Eopt) = Ω(log n).
This is because the optimum solutionEopt must have at least
one nodev with degreeΩ(log n), in order forEopt to be robust
to failures. It then follows that for the shortest edgee incident
on v, |I(e)| = Ω(log n).

Next, we bound the costsum(~P ) of the solution produced



by Algorithm CHOOSEEDGES, relative to the optimum in the
following lemma. The specific labeling assigned by Algorithm
CHOOSELABELNUMBERS turns out to be crucial.

Lemma 4: Let Q be the set of edges computed in
Algorithm CHOOSEEDGES. We have

∑

e∈Q ℓ(e)γ ≤

(2k)γ+2
∑

e∈T ℓ(e)γ , where T is the Euclidean minimum
spanning tree on the setV of nodes.

Proof: Let π be the in-order traversal onT , which
contains the exact sequence of nodes visited - this includes
nodes repeated during the traversal (see Figure 2). LetπR

denote the reverse sequence ofπ.
Consider any nodevi and the minimal subsequenceπR

j ,
πR

j+1, . . . , πR
j′ such that: (i)πR

j = vi and πR
j is the last

occurrence ofvi in πR (ii) there arek′ = min{k, n − i}
distinct nodes in the sequenceπR

j+1, . . . , π
R
j′ . For simplicity

of notation, definew1 = πR
j+1, w2 = πR

j+2, . . . , wj′−j = πR
j′ .

As the degree of any node in an Euclidean MST can be at
most 5, some node may occur as much as5 times in this
subsequence. However, a subsequence of size2k′ is sufficient
to havek′ distinct nodes; because each edge is traversed at
most twice, and each traversed edge introduce a new node
to the sequence. Thusj′ − j ≤ 2k′ ≤ 2k. Let A denote
the set of distinct nodes that occur in this subsequence. By
construction, all these nodes have label numbers larger than
L(vi), since they appear before the first occurrence ofvi in
sequenceπ. Consider the radiusr(vi) computed in Algorithm
CHOOSEEDGES. Radiusr(vi) denotes the smallest radius such
that ball B(vi, r(vi)) containsk′ nodes with label numbers
larger thanL(vi). That is,r(vi) ≤ max{ℓ(v, w) : w ∈ A}.

Next, observe that
(

j′−j−1
∑

s=1

ℓ(ws, ws+1)

)γ

≤ (2k)γ

j′−j−1
∑

s=1

ℓ(ws, ws+1)
γ

because of the fact thatj′−j ≤ 2k. By the triangle inequal-
ity, we havemax{ℓ(v, w) : w ∈ A} ≤

∑j′−j−1
s=1 ℓ(ws, ws+1),

which impliesr(vi)
γ
≤ (2k)γ

∑j′−j−1

s=1
ℓ(ws, ws+1)

γ . Let H(vi)
denote the set of nodes with label numbers larger thanL(vi)
in the setB(vi, r(vi)). By definition, for eachw ∈ H(vi), we
have ℓ(vi, w) ≤ r(vi), which implies

∑

w∈H(vi)
ℓ(vi, w)γ

≤

k(2k)γ
∑j′−j−1

s=1
ℓ(ws, ws+1)

γ . In this case, we say that nodevi

places a charge ofk(2k)γ on each of the edges(ws, ws+1)
along this subsequence.

By construction, we haveQ = ∪vi{(vi, w) : w ∈ H(vi)},
and therefore,

∑

e∈Q ℓ(e)γ can be expressed in terms of the
costs of the edges in the subsequenceπR. The only problem is
that edges in this subsequence could appear in the summations
of a number of nodes, and we need to bound this charge. When
we consider a nodevi, we only consider the subsequence of
πR starting atvi of length at most2k. Therefore, an edge
(ws, ws+1) could get charged by at most2k such nodesvi.
This implies

∑

e∈Q

ℓ(e)γ =
∑

vi

∑

w∈H(vi)

ℓ(vi, w)γ

≤

∑

vi

k(2k)γ

j′−j−1
∑

s=1

ℓ(ws(vi), ws+1(vi))
γ

≤ 2k
2(2k)γ

∑

s≥1

ℓ(πR
s , π

R
s+1)

γ

≤ 22
k

2(2k)γ
∑

e∈T

ℓ(e)γ

Theorem 2: Algorithm MinSum-TCPSF is an
(O(log2 n), O(logγ+2 n))-approximation algorithm for
the sum objective.

Proof: Since any edgee ∈ Q can contribute to the radii
of at most two nodes, the two end points ofe, we have
sum(~P (Q)) ≤ 2

∑

e∈Q
cℓ(e)γ .

It is easy to see that if we construct an MST using the
weights cℓ(e)γ for all edgee, it would be the same MST
using the weightsℓ(e). Along with this fact, using Theorem
3.2 (Claim 1) in [25], we have, for anyǫ,

∑

e∈MST (V )
cℓ(e)γ

≤

sum( ~
P

opt
ǫ ). Thus using Lemma 4, we havesum(~P ) ≤

2(2k)γ+2
∑

e∈MST
cℓ(e)γ

≤ 2(2k)γ+2sum( ~
P

opt
ǫ ). With k =

O(log n) the result now follows from Lemma 3.

A. Distributed Implementation

Algorithm CHOOSEEDGES and CHOOSELABELNUMBERS

leads to an efficient implementation in a distributed setting as
described below.
1. Constructing MST and choosing root.Construct an MST
using the distributed algorithm due to Gallager, Humblet and
Spira (GHS) [26]. This algorithm takesO(n log n) time and
O(|E|+n logn) messages. (Reference [27] discusses how this
algorithm can be adapted to run in a wireless network setting.)
The GHS algorithm also elects a leader, which serves as a root
of the MST.
2. Node counting.The root broadcasts acount message using
the tree edges to all other nodes. A leaf-node after receiving
the count message, immediately sends back acount-reply
message to its parent with count = 1. Any intermediate node
waits until it receivescount-reply from all of its children, then
aggregates the count and sends acount-reply message to its
parent with count equal to the aggregated count. Thus, the root
can determine the total number of nodesn. Each intermediate
node (and the root) also stores the counts received from all of
its children; thus it knows the number of nodes in the subtree
rooted at each of its children.
3. Label number selection.The root picks the label numbern
and divides the range[a..b] = [1..n−1] as follows: let the root
havet children and the node counts received from its children
areC1, C2, . . . , Ct; the order of the children is determined by
the reverse depth-first order. Then the root sends the range
[Li, Li + Ci − 1] to its ith child, whereLi = a +

∑i−1
j=1 Cj .

Similarly, an intermediate node, after receiving the range[a..b]
from its parent, picks the label numberb and distributes the
range[a..b− 1] to its descendants.

Example. In Figure 2, the rootr = v1 has total count 7.
In reverse depth-first order, countC1 is the number nodes in
the subtree rooted atv5 and C2 the number of nodes in the
subtree rooted atv2. Root v1 picks the label number7 and



sends the range[1..3] to v5 and [4..6] to v2. Nodev5 selects
3 and sends[1..1] to v7 and [2..2] to v6, and so on.
4. Finding the k the Nearest Nodes with Larger Labels.
Each node executes the following algorithm to find the closest
nodes with larger label numbers. Letd be the largest possible
distance between any two nodes.

1) Initialize R to be the distance to the closest neighbor.
2) Each nodev repeats the following untilR/2 ≥ d or k

nodes with larger label numbers are found.

a) Set transmission radiusr to R and broadcast a
message containingL(v).

b) Any node u, on receiving the message fromv,
sends backL(u) to v iff L(u) > L(v).

c) SetR← 2R.

V. THE MAXIMUM POWER LEVEL

We now discuss algorithms for the max objective. In Sec-
tion V-A, we describe a randomized algorithm that gives an
(O(log2 n), O(log n))-approximation for the max objective,
with a running time ofO(n log3 n). In Section V-B, we
describe another algorithm which gives an improved approx-
imation of (O(log2 n), 1), but with a higher running time
of O(n4 log n), thus illustrating the tradeoff between the
quality of approximation and running time. Both algorithms
are simple, and involve Monte Carlo sampling. However, the
analysis, is non-trivial.

A. An (O(log2 n), O(log n))-approximation algorithm

Our algorithm MINMAX -TCPSF builds on an interesting
result by [19], who show that a small subset ofO(n logb n)
edges can “cover” the MST of the surviving subgraph, with
high probability. However, we need a non-trivial extensionof
their analysis to bound the approximation guarantee for the
algorithm, which crucially uses the geometric properties.

Recall the notation from Section I-B. We assume that the
power thresholdφ(u, v) for any pair of nodesu, v ∈ V is
given byφ(u, v) = c · ℓ(u, v)γ for some constantsc andγ.

Algorithm: M INMAX -TCPSF

I. Let b = 1/(1− p) andk = ⌈5 logb n⌉+ 1.
II. For i = 1 to 32ek2 lnn do

1) Generate a random subsetVi = V (q) by choosing each
vertex independently fromV with probability q = 1/k.

2) Find a Euclidean minimum spanning treeTi of the
complete graph onVi, with the length of each edge
(u, v) equal toℓ(u, v).

3) For each edgee, includee in Q if it appears in at least
16 lnn different Ti’s.

III. Set r = max
e∈Q

ℓ(e) for all nodesv ∈ V .

We need the following result due to [19], which shows that
the setQ constructed in the above algorithm contains an MST
of the random subgraphV (q), with high probability.

Theorem 3 ([19]): Let Q be the set computed in the above
algorithm. Then, we have|Q| ≤ 10en logb n + O(n), and
Pr{MST (V (p)) ⊆ Q} > 1− 1

n3 .
We first show that the interference complexity ofQ is low.
Lemma 5: I(Q) = O(log2 n)I(Eopt).

Proof: (Sketch) For any edgee = (u, v) ∈ Q,
we prove thatI(e) = O(log3 n). Let Ai(e) = {e′ ∈
I(e) : ℓ(e′) ∈ [2i, 2i+1)}, for each i, and let Vi(e) =
{u′ : ∃v′ such that(u′, v′) ∈ I(e), andv′ ∈ B(u, ℓ(e)) ∪
B(v, ℓ(e))} be the set of end points of edges inAi(e) that do
not lie in B(u, ℓ(e)) ∪ B(v, ℓ(e)). If |Vi(e)| > c4 log2 n for
some constantc4, there would exist a nodeu4 ∈ Vi(e) such
that |B(u4, ℓ(e)/2) ∩ Vi(e)| ≥ c5 log n. A direct application
of Chernoff’s bound implies that|B(u4, ℓ(e)/2) ∩ Vi(e) ∩
V (q)| = Ω(log n) with high probability, and therefore, many
nodes inB(u4, ℓ(e)/2) ∩ Vi(e) will survive in step II(1) of
Algorithm MINMAX -TCPSF. This implies that the Euclidean
MST in Step II(2) will not end up choosing many edges
between nodes inB(u4, ℓ(e)/2) ∩ Vi(e) ∩ V (q) and nodes
in B(u, ℓ(e)) ∪ B(v, ℓ(e)), which contradicts the assump-
tion that each node inVi(e) has an edge to some node in
B(u, ℓ(e)) ∪B(v, ℓ(e)). Since there areO(log n) values ofi,
we haveI(e) = O(log3 n). By the same argument as in the
proof of Lemma 3, the proof now follows.

Theorem 4: The solution Q produced by Algorithm
M INMAX -TCPSF is an(O(log2 n), O(log n))-approximation
for the max power objective.

Proof: By Theorem 3, it follows that
Pr[G(V (p), Q) is strongly connected] ≥ 1 − 1

n3 . Let
ropt be the transmission radius corresponding to the optimum
solution. We show that with probability at least1− 1

n3 , every
edge e chosen inQ satisfiesℓ(e) ≤ c1ropt logb′ n, where
c1 is a constant to be specified later, andb′ = 1/(1 − q).
In order to do this, we first bound the probability that an
edgee = (u, v) with ℓ(e) > c1ropt logb′ n is added to the
setQ in the algorithm. Recall our assumption in Section I-B
that p2 > 1/n3. We claim thatG(V, ropt) contains a path
connectingu and v - if there is no such path connecting
u and v, G(V (p), ropt) would be disconnected whenever
both u and v survive, which happens with probability
p2 > 1/n3, implying that Pr[G(V (p), ropt) is connected
] < 1 − 1/n3, which contradicts the definition ofropt. Let
P = 〈w1, . . . , wk〉 be any such path betweenw1 = u and
wk = v in G(V, ropt). By definition ofG(V, ropt), every edge
e′ = (wi, wi+1) ∈ P must haveℓ(e′) ≤ ropt < ℓ(e)

c1 logb′ n .
By the triangle inequality, we have|P | > c1 logb′ n. Let
c2 be a constant such that2c2 < c1. We partition P into
k/k′ = ⌈c1/c2⌉ blocks B1, . . . , Bk/k′ , each of size roughly
k′ = c2 logb′ n. We do the analysis assuming thatk′ is an
integer; if this is not true, the analysis can be modified easily
to deal with the slight non-uniformity in sizes. Therefore,
Bi = {w(i−1)k′+1, . . . , wik′}. These are shown in Figure 4.

The probability that all the nodes in any blockBi fail in a
random sampleV (q) is (1 − q)|Bi| = (1 − q)c2 log1/(1−q) n =

1
nc2

. By the union bound, the probability that there is a block
Bi in which all nodes fail inV (q) is therefore at most c1

c2nc2
,



and so with probability1− c1/c2

nc2
, at least one node survives in

each blockBi in V (q). Consider one such sampleV (q), and
let wg(i) denote the node that survives inBi, i = 1, . . . , k′.
By the triangle inequality, we have

ℓ(wg(i), wg(i+1)) ≤

g(i+1)−1
∑

j=g(i)

ℓ(wj , wj+1) ≤ 2k′ropt

≤ 2k′ℓ(e)/(c1 log n) ≤
2c2

c1
ℓ(e).

Since we have2c2 < c1, we would haveℓ(wg(i), wg(i+1)) <
ℓ(e), for each i = 1, . . . , k/k′. This means we have an
alternate pathu, wg(1), . . . , wg(k′), v from u to v in V (q),
each of whose edges are shorter thane, with probability at
least 1 − c1/c2

nc2
. We setc1 = 5 and c2 = 2. Then, in our

algorithm V-A, Pr[e ∈ Ti] ≤ 1/n, whereTi is the MST on
the random subsetV (q). By a Chernoff bound, it follows that
for any specific edgee with ℓ(e) > c1ropt logb′ n, we have
Pr[e appears in at least16 lnn different Ti’s] ≤ 1

n5 . By the
union bound, it follows that the probabilityQ contains any
edge e′ with ℓ(e′) > c1ropt logb′ n is at most n2

n5 = 1
n3 .

Therefore, the radiusr chosen by our algorithm satisfies
r ≤ c1ropt logb′ n with probability at least1 − 1/n3. By
definition of ropt and by Lemma 5, the theorem follows.

w1 = u

w2

wk = v

B1

B2

Bk′

wg(1)

wg(2)

wg(k′)

Fig. 4. Edge(u, v) with ℓ(e) > c1ropt logb′ n. The black circles denote
the nodesw1, . . . , wk, andB1, . . . , Bk′ are the blocks on pathP , referred
to in the proof. Nodewg(i) is the survivor in blockBi.

B. A (O(log2 n), 1)-approximation algorithm

In this section, we describe a simpler Monte-Carlo sampling
based algorithm for the min objective, that works not just for
connectivity, but any “testable” monotone property, and gives
an (O(log2 n), 1)-approximation, at the cost of a higher run-
ning time, and a lower probability of reliability. LetP denote
a monotone property that can be tested in polynomial time,
and letAP denote such an algorithm to test for propertyP;
examples of such properties are strong connectivity, existence
of a giant component, low diameter, etc. For graphG(V, ~P ),
let AP(G(V, ~P )) be 1 if G(V, ~P ) has propertyP, and 0
otherwise. For a given power levelφ, the following algorithm,
Algorithm Test(φ), determines if a given candidate power level
φ is adequate for all nodes. Using Algorithm Test(φ) as a query
function, a binary search on the set of power thresholds for all
edges,{φ(u, v) | u, v ∈ V }, can find the required minimum
φ by calling Test(φ) at mostO(log n) times, since there are
at mostn2 distinct power thresholds. Once the correct power

thresholdφ is found, we use the algorithm of [19] to find the
setQ of edges.

Algorithm: Test(φ)

Input : SetV of nodes on the plane, survival probabilityp for
each node, and a common power levelφ.
Output : YES, if G(V (p), φ) has propertyP with probability
at least1− 1/n.
I. For i = 1 to n2 do

1) Generate a random subsetVi = V (p) of V by choosing
each vertex fromV with probabilityp.

2) ComputeXi = 1−AP(G(Vi, φ)), which is1 if G(Vi, φ)
does not have propertyP.

II. If
∑k

i=1 Xi ≤ 3n, output YES.

Theorem 5: If Pr[G(V (p), φ) has propertyP] ≥ 1 − 1
n ,

thenPr[Test(φ) does not return YES] ≤ e−n. The solutionQ
computed by algorithmTest() and the result of [19] is an
(O(log2 n), 1)-approximation to the max objective. It requires
O(n2) invocations of algorithmAP; for strong connectivity,
this takes timeO(n3 log n).

VI. EMPIRICAL RESULTS

We present empirical results for the TCPSF problem. For
most of our experiments, we use an instance consisting of
a set of nodes distributed along the streets of the downtown
Portland, OR, generated by the TRANSIMS mobility model
[28]. We discuss the results for the max and sum objectives
separately. In these experiments, we usedγ = 2.
1. The max objective function. Figure 5 shows
Pr[G(V (p), r) is connected] versus radiusr, for different
values of the surviving probabilityp for the node distribution
in Portland. Observe that there is a sharp threshold in the
connectivity radius (or equivalently, the max power level
needed) even in this setting. This threshold is known in the
case of nodes distributed randomly on the plane [18], [29],
or arranged on a grid [8], but it is surprising to observe this
threshold even in this non-random setting.
2. The sum objective function. Figure 6 shows the variation
of an approximation to the total power objective withǫ for an
instance of the Portland data. Observe that this has a similar
threshold behavior as that for the max objective, though it
seems to be a little less sharp.

For γ = 2, Theorem 2 gives an worst case bound of
O(log4 n) on the approximation factor ofsum(~P ) given by
our algorithm MinSum-TCPSF to the optimum. In the average
case, this bound can be much better. For randomly chosen 50-
5000 nodes in a unit square, we computed this approximation
factor for γ = 2. Figure 7 shows this experimental result.
To understand its growth rate, we also plotted the function
log n and log2 n. We observe that the growth rate of the
approximation factor is even smaller than the growth rate of
log2 n. In fact, the growth rate is pretty much close to that of
log n.
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VII. C ONCLUSION

In this paper, we designed and analyzed algorithms for
topology control for unreliable ad hoc networks that simul-
taneously achieves provably good approximations to multiple
objective criteria, namely, connectivity, power efficiency and
interference reduction. Empirically, we find that our algorithm
has significantly better performance guarantees in practice,
than what we show analytically. Improving the performance
guarantees, and extending our results to other topological
properties (e.g., spanner) are interesting open problems.
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