
Parallel Algorithms for Counting Triangles and Computing Clustering Coefficients
S M Arifuzzaman, Maleq Khan and Madhav V. Marathe

Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA 24061

Parallel Algorithm for Triangle Counting

With P processors, the graph is partitioned into P partitions. Each processor reads its
own partition in parallel from the input file. Each processor performs local computation
and results are then combined.

Partitioning
 Each processor works on Gi(Vi,Ei), a subgraph of the original graph G(V,E) induced by Vi.

 V is partitioned into sets of core vertices Vi
c (0≤i<P), each with equal number of vertices, such

that, for any two processors i and j, Vi
c ∩Vi

c=∅ and⋃iVi
c =V

 Vi contains a set of core vertices Vi
c and some extra vertices- neighbors of core vertices; Ei

contains all the edges between any two vertices of Vi .

Counting Triangles
Each processor i counts total triangles incident on v ∊ Vi

c . Pseudocode for the overall parallel
algorithm and CountTriangle routine are provided below.

Load-Balancing

Performance A sparsification technique used in [1] works as follows: each (u,v)∈E is
selected with a probability p and discarded with a probability 1-p. Let Ts
be the number of triangles in the sparsified graph, then the estimated
number of triangles in G is 1/p3 * Ts. The estimator is unbiased, because

E[1/p3 * Ts]= T
 In our parallel algorithm, each processor i sparsifies its own subgraph

Gi(Vi,Ei) independently. Note that, an edge that overlaps in two partitions
can survive in one partition, but not in the other. This independence
improves accuracy of the estimation (see [4] for details).

Parallel Algorithms for Approximate Triangle Counting

Reference

[1] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “DOULION:counting triangles in massive graphs with a coin,” in Proc. of the 15th KDD, 2009, pp. 837–846.
[2] T. Schank and D. Wagner, “Finding, counting and listing all triangles in large graphs, an experimental study,” in Proc. of the 4th Intl. Conf. on Experimental and Efficient Algorithms, 2005, pp. 606–609.
[3] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” in Proc. of the 20th Intl. Conf. on World Wide Web (WWW), 2011.
[4] Tech. Report, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, No. NDSSL 12-042, July 2012. Available online: http://staff.vbi.vt.edu/maleq/papers/clusterco-TR-12-042.pdf
[5] M. Latapy, “Main-memory triangle computations for very large (sparse(power-law)) graphs,” Theor. Comput. Sci., vol. 407, pp. 458–473, 2008.

 For computing CC of a node v ∊V, we need Tv, the number of triangles
incident on v. Partial count of triangles of v may reside at different
processors which needs to be aggregated.

 If we use n element count array for n nodes at each processor, then
we can use MPI_Reduce to sum up those counts easily. But, it requires
O(n) memory per processor.

 We employ external memory aggregation: each processor i writes P
intermediate disk files Fj each for one distinct processor j with counts
of triangles found for v ∊ Vj

c; all Fjs are then aggregated by processor
j. Each processor j computes Cv for all v ∊ Vj

c.

Parallel Computation of Clustering CoefficientsThe Problem and Contributions

We present MPI-based parallel algorithms for counting triangles and computing clustering
coefficients in massive networks.

 A triangle in a graph G(V, E) is a set of three nodes u, v, w ∊V such that there is an edge
between each pair of nodes. The number of triangles incident on node v, with adjacency
list N(v), is defined as,

Counting triangles is important in the analysis of various networks, e.g., social, biological,
web etc. Emerging massive networks do not fit in the main memory of a single machine
and are very challenging to work with. Our distributed-memory parallel algorithm allows
us to deal with such massive networks in a time- and space-efficient manner. We were able
to count triangles in a graph with 2 billions of nodes and 50 billions of edges in 10 minutes.

 The clustering coefficient (CC) of a node v ∊V with degree dv is defined as,

Computing clustering coefficients is also an important problem which is almost equivalent
to counting triangles.
We also show how edge sparsification [1] can be used with our parallel algorithm to find
approximate number of triangles. Our parallel adoption of sparsification technique
improves the accuracy over the original sequential algorithm in [1].
 In addition, we propose a simple modification of a state-of-the-art sequential algorithm
that improves both runtime and space requirement.

Improved Sequential Algorithm

Many algorithms use adjacency matrix representation which is not suitable for large
graphs as it takes O(n2) memory. NodeIterator++ [2,3,5] is a state-of-the art algorithm that
uses adjacency list representation.

NodeIterator++ uses an ordering, ≺, of nodes to avoid duplicate count of triangles. A
degree-based ordering, shown below, reduces running time significantly comparing to an
arbitrary ordering (details are in our technical report [4]).

Proposed Modified Algorithm: NodeIteratorN
Unlike NodeIterator++, our algorithm NodeIteratorN performs comparison u≺v for each
edge (u,v)∈E in preprocessing step rather than doing same in computing step.
NodeIteratorN reduces memory consumption by half, and improves running time as
shown below in the table.

p 0.1 0.2 0.3 0.4 0.5

Accuracy 99.61 99.685 99.832 99.898 99.947

1/P2 100 25 11.1 6.25 4

Speedup 35.3 17.6 8.1 5 3.16

Networks
Variance Avg Error (%) Max Error (%) Actual

CountOur Algo. [1] Our Algo. [1] Our Algo. [1]

web-BerkStan 1.287 2.027 0.389 0.392 1.02 1.08 64.7M
LiveJournal 1.77 1.958 1.46 1.86 3.88 4.75 285.7M

{T: array of counts of local triangles}
for v ∊ Vi do

Tv = 0
for v ∊ Vi

c do
for u ∊ N(v) do

S = N(v) N(u)
Tv = Tv + |S|
Tu = Tu + |S|
for w ∊ S do

Tw = Tw + 1
Communicate Tv for each v ∊ Vi -Vi

c

Aggregate Tv for each v ∊ Vi
c

Compute Cv for each v ∊ Vi
c

{Preprocessing: first for loop}
for each edge (u,v) ∊ E do

if u ≺ v then
store v in N(u)

else
store v in N(v)

for v ∊ V do
sort N(v) in ascending order

T=0 //counts of triangles
for v ∊ V do

for u ∊ N(v) do
S = N(v) N(u)
T= T + |S|

{T: count of triangles}
for each processor i, in parallel, do

Gi(Vi, Ei) = ReadGraph(G, i)
T = CountTriangles(Gi, i)

MpiBarrier
MpiReduce(T)

{T: count of triangles}
for v ∊ Vi do

sort N(v) in ascending order
T=0
for v ∊ Vi

c do
for u ∊ N(v) do

S = N(v) N(u)
T = T + |S|

Networks Nodes Edges
Email-Enron 37K 0.36M

web-BerkStan 0.69M 13M
Miami 2.1M 100M

LiveJournal 4.8M 86M
Twitter 42M 2.4B

Gnp(n,d) n 0.5 nd
Hcc(n,d) n 0.5 nd

Networks
Runtime(sec) No. of

trianglesN++ NN
Email-Enron 0.08 0.03 0.7M

web-BerkStan 3.3 0.4 64.7M
LiveJournal 40.35 13 285.7M

Miami 43.56 16 332M
Gnp(50K, 20) 0.14 0.06 1290

Gnp(500K, 20) 1.8 0.6 1308
Hcc(5M, 50) 40 8 1.5B

Hcc(15M, 90) 553 52.6 15B
Hcc(5M, 200) 931 114 24.7

|)}(,|),{(| vNwuEwuTv

)1(
2

vv

v
v dd

TC

)()(vuddddvu vuvu

Table: (left) Runtime comparison of
NodeIterator++ (N++) and NodeIteratorN (NN);
(right) Dataset used for experiments; Hcc(n,d) ,
an artificially generated network with n nodes
and d avg. degree, has high triangle density.

Networks Number of
triangles

Runtime
Our Algo. [3]

web-BerkStan 65M 0.03s 1.7m
LiveJournal 285.7M 0.39s 5.33m

Twitter 34.8B 15m 423m
Hcc(5M, 200) 24.7B 3.86s -
Hcc(2B, 20) 90B 90s -
Hcc(2B, 50) 600B 9m -

Miami 332M 0.5s -

 We assign equal number of core vertices per processor. But,
load can be imbalanced if the network has skewed degree
distribution.

 However, degree-based ordering provides very good load
balancing without additional overhead. Consider the example
network shown in the right. Although v0 has degree n-1, we
have N(v0) = 0 and N(vi) <= 3, for all i, with degree-based
ordering.

Table: Accuracy and speedup of the algorithm while running on LiveJournal graph

Table: A comparison of variance and average error of our algorithm with [1]

Figure: (left) Pseudocode of the algorithm;
(upper right) strong scaling; and (bottom
right) weak scaling of clustering coefficient
and triangle counting algorithm.

Figure (right): (top) strong scaling, (middle) memory
scalability and (bottom) runtime vs network density

Table: Runtime comparison: our algo. with [3]

The pseudocode of the algorithm is given
in the right. N(v) stores a subset of the
neighbors of node v.

…

v0

v1

v2 v3

v4

v5Vn-1

Our parallel algorithm
 scales very well with size of networks and number of
processors.
 is significantly faster than the only known distributed-
memory parallel algorithm by Suri et al., 2011 [3], to the
best of our knowledge.
 is able to run on a network with 2B nodes and 50B edges
in 10 minutes, whereas, the largest network processed by [3]
is a network with 42M nodes and 2.9B edges.

http://staff.vbi.vt.edu/maleq/papers/clusterco-TR-12-042.pdf

