%153& NDSSL Parallel Algorithms for Counting Triangles and Computing Clustering Coefficients MO‘N%.RRMGE‘.&MI
G @ simonsatnes borsor S M Arifuzzaman, Maleq Khan and Madhav V. Marathe i ginis s

Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA 24061

The Problem and Contributions Parallel Algorithm for Triangle Counting Parallel Computationof Clustering Coefficients
We present MPI-based parallel algorithms for counting triangles and computing clustering With P processors, the graph is partitioned into P partitions. Each processor reads its O For computing CC of a node v €V, we need T, the number of triangles
coefficients in massive networks. own partition in parallel from the input file. Each processor performs local computation incident on v. Partial count of triangles of v may reside at different
. . . . i rocessors which needs to be aggregated.
O Atriangle in agraph G(V, E) is a set of three nodes u, v, w €V such that there is an edge and results are then combined. P gareg
between each pair of nodes. The number of triangles incident on node v, with adjacency Partitioni O If we use n element count array for n nodes at each processor, then
list N(v), is defined as, artitioning we can use MPI_Reduce to sum up those counts easily. But, it requires
T, =H(uw) e Eluwe NV} 0 Each processor works on G,(V,E,), a subgraph of the original graph G(V,E) induced by V;. 0O(n) memory per processor.
Counting triangles is important in the analysis of various networks, e.g., social, biological, 0V is partitioned into sets of core vertices V;¢ (O<i<P), each with equal number of vertices, such O We employ external memory aggregation: each processor i writes P
web etc. Emerging massive networks do not fit in the main memory of a single machine that, for any two processors i and j, V¢ N\Ve=¢ and U,V =V intermediate disk files F; each for one distinct processor j with counts
and are very challenging to work with. Our distributed-memory parallel algorithm allows . i . i . L of triangles found for v e V|5; all F;s are then aggregated by processor
us to deal with such massive networks in a time- and space-efficient manner. We were able 0 V; contains a set of core vertices Vi and some extra vertices- neighbors of core vertices; E; j. Each processor j computes C, for all v e Ve,
to count triangles in a graph with 2 billions of nodes and 50 billions of edges in 10 minutes. contains all the edges between any two vertices of V;.
. N 30 /3
0 The clustering coefficient (CC) of a node v €V with degree d, is defined as, Counting Triangles §T arra{//o;counts oflocal trizngles} 5| wesBertem
orv eV, do =
C, J. P Each processor i counts total triangles incident on v € V;¢. Pseudocode for the overall parallel T,=0 2 ‘X‘/ﬂ
d,(d, -1 y . . . f ve d E et
algorithm and CountTriangle routine are provided below. orv eV do 8 15 e
Computing clustering coefficients is also an important problem which is almost equivalent foru e N(v) do L v
i i b ; {T: count of triangles} S=NW)N N(u) -
to counting triangles. {T: count of triangles} ¢ V. d Y T,=T,+[S| i I
L) . . o orv eV, do = = M
0 We also show how edge sparsification [1] can be used with our parallel algorithm to find foge?/ChEp"iczss‘:j’é’ [?]a:;al-lel’ do - Nl(v) in ascending order T.=T.+[s| [1F i =
approximate number of triangles. Our parallel adoption of sparsification technique T'E (Ifod)nszr?aan IQSFG (i)‘) T=0 for w € Sdo 0 ““N“' :" ‘f“}‘l‘” 1401160 180 200
improves the accuracy over the original sequential algorithm in [1]. MpiBarrier Y " forve Ve do Tw=Ty*1
. . e . . Mp'Red ce(T for u e N(v) do Communicate T, for each v e V; -V 1 ——————
aln _addltlon, we propose a simple modlflca_tlon of a state-of-the-art sequential algorithm piReduce(T) $=NW) N N(U) Aggregate T, for each v € V¢ N ~s |
that improves both runtime and space requirement. T=T+|3| ComputeC, for each v e V¢ g 08
"~ - . o
-) Load-Balancing 0o
Figure: (left) Pseudocode of the algorithm; § 4.4
. . 0 We assign equal number of core vertices per processor. But, (upper right) strong scaling; and (bottom ki
Improved Sequential Algorithm load can be imbalanced if the network has skewed degree right) weak scaling of clustering coefficient % ©2 [cp0
. .) . o) distribution. and triangle counting algorithm. TG se
Many algorithms use adjacency matrix representation which is not suitable for large 0 20 40 60 80 100120 140 160 180 200
graphs as it takes O(n%) memory. Nodelterator++ [2,3,5] is a state-of-the art algorithm that 0 However, degree-based ordering provides very good load Number of Processors
uses adjacency list representation. balancing without additional overhead. Consider the example
Nodelterator++ uses an ordering, <, of nodes to avoid duplicate count of triangles. A network shown in the right. Although v, has degree n-1, we
degree-based ordering, shown below, reduces running time significantly comparing to an have N(vo) = 0 and N(v)) <= 3, for all i, with degree-based llel Alaorithms f . . | .
arbitrary ordering (details are in our technical report [4]). ordering. Parallel Algorithms for Approximate Triangle Counting
u<ve(d, <d,)v(d, =d, Au<v) Performance i; Tivelouil = O A sparsification technique used in [1] works as follows: each (uVv)€E is
. i i 55 | HeclSM200) = selected with a probability p and discarded with a probability 1-p. Let T,
Proposed Modified Algorithm: NodelteratorN Our parallel algorithm e be the number of triangles in the sparsified graph, then the estimated
Unlike Nodelterator++, our algorithm NodelteratorN performs comparison u<v for each Qscales very well with size of networks and number of £ s o number of triangles in G is 1/p** T, The estimator is unbiased, because
edge (uVv)eE in preprocessing step rather than doing same in computing step. processors. 12 //‘” E[1/p*T)=T
NodelteratorN reduces memory consumption by half, and improves running time as ais S|gn|f|can”tI)I/ fIaSte'rththag tge _Omty Ikn%vlnl d'?”?“fﬁ' 0 :’2:0 R R O In our parallel algorithm, each processor i sparsifies its own subgraph
shown below in the table. Lnemofry pakra el adgorl m Dy surt et al, [3]. to the Number of Processors G,(V,E;) independently. Note that, an edge that overlaps in two partitions
est of our knowledge. g can survive in one partition, but not in the other. This independence
The pseudocode of the algorithm is given {Preprocessing: first for loop} 9 is able to run on a network with 2B nodes and 508 edges £ | e improves accuracy of the estimation (see [4] for details).
in the right. N(v) stores a subset of the for each edge (u,v) € E do in 10 minutes, whereas, the largest network processed by [3] g
neighbors of node v. ifu<vthen is a network with 42M nodes and 2.9B edges.] Table: Accuracy and speedup of the algorithm while running on LiveJournal graph
storev in N(u) g
else . Figure (right): (top) strongscaling, (middle) memory =;'. “m
Table: (left) Runtime comparison of forvszo\;ec‘llom N() scalability and (bottom) runtime vs network density E% Accuracy 99.61 99.685 99.832 99.898 99.947
quellerator++(N++) and Nogjeller?lorN (NN); SaY) (e Gk Table: Runtime comparison: our algo. with [3] 10 15 zl\:mioz(l]’mv:s:ssw:so 45 50 1/p2 100 25 111 6.25 4
(right) Dataset used for experiments; Hee(n,d) , N speed 353 176 8.1 5 316
. : T=0 //counts of triangles Numberof| __ Runtime | peedup 2 R . .
an artificially generated network with n nodes SUCYaE Networks W EITO 120 T o
: A . triangles | OurAlgo. 3] e
and d avg.degree, has high triangle density. foru e N(v) do eDYE e 65M %? 100 T e Table: A comparison of variance and average error of our algorithm with [1]
‘Sr:‘IN(V|)SP N(u) Livelournal 2857M 0.39s 5.33m % 5 - T S
No.of STe Twitter 488 15m 423m £ e — Actual
ErnaiEron 0.08 0.03 0.7M He(28, 20) 908 90s . 2 - web-BerkStan 1.287 2.027 0.389 0.392 1.02 1.08 64.7M
web-BerkStan 33 04 64.7M | Networks | Nodes [Edges | Heo(28, 50) 6008 om . [y et e s Livelournal 177 1.958 146 186 388 475 285.7M
LiveJournal 40.35 13 285.7M Email-Enron 37K 0.36M T 332M 055 i 20 40 60 :;(;;:{Zﬁ;‘f 160 180 200
Miami 43.56 16 332M web-BerkStan 0.69M 13M
Gnp(50K, 20) 0.14 0.06 1290 Miami 21M 100M
Gnp(500K, 20) 18 06 1308 Ceeioliinal 4.8M 86M [1] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “DOULION:counting triangles in massive graphs with a coin,” in Proc. of the 15" KDD, 2009, pp. 837-846.
Hec(5M, 50) 40 8 1.58 Twitter 42m 248 [2] T. Schank and D. Wagner, “Finding, counting and listing all triangles in large graphs, an experimental study;” in Proc. of the 4th Intl. Conf. on Experimental and Efficient Algorithms, 2005, pp. 606-609.
Hec(15M, 90) 553 526 158 Gnp(n.d) n 05nd Reference [3]S. SuriandsS. Vassilvitskii, “Counting triangles and the curse of the last reducer,”in Proc. of the 20th Intl. Conf. on World Wide Web (WWW), 2011.
Hec(5M, 200) 931 114 24.7 Hec(n,d) n 05nd [4] Tech. Report, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, No. NDSSL 12-042,July 2012. Available online: http://staff.vbi.vt.edu/maleq/papers/clusterco-TR-12-042 pdf

[5] M. Latapy, “Main-memory triangle computations for very large (sparse(power-law)) graphs,” Theor. Comput. Sci., vol. 407, pp. 458-473, 2008.

http://staff.vbi.vt.edu/maleq/papers/clusterco-TR-12-042.pdf

