
Parallel Algorithms for Counting Triangles and
Computing Clustering Coefficients

S M Arifuzzaman∗†, Maleq Khan † and Madhav Marathe∗†
∗Dept. of Computer Science, Virginia Tech, Blacksburg, VA

†Virginia Bioinformatics Institute, Blacksburg, VA

I. INTRODUCTION

We present efficient MPI-based distributed memory parallel
algorithms for counting triangles and computing clustering
coefficients of the nodes in massive networks that do not fit
in the main memory of a single computing node.

Given an undirected network G(V,E) with V and E being
the sets of nodes and edges, respectively, and m = |E|, n =
|V |, a triangle is defined as a set of three nodes u, v, w ∈ V
such that there is an edge between each pair of these three
nodes. Let the set of all neighbors of v ∈ V is denoted by
N(v) and the degree of v is dv = |N(v)|. The number of
triangles incident on v is given by,

Tv = | {(u,w) ∈ E | u,w ∈ N(v)} |.

The clustering coefficient (CC) of a node v ∈ V , denoted
by Cv is the ratio of the number of edges between neighbors
of v to the number of all possible edges between neighbors of
v. Then, we have,

Cv =
Tv(
dv

2

) =
2Tv

dv(dv − 1)
.

Thus, CC of a node can be computed by simply counting
the number of triangles incident on the node.

Triangles and clustering coefficients play significant roles
in the analysis of complex networks. Existence of triangles
and the resulting high clustering coefficient reveals important
characteristics of social, biological, web and different other
networks [1], [2], [3], [4].

The problem of computing the clustering coefficients of the
nodes, and almost equivalently counting triangles, in a graph
has a rich history [5]–[7]. Much of the earlier work focused
on improving running time rather than paying attention to
memory issues, and these algorithms are mainly based on
matrix multiplication and adjacency matrix representation of
the network [5].

Matrix based algorithms [5] are not useful in the analysis
of social networks as adjacency matrix representation of
network requires O(n2) memory space. In the last decade the
focus has been shifted to algorithms that use adjacency list
representation [6], [7], which takes O(m) memory. Although
a fairly large volume of work has been done on this problem,
much less attention was given, until recently, to the problems
associated with massive networks that do not fit in the main
memory. Several techniques can be employed to deal with such
massive graphs: streaming algorithms ([2], [4]), sparsification

based algorithms [8], external-memory algorithms [9], and
distributed memory parallel algorithms [10]. The streaming
and sparsification based techniques provide approximation
algorithms whereas external-memory and parallel algorithms
can be used to find exact solutions

To the best of our knowledge, very few works ([9]) have
addressed the problems associated with massive networks that
do not fit in the main memory and provide an exact solution. A
very recent paper [10] presents a parallel algorithm for exact
triangle counts using MapReduce framework. Our parallel
algorithm improves the performance, both in time and space,
over [10] significantly.

Our algorithms scales well to networks with billions of
nodes. It can compute the exact number of triangles and
clustering coefficient for a network with two billion nodes
and 50 billion edges in 10 minutes. We also adopt an edge
sparsification technique to approximate the number of triangles
with very high accuracy. Moreover, we propose a simple mod-
ification of a state-of-the-art sequential algorithm for counting
triangles. This modification improves both the running time
and space requirement of the algorithm. We use this modified
sequential algorithm as a basis for our parallel algorithm.

II. SEQUENTIAL ALGORITHMS TO COUNT TRIANGLES

A naive approach to count triangles in a graph G(V,E) is to
check, for all possible triples (u, v, w), u, v, w ∈ V , whether
(u, v, w) forms a triangle, i.e., check if (u, v), (v, w), (u,w) ∈
E. There are

(
n
3

)
such triples, and thus this algorithm takes

Ω(n3) time. There exist many algorithms [6], [7], [9]–[11]
which provide significant improvement over the above method.
A very comprehensive survey of the sequential algorithms can
be found in [7], [11]. One of the state of the art algorithms
is known as NodeIterator++, as identified in two very recent
papers [9], [10].

NodeIterator++ uses a total ordering ≺ of the nodes to
avoid duplicate counts of the same triangle. It is easy to see
that use of any arbitrary ordering of the nodes, e.g., ordering
the nodes based on their IDs, makes sure that each triangle is
counted exactly once – counts only one permutation among
the six possible permutations. However, the algorithm NodeIt-
erator++ incorporates an interesting node ordering based on
the degrees of the nodes, with ties broken by node IDs, as
defined below:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (1)

This degree based ordering can improve running time signifi-
cantly, especially for a graph with skewed degree distribution.

We modify NodeIterator++ by performing the comparison
u ≺ v for each edge (u, v) ∈ E in a preprocessing step rather
than doing it while counting the triangles. This preprocessing
step reduces the total number of ≺ comparisons to O(m)
and allows us to use efficient set intersection operation. All
triangles containing node v and any u ∈ N(v) can be found
by set intersection N(u) ∩N(v).

III. THE PARALLEL ALGORITHM

Let P be the number of processors used in the computa-
tion. The network is partitioned into P partitions, and each
processor is assigned one such partition Gi(Vi, Ei). Processor
i is responsible for counting triangles incident on the nodes in
V c
i , called core nodes for processor i, where V c

i ⊂ Vi ⊂ V ,
such that for any i and j, V c

i ∩ V c
j = ∅ and

⋃
i V

c
i = V .

Set Vi contains all nodes in V c
i and any node w that is a

neighbor of some node v ∈ V c
i . Each processor, in parallel,

reads its own part of the network (the data that is necessary
to construct its own partition Gi) in its local memory and
does computation on Gi. Once all processors complete their
local computation, the results are combined. Our algorithm
uses degree-based ordering that reduces |N(vi)| ≤ dv; nodes
with larger degree have larger reduction. Thus, degree-based
ordering smoothers skewness of degree and provides very good
load balancing.

We perform our experiments using a computing cluster
(Dell C6100) with 30 computing nodes and 12 processors
(Intel Xeon X5670, 2.93GHz) per node. The memory per
processor is 4GB, and the operating system is SLES 11.1. The
runtime performance of our algorithm is significantly better
than the only available distributed memory parallel algorithm
provided in [10]. The reason behind this improvement is, [10]
has an hadoop implementation that generates huge volume of
intermediate data, which are all possible 2-paths centered at
each node. The algorithm shuffles and regroups these 2-paths,
which take significantly larger time and also memory.

A. Computation of Clustering Coefficients

To compute clustering coefficients of the nodes, we need to
count the triangles incident on each node v. Each processor
i keeps track of the counts for the nodes in Vi. Processor i
needs to collect and aggregate the counts for v ∈ V c

i from
other processors.

One way to do it is to maintain an array of counts of size
n for storing the count information of any of the n vertices of
the graph. Then the arrays in all processors can be aggregated
simply by MPI function MPI Reduce. However, we cannot
afford O(n) space for each processor. Instead, we adopt an
external-memory approach for aggregating the counts for the
individual nodes. Each processor creates P intermediate files:
one for each processor, and writes the counts for the core
nodes of the other processors in the corresponding files. Once
all processors are done with creating the intermediate files,

each processor merges (aggregates) the counts for its own core
nodes v ∈ V c

i from the files created for it by other processors.

IV. A SPARSIFICATION-BASED PARALLEL
APPROXIMATION ALGORITHM

We integrate a sparsification technique, called DOULION,
proposed in [8] with our parallel algorithm so as to be able to
run very large networks. Our adopted version of DOULION
provides more accuracy than DOULION.DOULION works as
follows.

Let G(V,E) and G′(V,E′ ⊂ E) be the networks before
and after sparsification, respectively. Network G′(V,E′) is
obtained from G(V,E) by retaining each edge, independently,
with probability p and removing with probability 1 − p. Let
T (G′) be the number of triangles in G′. The estimated number
of triangles in G is given by 1

p3T (G′), which is an unbiased
estimation.

In our parallel algorithm, sparsification is done slight differ-
ently: each processor i independently performs sparsification
on its partition Gi(Vi, Ei) instead of sparsifying the whole
graph at the beginning. As processor i and j perform spar-
sification independently, survivals of two non-edge-disjoint
triangles (v, u, w) and (v′, u, w) are independent events. This
improves accuracy of our algorithm.

V. CONCLUSION

We presented parallel algorithms for counting triangles and
computing clustering coefficient of the nodes in a massive
network that has billions of nodes and edges. The algorithm
shows very good scalability with both the number of proces-
sors and the problem size and performs well on both real-
world and artificial networks. Further, we have adopted the
sparsification approach of DOULION in our parallel algorithm
with improved accuracy. This adoption will allow us to deal
with even larger networks.

REFERENCES

[1] M. McPherson et al., “Birds of a feather: Homophily in social networks,”
Annual Review of Sociology, vol. 27, no. 1, pp. 415–444, 2001.

[2] L. Becchetti et al., “Efficient semi-streaming algorithms for local triangle
counting in massive graphs,” in Proc. of KDD, 2008.

[3] E. Eckmann, J.-P. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proc. Natl. Acad. of Sci. USA,
vol. 99, no. 9, pp. 5825–5829, 2002.

[4] Z. Bar-Yosseff et al., “Reductions in streaming algorithms, with an
application to counting triangles in graphs,” in Proc. of the 13th SODA,
2002, p. 623632.

[5] N. Alon et al., “Finding and counting given length cycles,” Algorithmica,
vol. 17, pp. 209–223, 1997.

[6] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in Proc. of Experimental and
Efficient Algorithms, 2005, pp. 606–609.

[7] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, pp. 458–473, 2008.

[8] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion:
counting triangles in massive graphs with a coin,” in Proc. of KDD,
2009, pp. 837–846.

[9] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in Proc. of KDD, 2011, pp. 672–680.

[10] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in Proc. of WWW, 2011.

[11] T. Schank, “Algorithmic aspects of triangle-based network analysis,”
Ph.D. dissertation, University of Karlsruhe, 2007.

