
A Space-efficient Parallel Algorithm for Counting

Exact Triangles in Massive Networks

Shaikh Arifuzzaman∗†, Maleq Khan∗ and Madhav Marathe∗†
∗Network Dynamics & Simulation Science Laboratory, Virginia Bioinformatics Institute

†Department of Computer Science

Virginia Tech, Blacksburg, Virginia 24061 USA

Email: {sm10, maleq, mmarathe}@vbi.vt.edu

Abstract—Finding the number of triangles in a network
(graph) is an important problem in mining and analysis of
complex networks. Massive networks emerging from numerous
application areas pose a significant challenge in network analytics
since these networks consist of millions, or even billions, of nodes
and edges. Such massive networks necessitate the development
of efficient parallel algorithms. There exist several MapReduce
and an only MPI (Message Passing Interface) based distributed-
memory parallel algorithms for counting triangles. MapReduce
based algorithms generate prohibitively large intermediate data.
The MPI based algorithm can work on quite large networks,
however, the overlapping partitions employed by the algorithm
limit its capability to deal with very massive networks.

In this paper, we present a space-efficient MPI based paral-
lel algorithm for counting exact number of triangles in mas-
sive networks. The algorithm divides the network into non-
overlapping partitions. Our results demonstrate up to 25-fold
space saving over the algorithm with overlapping partitions.
This space efficiency allows the algorithm to deal with networks
which are 25 times larger. We present a novel approach that
reduces communication cost drastically (up to 90%) leading to
both a space- and runtime-efficient algorithm. Our adaptation
of a parallel partitioning scheme by computing a novel weight
function adds further to the efficiency of the algorithm. Denoting
average degree of nodes and the number of partitions by d̄ and
P , respectively, our algorithm achieves up to O(P 2)-factor space
efficiency over existing MapReduce based algorithms and up to
O(d̄)-factor over the algorithm with overlapping partitioning.

Keywords-counting triangles, parallel algorithms, massive net-
works, social networks, graph mining, space efficiency.

I. INTRODUCTION

Counting triangles in a network is a fundamental algo-

rithmic problem in the analysis of complex networks. It has

many important applications such as computing clustering

coefficient, transitivity, and triangular connectivity of networks

[1]. Further, counting triangles has been used in detecting

spamming activity and assessing content quality of networks

[2], uncovering the thematic structure of the web [3], query

optimization in database [4], and detecting communities or

clusters in social and information networks [5].

Network is a powerful abstraction for representing underly-

ing relations in large unstructured datasets. Examples include

the web graph [6], various social networks [7], biological

networks [8], and many other information networks. In the

era of big data, the emerging network data is also very large.

Social networks such as Facebook and Twitter have millions

to billions of users [1], [9]. Such massive networks motivate

the need for space-efficient parallel algorithms.

Existing Algorithms. The problem of counting triangles has

a rich history [2], [10]–[12]. Despite the fairly large volume

of work addressing this problem, only recently has attention

been given to the problems associated with massive networks.

Several techniques can be employed to deal with such massive

networks: streaming algorithms [2], [13], sparsification based

algorithms [14], external-memory algorithms [1], and parallel

algorithms [12], [15], [16]. The streaming and sparsifica-

tion based algorithms are approximation algorithms. External

memory algorithms can be very I/O intensive leading to a

large runtime. Efficient parallel algorithms can achieve running

efficiency by distributing computing tasks among multiple

processors.

Over the last couple of years, several parallel algorithms

have been proposed. Two parallel algorithms for exact triangle

counting using the MapReduce framework are presented in

[12]. The first algorithm generates huge volumes of interme-

diate data by enumerating all possible 2-paths which require

a large amount of time and memory while shuffling and

regrouping. The second algorithm suffers from redundant

counting of triangles. An improvement of the second algorithm

is given in the paper [17]. Though this scheme reduces the

redundant count of [12] to some extent, the redundancy is not

entirely eliminated. In fact, for P partitions, the algorithm still

counts a particular type of triangles (triangles whose vertices

lie in the same partition) (P − 1) times. Further, the expected

size of the output from all Map instances is O(mP) (m is the

number of edges) which is significantly larger than the size of

the original network.

In a recent work [18], Park et al. propose a randomized

MapReduce algorithm for triangle enumeration. To achieve

a runtime complexity of the optimal serial algorithm, each

reducer requires a space of Ω{m3/4
√
logm} (Theorem 3 in

[18]) which almost equals to the whole network. Another

MapReduce based approximation algorithm is proposed in

[16], which is based on parallelization of a wedge sampling

technique given in [14].

A recent paper [15] proposes an MPI based parallel algo-

rithm for counting the exact number of triangles in massive

networks. The algorithm employs an overlapping partitioning

scheme and a novel load balancing scheme. The overlapping

partitions eliminate the need for message exchanges leading

to a fast algorithm. However, the overlapping partitions pose

significant space overhead since those might grow as large as

the whole network wiping out the benefit of partitioning.

Although there exists a couple of standard parallel graph

partitioning algorithms such as Parmetis and Zoltan [19], those

might not work well for our problem. Those algorithms strive

to minimize cut edges which help reduce communication

overhead, however, we also require the computation cost to

be well-balanced among nodes. We need to estimate weights

of nodes (based on triangle counting cost) in parallel in

the partitioning procedure which is not readily available in

standard algorithms. Hence we adapt a parallel partitioning

scheme [15] which considers the actual triangle counting cost

incurred at nodes and thus helps in balancing computation

loads.

Our Contributions. In this paper, we present a space-

efficient MPI based parallel algorithm for counting exact num-

ber of triangles in massive networks. The algorithm divides

the network into non-overlapping partitions and, as results

show, achieves a space efficiency of up to 25 times over the

algorithm with overlapping partitions. This space efficiency

allows the algorithm to deal with networks which are 25 times

larger. We present a novel approach that reduces approx. 70%
to 90% of communication cost without requiring additional

space, which leads to both a space- and runtime-efficient

algorithm. Our adaptation of a parallel partitioning scheme by

computing a novel weight function offers additional runtime

efficiency to the algorithm. Our algorithm achieves up to

O(P 2)-factor space saving over existing MapReduce based

algorithms and up to O(d̄)-factor over the algorithm with

overlapping partitioning.

Remarks. Note that unlike approximation algorithms which

provide an overall (global) estimate of number of triangles in

the graph, this paper presents an exact algorithm which can

be used to count triangles incident on individual nodes (local

triangles). Such local counts facilitate computing clustering

coefficient of nodes and finding vertex neighborhood and

community seeds [20]. To the best of our knowledge, among

all exact algorithms, our algorithm has the lowest space

complexity, without even compromising its runtime efficiency.

II. PRELIMINARIES

Below are the notations, definitions, datasets, and experi-

mental setup used in this paper.

Notation and Definitions. The given network is denoted

by G(V,E), where V and E are the sets of vertices and

edges, respectively, with m = |E| edges and n = |V | vertices

labeled as 0, 1, 2, . . . , n − 1. We use the words node and

vertex interchangeably. We assume that the input network is

undirected. If (u, v) ∈ E, we say u and v are neighbors of

each other. The set of all neighbors of v ∈ V is denoted by

Nv , i.e., Nv = {u ∈ V |(u, v) ∈ E}. The degree of v is

dv = |Nv|. A triangle is a set of three nodes u, v, w ∈ V
such that there is an edge between each pair of these three

nodes, i.e., (u, v), (v, w), (w, u) ∈ E. The number of triangles

TABLE I
DATASET USED IN OUR EXPERIMENTS. K, M AND B DENOTE THOUSANDS,

MILLIONS AND BILLIONS, RESP.

Network Nodes Edges Source

web-Google 0.88M 5.1M SNAP [23]

web-BerkStan 0.69M 6.5M SNAP [23]

Miami 2.1M 50M [21]

LiveJournal 4.8M 43M SNAP [23]

Twitter 42M 2.4B [24]

PA(n, d) n 1

2
nd Pref. Attachment

incident on v, denoted by Tv, is same as the number of edges

among the neighbors of v, i.e.,

Tv = | {(u,w) ∈ E | u,w ∈ Nv} |.

Let P be the number of processors used in the computation,

which we denote by p0, p1, . . . , pP−1 where each subscript

refers to the rank of a processor.

Datasets. We use both real world and artificially generated

networks for our experiments. A summary of all the networks

is provided in Table I. Miami [21] is a synthetic, but realistic,

social contact network for Miami city. Twitter, LiveJour-

nal, web-BerkStan, and web-Google are real-world networks.

Artificial network PA(n, d) is generated using preferential

attachment (PA) model [22] with n nodes and average degree

d. Both real-world and PA(n, d) networks have very skewed

degree distributions. Networks having such distributions create

difficulty in partitioning and balancing loads and thus give

us a chance to measure the performance of our algorithms in

some of the worst case scenarios. Note that in our experiments

we consider edges of the input graph to be undirected– we

ignore the original directionality of edges for web-Google,

web-BerkStan, and LiveJournal networks.

Computation Model and Machine Specifications. We

develop parallel algorithms for MPI based distributed-memory

parallel systems where each processor has its own local mem-

ory, and processors communicate via exchanging messages.

We perform our experiments using a high performance

computing cluster with 64 computing nodes (QDR InfiniBand

interconnect), 16 processors (Sandy Bridge E5-2670, 2.6GHz)

per node, memory 4GB/processor, and operating system Cen-

tOS Linux 6.

III. A BACKGROUND ON COUNTING TRIANGLES

First, we describe the state-of-the-art sequential algorithm

which our parallel algorithm is based on. Space complexity of

other related parallel algorithms is discussed thereafter.

A. Efficient Sequential Algorithm.

A naı̈ve approach to count triangles in a graph G(V,E) is to

check, for all possible triples (u, v, w), u, v, w ∈ V , whether

(u, v, w) forms a triangle; i.e., check if (u, v), (v, w), (u,w) ∈
E. There are

(

n
3

)

such triples, and thus this algorithm takes

Ω(n3) time. A simple but efficient algorithm for counting

triangles is: for each node v ∈ V , find the number of pairs

of neighbors that complete a triangle with vertex v. In this

method, each triangle (u, v, w) is counted six times – all

1: for each edge (u, v) do
2: if u ≺ v, store v in Nu

3: else store u in Nv

4: for v ∈ V do
5: sort Nv in ascending order
6: T ← 0 {T is the count of triangles}
7: for v ∈ V do
8: for u ∈ Nv do
9: S ← Nv ∩Nu

10: T ← T + |S|

Fig. 1. The state-of-the-art sequential algorithm for counting triangles.

six permutations of u, v, and w. A total ordering ≺ of the

nodes (e.g., ordering based on node IDs or any arbitrary

ordering) makes sure each triangle is counted exactly once.

However, algorithms in [10], [11] incorporate an interesting

node ordering based on the degrees of the nodes, with ties

broken by node IDs, as defined as follows:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (1)

These algorithms are further improved in a recent paper [15]

by a simple modification. The algorithm [15] defines Nv ⊆ Nv

as the set of neighbors of v having a higher order ≺ than v,

Nv = {u : (u, v) ∈ E, v ≺ u}. (2)

That is, for an edge (u, v), the algorithm stores u in Nv if

v ≺ u, and consequentially u ∈ Nv ⇐⇒ v /∈ Nu. Then the

triangles containing node v and any u ∈ Nv can be found by

set intersection Nu ∩Nv. Now let, d̂v = |Nv| be the effective

degree of node v. The cost for computing Nu ∩ Nv requires

O(d̂v + d̂u) time when Nv and Nu are sorted. The above

state-of-the-art sequential algorithm is presented in Fig. 1.

B. Space Complexity of Related Parallel Algorithms.

Among the parallel algorithms discussed in Section I, there

are several MapReduce based algorithms [12], [17] and an

MPI based algorithm [15] that count exact number of triangles.

The MapReduce based algorithm proposed in [12] works in

two rounds of Map and Reduce phases. In Map phases, the

algorithm generates a huge amount of intermediate data which

are all possible 2-paths w-v-u centered around each node

v ∈ V , such that u,w ∈ Nv . The algorithm then check

whether such 2-paths are closed by an edge, i.e. if (w, u) ∈ E.

Since the number of these 2-paths is very large, even larger

than the network size, shuffling and regrouping these data

requires a large runtime and enormous memory. As instance,

for Twitter network, 300B 2-paths are generated whereas

the network has only 2.4B edges. The space requirement

becomes prohibitively excessive for very large networks. Even

for smaller networks, if there are few nodes with high degrees,

say O(n), this algorithm generates O(n2) 2-paths centered at

those nodes, which is quite unmanageable. Many real networks

demonstrate power-law degree distributions where some nodes

have very large degrees (See dmax in Table II).

Another MapReduce algorithm proposed in [12], the

partition-based algorithm, has a space requirement of O(mP)

for the Map phase (with P partitions), which is P times larger

than the network size. The algorithm in [17] improves the

runtime of the partition-based algorithm of [12], however the

space requirement still remains same.

The MPI based algorithm in [15] divides the input graph

into a set of P overlapping partitions as follows. First,

V is partitioned into P disjoint subsets V c
i , such that

⋃

0≤k<P V c
k = V . Then, a set Vi is constructed as Vi =

V c
i ∪

(

⋃

v∈V c
i
Nv

)

. Now, set of edges Ei, defined as Ei =

{(u, v)|u ∈ Vi, v ∈ Nu}, constitutes the i-th overlapping

partition which pi works on. Note that edges in Ec
i =

{(u, v)|u ∈ V c
i , v ∈ Nu} constitute the disjoint (non-

overlapping) portion of the partition i. Rest of the edges

(u, v) ∈ Ei−Ec
i overlaps across multiple partitions. Now, the

overlapping partitions allow the algorithm to count triangles

without any communication among processors leading to

faster computation. However, overlapping partitions have a

significant space overhead. Assuming an average degree d̄ of

the network, the algorithm has a space requirement of Ω(nd̄P)
for storing disjoint portion of the partition. Storing the whole

partition requires Ω(xnd̄P) or Ω(xmP) space, where 1 ≤ x ≤ d̄,

which can be as large as the whole network O(m).
Our space-efficient parallel algorithm divides the input

networks into non-overlapping partitions. Each partition is

almost equal and has approximately m
P edges leading to a

space complexity of O(mP). The sizes of all partitions sum up

to the size of the network. This partitioning offers as much as d̄
times saving over the overlapping partitions and thus allows to

work on larger networks. Table II shows the space requirement

of our algorithm which is up to 25× smaller than that of [15].

TABLE II
MEMORY USAGE OF OUR ALGOIRTHM AND [15] FOR STORING THE

LARGEST PARTITION. NUMBER OF PARTITIONS USED IS 100.

Networks
Memory (MB)

Ratio d̄ dmaxOur algo. [15]

web-Google 1.49 11.3 7.85 11.6 6332
LiveJournal 9.41 110.75 11.75 18 20333
Miami 10.63 109.58 10.32 47.6 425
Twitter 265.82 4254.18 16.004 57.1 1001159
PA(10M, 100) 121.11 2120.94 17.5 100 25068
PA(1M, 1000) 138.20 3427.36 24.8 1000 19255

We present our parallel algorithm in the following section.

IV. A SPACE EFFICIENT PARALLEL ALGORITHM

First we present an overview of the algorithm. A detailed

description follows thereafter.

A. Overview of the Algorithm.

Our algorithm partitions the input network G(V,E) into

a set of P partitions constructed as follows: set of nodes

V is partitioned into P disjoint subsets Vi, such that, for

0 ≤ j, k ≤ P − 1 and j 6= k, Vj ∩ Vk = ∅ and
⋃

k Vk = V .

Edge set Ei, constructed as Ei = {(u, v) : u ∈ Vi, v ∈ Nu},

constitutes the i-th partition. Note that this partition is non-

overlapping– each edge (u, v) ∈ E resides in one and only

one partition. For 0 ≤ j, k ≤ P−1 and j 6= k, Ej∩Ek = ∅ and
⋃

k Ek = E. The sum of space required to store all partitions

equals to the space required to store the whole network.

Processor pi works on the i-th partition and is responsible

for having all triangles incident on nodes v ∈ Vi counted.

Now, to count triangles incident on v ∈ Vi, pi needs Nu for

all u ∈ Nv (Lines 7-10, Fig. 1). If u ∈ Vi, information of

both Nv and Nu is available in the i-th partition, and pi
counts triangles incident on (v, u) by computing Nu ∩ Nv.

However, if u ∈ Vj , j 6= i, Nu resides in partition j. Processor

pi and pj exchange message(s) to count triangles incident

on such (v, u). This exchanging of messages introduces a

communication overhead which is a crucial factor on the

performance of the algorithm. We devise an efficient approach

to reduce the communication overhead drastically and improve

the performance significantly. Once all processors complete

the computation associated with respective partitions, the

counts from all processors are aggregated.

B. Computing Partitions.

While constructing partitions i, set of nodes V is partitioned

into P disjoint subsets Vi of consecutive nodes. How the nodes

in V are distributed among the sets Vi for all partitions i
crucially affect the performance of the algorithm. Distributing

equal number of nodes for each partition might not make

computational load even among processors. Ideally, the set V
should be partitioned in such a way that the cost for counting

triangles is almost equal for all partitions. Let, f(v) be a

weight function referring to the cost for counting triangles

incident on v ∈ V (cost for executing Line 7-10, Fig. 1). We

need to compute P disjoint partitions of V such that for each

partition Vi,

∑

v∈Vi

f(v) ≈ 1

P

∑

v∈V

f(v). (3)

Several estimations for f(v) were proposed in [15] among

which f(v) =
∑

u∈Nv
(d̂v + d̂u) was shown experimentally as

the best. Since our algorithm employs a different communica-

tion scheme for counting triangles, none of those estimations

corresponds to the cost of our algorithm. Thus, we compute a

new weight function f(v) to estimate the computational cost

of our algorithm more precisely (in Section V-B).

Once f(v) is computed for all v ∈ V , we compute

cumulative sum F (t) =
∑t

v=0 f(v) in parallel by using a

parallel prefix sum algorithm [25]. Processor pi computes

and stores F (t) for nodes t, where t starts from in
P to

(i+1)n
P − 1. This computation takes O(n

P + P) time. Now,

let Vi = {ni, ni + 1 . . . , n(i+1) − 1} for some node ni ∈ V .

We call ni the start or boundary node of partition i. Now, Vi

is computed in such a way that the sum
∑

v∈Vi
f(v) becomes

almost equal (1
P

∑

v∈V f(v)) for all partitions i. At the end

of this execution, each processor pi knows boundary nodes

ni and n(i+1). We adapt the algorithm presented in [15] to

compute Vi for our problem by using our newly computed

cost function f(v). In summary, computing partitions has the

following main steps.

• Step 1: Compute a new cost function f(v) which cor-

responds to the triangle counting cost of our algorithm

(Section V-B).

• Step 2: Compute cumulative sum F (v) by a parallel

prefix sum algorithm [25].

• Step 3: Compute boundary nodes ni for every subset Vi =
{ni, . . . , n(i+1) − 1} using the algorithms [15].

Once all P partitions are computed, each processor is

assigned one such partition.

C. Counting Triangles with An Efficient Communication Ap-

proach.

As discussed in the overview of our algorithm, processor

pi and pj require to exchange messages for counting triangles

incident on (v, u) where v ∈ Vi and u ∈ Nv ∩ Vj . A straight-

forward approach for this communication might be very inef-

ficient. For example, in a simple way, such triangles can be

counted as follows: pi requests pj for Nu. Upon receiving

the request, pj sends Nu to pi. Processor pi counts triangles

incident on the edge (v, u) by computing Nv∩Nu. For further

reference, we call this approach as ‘Direct approach’.

We observe that this approach has a high communication

overhead due to exchanging a large number of redundant

messages leading to a large runtime. Assume u ∈ Nv1 ∩Nv2 ∩
· · · ∩ Nvk , for v1, v2, . . . , vk ∈ Vi. Then pi sends k separate

requests for Nu to pj while computing triangles incident on

v1, v1, . . . , vk. In response to those requests, pj sends same

message Nu to pi for k times.

One seemingly obvious way to eliminate redundant mes-

sages is that instead of requesting Nu multiple times, pi stores

it in memory for subsequent use. However, space requirement

for storing all Nu along with the partition i itself is same as

that of storing an overlapping partition. This diminishes our

original goal of a space-efficient algorithm.

Another way of eliminating message redundancy is as

follows. When Nu is fetched, pi completes all computation

that requires Nu: pi finds all k nodes v ∈ Vi such that u ∈ Nv.

It then performs all k computations Nv ∩ Nu involving Nu

and discards Nu. Now, since u ∈ Nv ⇐⇒ v /∈ Nu, pi
cannot extract such k nodes v from the message Nu. Instead,

pi requires to scan through its whole partition to find such

nodes v where u ∈ Nv. This scanning is very expensive–

O(
∑

v∈Vi
dv) in the worst case for each message– which

might even be slower than the direct approach with redundant

messages.

All the above techniques to improve the efficiency of Direct

approach introduce additional space or runtime overhead. Next

we propose a different approach which exploits an inherent

property of our data structure Nv to reduce message exchanges

drastically without adding further overhead.

Reduction of messages. As discussed before, pi cannot

count triangles on (v, u) for v ∈ Vi and u ∈ Nv ∩ Vj without

fetching Nu from partition j. Now, we take a different view-

point: we ask the question, what is the implication for pi
instead of computing Nv ∩ Nu by itself delegating it to pj?

In particular, we consider an alternate approach to address

the above issue: pi sends Nv to pj instead of fetching

Nu. Processor pj counts triangles incident on edge (u, v) by

performing the operation Nv ∩Nu.

We call this approach as Surrogate approach. On a surface,

this might seem to be a simple modification from Direct

approach. However, notice the following implication which

is very significant to the algorithm: once pj receives Nv, it

can extract the information of all nodes u, such that u is in

both Nv and Vj , by just scanning Nv . For all such nodes u,

pj counts triangles incident on edge (u, v) by performing the

operation Nv∩Nu. Processor pj then discard Nv since it is no

longer needed. Note that extracting all u such that u ∈ Nv and

u ∈ Vj requires O(dv) time (compare this to O(
∑

v∈Vi
dv)

runtime of direct approach for the similar purpose). In fact,

this extraction can be done while computing triangles Nv∩Nu

for first such u. This saves from any additional overhead.

As we noticed, if delegated, pj can count triangles on

multiple edges (u, v) from a single message Nv, where v ∈ Vi

and u ∈ Nv ∩ Vj . Thus pi does not require to send Nv to pj
multiple times for each such u. However, to avoid multiple

sending, pi needs to keep track of which processors it has

already sent Nv to. This message tracking is also crucial since

any additional space or runtime overhead might compromise

the efficiency of the overall approach.

It is easy to see that one can perform the above tracking by

maintaining P flag variables, one for each processor. Before

sending Nv to a particular processor pj , pi checks j-th flag

to see if it is already sent. All flags are initially reset to

zero. This implementation is conceptually simple but cost for

resetting flags for each v ∈ Vi sums to a significant cost of

O(|Vi|.P). Now, note the following simple yet useful property

of Nv: Since Vj is a set of consecutive nodes, and all neighbor

lists Nv are sorted, all nodes u ∈ Nv ∩ Vj reside in Nv in

consecutive positions.

The above property enable each pi to track messages by

only recording the last processor (say, LastProc) it has sent

Nv to. When pi encounters u ∈ Nv such that u ∈ Vj , it checks

LastProc. If LastProc 6= pj , then pi sends Nv to pj and set

LastProc = pj . Otherwise, the node u is ignored, meaning it

would be redundant to send Nv. Resetting a single variable

LastProc for all computation involving Nv does not introduce

any additional overhead.

Thus surrogate approach detects and eliminates message

redundancy and allows multiple computation from a single

message, without even compromising execution or space ef-

ficiency. The efficiency gained from this capability is shown

both theoretically and experimentally in Section V and VI,

respectively.

D. Pseudocode for Counting Triangles.

We denote a message by 〈t,X〉 where t ∈ {data, notifier}
is the type and X is the actual data associated with the mes-

sage. For a data message (t = data), X refers to a neighbor list

Nx whereas for a completion notifier (t = notifier), X = ∅.

The pesudocode for counting triangles for an incoming data

message 〈data,X〉 is given in Fig. 2.

1: Procedure SURROGATECOUNT(X,i) :
2: T ← 0 //T is the count of triangles
3: for all u ∈ X such that u ∈ Vi do
4: S ← Nu ∩X
5: T ← T + |S|
6: return T

Fig. 2. A procedure executed by pi to count triangles for the received
message 〈data, X〉 from some pj in accordance to surrogate approach.

Once a processor pi completes the computation on all v ∈
Vi, it broadcasts a completion notifier 〈notifier,X〉. However,

it cannot terminate execution until it receives 〈notifier,X〉
from all other processors since other processors might send

data messages for surrogate computation. Finally, p0 sums up

counts from all processors using MPI aggregation function.

The complete pseudocode of our algorithm using surrogate

approach is presented in Fig. 3.

1: Ti ← 0 //Ti is pi’s count of triangles
2: for v ∈ Vi do
3: for u ∈ Nv do
4: if u ∈ Vi then
5: S ← Nv ∩Nu

6: Ti ← Ti + |S|
7: else if u ∈ Vj then
8: Send 〈data, Nv〉 to pj if not sent already
9:

10: Check for incoming messages 〈t,X〉:
11: if t = data then
12: Ti ← Ti+ SURROGATECOUNT(X,i)
13: else
14: Increment completion counter
15:
16: Broadcast 〈notifier,X〉
17: while completion counter < P-1 do
18: Check for incoming messages 〈t,X〉:
19: if t = data then
20: Ti ← Ti+ SURROGATECOUNT(X,i)
21: else
22: Increment completion counter
23:
24: MPIBARRIER

25: Find Sum T ←
∑

i Ti using MPIREDUCE

26: return T

Fig. 3. An algorithm for counting triangles using surrogate approach. Each
processor pi executes Line 1-22. After that, they are synchronized and the
aggregation is performed (Line 24-26).

V. THEORETICAL ANALYSIS

We present the theoretical justification for efficiency and

correctness of our algorithm in this section.

A. Correctness of The Algorithm.

The correctness of our space efficient parallel algorithm is

formally presented in the following theorem.

Theorem 1. Given a graph G = (V,E), our space efficient

parallel algorithm correctly counts exact number of triangles

in G.

Proof: Consider a triangle (x1, x2, x3) in G, and without

the loss of generality, assume that x1 ≺ x2 ≺ x3. By the

constructions of Nx (Line 1-3 in Fig. 1), we have x2, x3 ∈ Nx1

and x3 ∈ Nx2
. Now, there might be two cases:

1. Case x1, x2 ∈ Vi:

Nodes x1 and x2 are in the same partition i. Processor pi
executes the loop in Line 2-6 (Fig. 3) with v = x1 and

u = x2, and node x3 appears in S = Nx1
∩ Nx2

, and

the triangle (x1, x2, x3) is counted once. But this triangle

cannot be counted for any other values of v and u because

x1 /∈ Nx2
and x1, x2 /∈ Nx3

.

2. Case x1 ∈ Vi, x2 ∈ Vj , i 6= j:

Nodes x1 and x2 are in two different partitions, i and j,

respectively, without the loss of generality. Processor pi
attempts to count the triangle executing the loop in Line

2-6 with v = x1 and u = x2. However, since x2 /∈ Vi, pi
sends Nx1

to pj (Line 8). Processor pj counts the triangle

while executing the loop in Line 10-12 with X = Nx1
,

and node x3 appears in S = Nx2
∩Nx1

(Line 2 in Fig. 2).

This triangle can never be counted again in any processor,

since x1 /∈ Nx2
and x1, x2 /∈ Nx3

.

Thus, in both cases, each triangle in G is counted once and

only once. This completes our proof.

B. Computing An Estimation for Weight Function f(v).

Our computation of balanced partitions in Section IV-B

requires an estimation of the cost f(v) which we compute

from the following theorem.

Theorem 2. The cost for counting triangles attributed to node

v ∈ Vi is given by O
(

∑

u∈Nv−Nv
(d̂v + d̂u)

)

.

Proof: We have the following definitions from Section II

and III, respectively: Nv = {u : (u, v) ∈ E} and Nv = {u :
(u, v) ∈ E, v ≺ u}. Then, it is easy to see,

u ∈ Nv −Nv ⇔ v ∈ Nu. (4)

To estimate the cost for counting triangles incident on node

v ∈ Vi, consider the cost for counting triangles incident on all

edges (v, u) such that u ∈ Nv . There might be two cases:

1. Case u ∈ Nv −Nv: This case implies v ∈ Nu (by Eqn.

4). There might be two sub-cases:

– If u ∈ Vj for j 6= i, pj sends Nu to pi, and pi counts

triangle by computing Nu ∩Nv (Fig. 2).

– If u ∈ Vi, pi counts triangle by computing Nu ∩Nv

while executing the loop in Line 2-6 in Fig. 3 for

node u.

Thus for both sub-cases pi computes triangles incident

on (v, u). All such nodes u impose a computation cost

of O
(

∑

u∈Nv−Nv
(d̂v + d̂u)

)

on pi for node v.

2. Case u ∈ Nv: This case implies v ∈ Nu −Nu (by Eqn.

4) which is same as case 1 with u and v interchanged. By

a similar argument of case 1, the imposed computation

cost for such (v, u) is attributed to node u.

Thus the cost attributed to node v for counting triangles on all

edges (v, u), for u ∈ Nv , is O
(

∑

u∈Nv−Nv
(d̂v + d̂u)

)

.

Theorem 2 gives us the intended function f(v) =
∑

u∈Nv−Nv
(d̂v + d̂u) which we use in our partitioning step.

We present an experimental evaluation comparing the best

function presented in [15] with ours in Section VI.

C. Cost of Message Passing in Direct and Surrogate Ap-

proaches.

For v ∈ Vi, assume Cv is the set of edges (v, u) ∈ E
such that u ∈ Vj , j 6= i, i.e., (v, u) is a cut edge. Next let

Xi =
⋃

v∈Vi
Cv is the set of all cut edges emanating from

partition i, and xi = |Xi|.
We present the communication cost incurred by Direct

approach in the following lemma.

Lemma 1. For Direct approach, the cost Wdir of exchanging

messages by processor pi is given by,

O









∑

v∈Vi

∑

0≤j≤P−1,
j 6=i









∑

u:u∈Nv,
u∈Vj

(

d̂u +O(1)
)

+
∑

u:v∈Nu,
u∈Vj

(

d̂v +O(1)
)

















.

Proof: For a cut edge (v, u) with v ∈ Vi, the first term

in each of the innermost summations accounts for the cost

|Nu| = d̂u of receiving Nu (for v ≺ u) or the cost |Nv| = d̂v
of sending Nv (for u ≺ v) and the second term O(1) for the

cost of a request message.

Let lvj is the number of cut edges emanating from node v
to some nodes u in partition j with v ≺ u. Now the following

lemma states the communication cost incurred by Surrogate

approach.

Lemma 2. For Surrogate approach, the cost Wsur of exchang-

ing messages by processor pi is given by,

O









∑

v∈Vi

∑

0≤j≤P−1,
j 6=i









∑

u:u∈Nv,
u∈Vj

d̂v
lvj

+
∑

u:v∈Nu,
u∈Vj

d̂u
lui

















.

Proof: For node v ∈ Vi, all cut edges (v, u) with u ∈ Vj

and v ≺ u, Nv is sent to pj at most once instead of lvj
times. Thus each such (v, u) is attributed to 1

lvj
-fraction of the

sending cost O(d̂v), which is accounted by the first innermost

summation term. For all edges (v, u) with u ≺ v, pi receives

Nu from pj at most once instead of lui times. This receiving

cost incurred on pi for each such edge (v, u) is accounted by

the second innermost summation term.

Comparison of costs. To get a crude estimate of how

these two quantities (in Lemma 1 and 2) compare, we replace

degrees d̂v, for all v ∈ Vi, by the average degree d̄ and number

of cut edges from v to partition j with v ≺ u, lvj , by l (an

average over all lvj). Then we get, the communication cost

for Surrogate approach, Wsur :

O









∑

v∈Vi

∑

0≤j≤P−1,
j 6=i









∑

u:u∈Nv,
u∈Vj

d̄

l
+

∑

u:v∈Nu,
u∈Vj

d̄

l

















= O





∑

v∈Vi

∑

u:(v,u)∈Cv

d̄

l



 [by the Defn. of Cv]

= O

(

∑

v∈Vi

|Cv|d̄
l

)

= O

(|Xi|d̄
l

)

= O

(

xid̄

l

)

.

The second last step follows from Xi =
⋃

v∈Vi
Cv . Similarly,

we get, communication cost for Direct approach, Wdir:

O
(

∑

(v,u)∈Xi

(

d̄+O(1)
)

)

= O
(

|Xi|d̄+ |Xi|
)

= O
(

xid̄+ xi

)

.

Since Wdir

Wsur
> l, the surrogate approach has at least l times

smaller communication cost than that of the direct approach.

As shown in Table II, the values of l range approx. from 4
to 10 for the networks we experimented on, and the surrogate

approach reduces approx. 70% to 90% of messages.

TABLE III
NUMBER OF MESSAGES EXCHANGED IN DIRECT AND SURROGATE

APPROACHES.

Networks
of Messages

Ratio l(avg)
Direct Surrogate

Miami 16, 321, 478 3, 987, 871 4.09 3.89
web-Google 493, 488 99, 221 4.97 5.01
LiveJournal 23, 138, 824 4, 002, 575 5.78 5.43
Twitter 247, 821, 246 25, 341, 984 9.78 5.78
PA(10M, 100) 99, 436, 823 8, 092, 340 12.29 5.92

D. Complexity of the Algorithm.

Runtime Complexity. Computing balanced partition

takes O(mP + P) time using an adaptation of

[15]. The worst case cost for counting triangles is

O(
∑

v∈Vi

∑

u∈Nv−Nv
(d̂u + d̂v)) (Fig. 3). Further,

the communication cost incurred on a processor is

O(xid̄/l) (Sec. V-C). The summing up of counts

require O(logP) time using MPI aggregation function.

Thus, the time complexity of our parallel algorithm is,

O
(

m
P +P+maxi xid̄/l+maxi

∑

v∈Vi

∑

u∈Nv−Nv
(d̂u + d̂v)

)

.

Space Complexity. The size of the largest partition is

O(maxi{|Vi| + |Ei|}). Further, to store a single incoming

or outgoing message containing Nv requires a space of

O(maxv∈V |Nv|) = O(d̂max) = O(d̄). Thus, the total space

complexity of our algorithm is O(maxi{|Vi| + |Ei|} + d̄)
which approximately equals to O(m+n

P) = O(mP) with the

non-overlapping balanced partitions. A comparison of space

complexity of other related algorithms is provided in Table IV.

Our algorithm achieves up to O(P 2)-factor space efficiency

over MapReduce based algorithms [12], [17], [18] and up to

O(d̄)-factor over the algorithm with overlapping partitioning

[15].

VI. EXPERIMENTAL EVALUATION

The experimental evaluation of the performance our space-

efficient parallel algorithm is presented below.

TABLE IV
A COMPARISON OF SPACE COMPLEXITY AMONG RELATED ALGORITHMS.

Algorithms Space complexity Remarks

Suri et al. [12] O(mP) size of Map output

Park et al. [17] O(mP) size of Map output

Park et al. [18] Ω{m3/4
√
logm} for a reducer

PATRIC [15] Ω(xm
P

), 1 ≤ x ≤ d̄ for each processor

Our algo. O(m
P
) for each processor

Comparison with Previous Algorithms. The algorithm in

[15] employs an overlapping partitioning and thus doesn’t re-

quire message passing for counting triangles leading to a very

fast algorithm (Table V). The non-overlapping partitioning

employed by our algorithm achieves huge space saving over

[15] (Table II), albeit requiring message passing for counting

triangles. Our proposed communication approach (surrogate)

reduces communication cost quite significantly leading to

an almost similar runtime efficiency to [15]. In fact, our

algorithm loses only ∼20% runtime efficiency for the gain of

a significant space efficiency of up to 2500%, thus allowing

to work on larger networks.

A runtime comparison among other related algorithms for

counting triangles in Twitter network is given in Fig. 4. Our

algorithm is 35× faster than [12], 17× than [17], 7× than

[18], and almost as fast as [15].

TABLE V
RUNTIME PERFORMANCE OF OUR ALGORITHM AND THE ALGORITHM IN

[15]. WE USED 200 PROCESSORS FOR THIS EXPERIMENT.

Networks
Runtime

Triangles
[15] Direct Surrogate

web-BerkStan 0.10s 3.8s 0.14s 65M

Miami 0.6s 4.79s 0.79s 332M

LiveJournal 0.8s 5.12s 1.24s 286M

Twitter 9.4m 35.49m 12.33m 34.8B

PA(1B, 20) 15.5m 78.96m 20.77m 0.403M

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Suri et al. [12] Park et al. [17] Park et al. [18] PATRIC [15] Our Algo.

R
un

tim
e

(m
in

ut
es

)

Algorithms

Runtime Performance on Twitter

Fig. 4. Runtime reported by various algorithms for counting triangles in
Twitter network.

Strong Scaling. Fig. 5 shows strong scaling (speedup)

of our algorithm on Miami, LiveJournal, and web-BerkStan

networks with both direct and surrogate approaches. Speedup

factors with the surrogate approach are significantly higher

than that of the direct approach due to its capability to reduce

communication cost drastically. Our algorithm demonstrates

an almost linear speedup to a large number of processors.

Further, our algorithm scales to a higher number of proces-

sors when networks grow larger, as shown in Fig. 6. This is, in

fact, a highly desirable behavior since we need a large number

of processors when the network size is large and computation

time is high.

Effect of Estimation for f(v). We show the performance

of our algorithm with new weight function (computed in

Section V-B), f(v) =
∑

u∈Nv−Nv
(d̂v + d̂u), and the best

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

Sp
ee

du
p

Fa
ct

or

Number of Processors

Miami (Surrogate)
Miami (Direct)

LiveJournal (Surrogate)
LiveJournal (Direct)
Twitter (Surrogate)

Twitter (Direct)

Fig. 5. Speedup factors of our algorithm with both
direct and surrogate approaches.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

Sp
ee

du
p

Fa
ct

or

Number of Processors

PA(25M,100)
PA(20M,100)
PA(10M,100)

Fig. 6. Improved scalability of our algorithm with
increasing network size.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

Sp
ee

du
p

Fa
ct

or

Number of Processors

Miami, New f(v)
Miami, f(v) [15]

LiveJournal, New f(v)
LiveJournal, f(v) [15]

Twitter, New f(v)
Twitter, f(v) [15]

Fig. 7. Comparison of new estimation function of
our algorithm and the best function of [15].

function f(v) =
∑

u∈Nv
(d̂v + d̂u) reported in [15]. As Fig.

7 shows, our algorithm with new weight function provides

better speedup than that of [15]. Our new f(v) estimates the

computational cost more precisely and helps compute balanced

partitions (Eqn. 3), which leads to better speedup.

Weak Scaling. Weak scaling of a parallel algorithm mea-

sures its ability to maintain constant computation time when

the problem size grows proportionally with processors. The

weak scaling of our algorithm is shown in Fig. 8. Since the

addition of processors causes the overhead for exchanging

messages to increase, the runtime of the algorithm increases

slowly. However, as the change in runtime is rather slow (not

drastic), our algorithm demonstrates a reasonably good weak

scaling.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
im

e
R

eq
ui

re
d

(s
ec

)

Number of Processors

Total Triangle Couting Time

Fig. 8. Weak scaling of our algorithm, experiment performed on PA(t/10 ∗
1M, 50) networks, t = number of processors used.

VII. CONCLUSION

We present a space-efficient parallel algorithms for counting

exact number of triangles in massive networks. The algorithm

employs non-overlapping partitions and reduces the space

requirement significantly leading to the ability to work on

larger networks. An efficient communication approach reduces

message passing drastically to provide a fast algorithm. Our

computation of a novel weight function for a parallel partition-

ing scheme adds further to the efficiency of the algorithm. We

also provide a comprehensive theoretical analysis to justify the

performance of the algorithm. We believe that for emerging

massive networks, this algorithm will prove very useful.

REFERENCES

[1] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in KDD, 2011.

[2] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive graphs,” in
KDD, 2008.

[3] J. Eckmann and E. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proc. Natl. Acad. of Sci. USA,
vol. 99, no. 9, pp. 5825–5829, 2002.

[4] Z. Bar-Yosseff, R. Kumar, and D. Sivakumar, “Reductions in streaming
algorithms, with an application to counting triangles in graphs,” in Proc.
of SODA, 2002.

[5] A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and J.-L. Larriba-Pey,
“Shaping communities out of triangles,” in CIKM, 2012.

[6] A. Broder et al., “Graph structure in the web,” Computer Networks,
vol. 33, no. 16, pp. 309 – 320, 2000.

[7] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW, 2010.

[8] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proc. Natl. Acad. of Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Jun. 2002.

[9] J. Ugander et al., “The anatomy of the facebook social graph,” CoRR,
vol. abs/1111.4503, 2011.

[10] T. Schank, “Algorithmic aspects of triangle-based network analysis,”
Ph.D. dissertation, University of Karlsruhe, 2007.

[11] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, pp. 458–473, 2008.

[12] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in WWW, 2011.

[13] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming
algorithm for triangle counting using the birthday paradox,” in KDD,
2013.

[14] C. Seshadhri, A. Pinar, and T. Kolda, “Triadic measures on graphs: the
power of wedge sampling,” in SDM, 2013.

[15] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A parallel
algorithm for counting triangles in massive networks,” in CIKM, 2013.

[16] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, “Counting
triangles in massive graphs with mapreduce,” CoRR, vol. abs/1301.5887,
2013.

[17] H.-M. Park and C.-W. Chung, “An efficient mapreduce algorithm for
counting triangles in a very large graph,” in CIKM, 2013.

[18] H.-M. Park, U. Kang, F. Silvestri, and R. Pagh, “Mapreduce triangle
enumeration with guarantees,” in CIKM, 2014.

[19] (2013) Zoltan: Parallel partitioning. [Online]. Available: http://www.cs.
sandia.gov/zoltan/

[20] D. Gleich and C. Seshadri, “Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods,” in KDD, 2012.

[21] C. Barrett et al., “Generation and analysis of large synthetic social
contact networks,” in WSC, 2009.

[22] A. Barabasi and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, pp. 509–512, 1999.

[23] (2012) Stanford network analysis project. [Online]. Available: http:
//snap.stanford.edu/

[24] “Twitter Data,” http://an.kaist.ac.kr/∼haewoon/release/twitter social
graph, 2010.

[25] S. Aluru, “Teaching parallel computing through parallel prefix,” in SC,
2012.

