Parallel Color Coding and Graph Partitioning Enabling Subgraph Counting for Massive Graphs

Zhao Zhao, Maleq Khan, V.S. Anil Kumar, Madhav V. Marathe

Virginia Tech



Motivation & Challenges

Subgraph/template counting has been widely applied in many areas, say biochemistry, neurobiology, ecology and engineering, e.g.:

- Motif counting in protein-protein network
- Cascade frequency in blog/posts network
- Information cascades in recommendation network

Challenges in subgraph counting:

- Running time is exponential in the template size.

- Parallel implementation is difficult, due to the backtracking process in the subgraph counting.

Summary

Our Approach

We propose a parallel algorithm called **ParSE**, to estimate the number of occurrences of a template in very large graphs using color-coding and graph partitioning.

Features:

- Can handle graphs with millions of nodes.
- Deal with more generalized and larger templates.
- Estimation error is controllable.

Basic steps of ParSE:

- Partition the graph, as well as split the template.
- Use color coding to count the number of sub-template embeddings in

Results

Algorithm is tested on:

- million-nodes social contact graphs, random graphs - various templates
- The results showing that our algorithm has:
 - High precision in approximation.
 - Good scaling to processor, and template size.
 - Large speed up over sequential color-coding algorithm.

- Previous work are limited in graphs with thousands of nodes, due to the high computational cost and memory usage.

The Problem

The problem is to count the number of non-induced subgraphs of an undirected graph G(V, E), which are isomorphic to a given template $T(V_T, E_T)$, as shown in Fig. 1.

• non-induced subgraph: A subgraph H(V', E') which is isomorphic to the template T (there is a bijection $f: V_T \to V'$ such that if $(u, v) \in E_T$ then (f(u), v) $f(v)) \in E'$;

• induced subgraph: $(u, v) \in E_T$ i.f.f. $(f(u), f(v)) \in E')$.

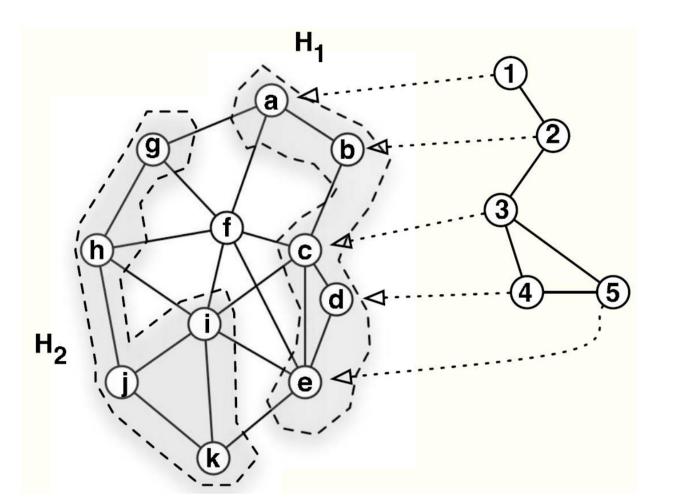


Figure 1: Non-induced and induced occurrences of the template, in which H_1 is both an induced and non-induced subgraph, and H_2 is only a non-induced subgraph. each partition. - Calculate the number of template embeddings in the whole graph, by aggregating the sub-templates' countings.

✓ ✓ Overview of ParSE

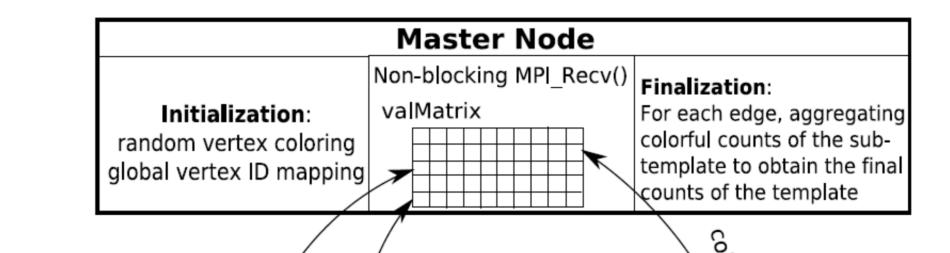
The high-level peudo-code of **ParSE** is given below: 1. Partition G(V, E) and assign processors. 2. Partition T into T_1 and T_2 , let $\rho(T_i)$ denote the root of T_i 3. Assign each node *v* in *V* a random color from {1,...,*k*}. 4. For each processor q and each partition G_p assigned to it, do For each node v in $core(G_p)$, each set $S_i \subset \{1,...,k\}$, $|S_i| = |T_i|$, i = 1, 2, do Compute $C(v, \rho(T_i), T_i, S_i)$ For each edge $e=(u,v) \in E$, do

Compute $C(e) = \sum_{S_1,S_2} C(u, \rho(T_1), T_1, S_1) C(v, \rho(T_2), T_2, S_2) + C(v, \rho(T_1), T_1, S_1) C(u, \rho(T_2), T_2, S_2)$

where the sum is over all $S_1 \cup S_2 = \{1, ..., k\}$.

11. $X = \sum_e C(e)/\beta$,

12. Repeat line 3–11 until the average of *X* reaches the precision requirement. Table 1: A high level description of ParSE • Here β is the number of cut-edges in *T*, for which the template is isomorphic to itself.



✓ **Running Time**

The total running time of ParSE can be bounded by:

$O\left(\frac{e^k \log 1/\delta}{\epsilon^2} \left(\frac{n}{Q} \Delta^{k'} + (n+m)k^{k'}\right)\right)$

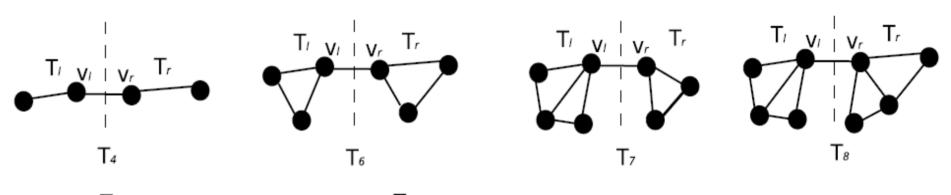
 \clubsuit Here *P* is the number of partitions, *Q* is the number of processors, *k'* is $max(|T_1|, (|T_2|))$. And we suppose $rP/Q < k^{k'}$.

Experiments

We perform the experiments using the following graphs and templates:

	Graph	Number of Nodes	Average Degree
Synthetic Social Contact Networks	NRV	151,783	164
	Miami	2,092,147	50
Random <i>G</i> (<i>n,p</i>) graph	GNP50	50,000	20
	GNP100	100,000	20

Figure 5: Datasets used in the experiment.



Color Coding Technique

Color-coding is an approximating algorithm to estimate the subgraph embeddings emb(T,G) for a given template T and graph G, by counting the colorful embeddings *C.* All the vertices in a "colorful" embedding has distinct color. The procedure of color coding is briefly given below:

1. For *i* from 1 to $N=O[(e^k \cdot \log 1/\delta)/\epsilon^2]$ perform the following steps, such that the approximation satisfies:

$\Pr[|Z - emb(T,G)| > \varepsilon \cdot emb(T,G)] \le \delta$

- (Here Z is the estimated number of embeddings. k is the template size, ε and δ are parameters to control the error.)
- a) Color each vertex of *G* uniformly at random with a color from {1,...,*k*}.
- b) Count X_i , the "colorful" embeddings of T in G.
- 2. Partition the *N* samples above into $O(\log 1/\delta)$ sets, and let Y_i be the average of the *j* set. Output the median C of $(Y_1, ..., Y_t)$.
- 3. Since the possibility that an embedding to be colorful is $k!/k^k$, the number of actual embeddings can be estimated as $Z = C \cdot k^k / k!$.

ParSE

ParSE deals with the template which can be split into two sub-templates by a "cut-edge" (u, v). We let u and v to be the roots of the two sub-templates T_1 and T_2 . We first count the number of sub-template embeddings rooted from each vertex *w* in the graph. Then we will aggregate the sub-template countings to obtain the number of template embeddings in the graph. In the following we use $C(w, u, T_i, S_i)$ to denote the number of colorful embeddings of sub-template

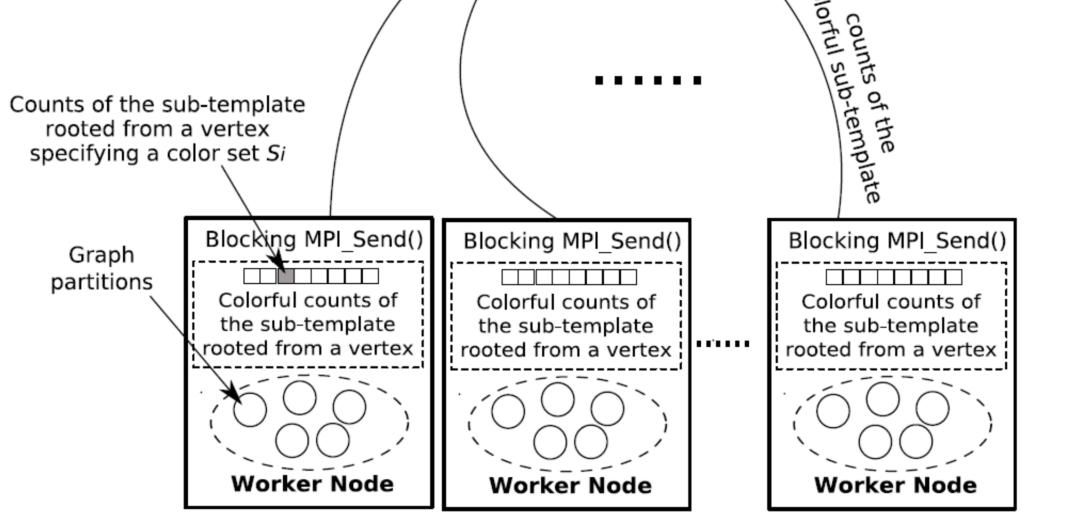


Figure 3: A schematic description of ParSE

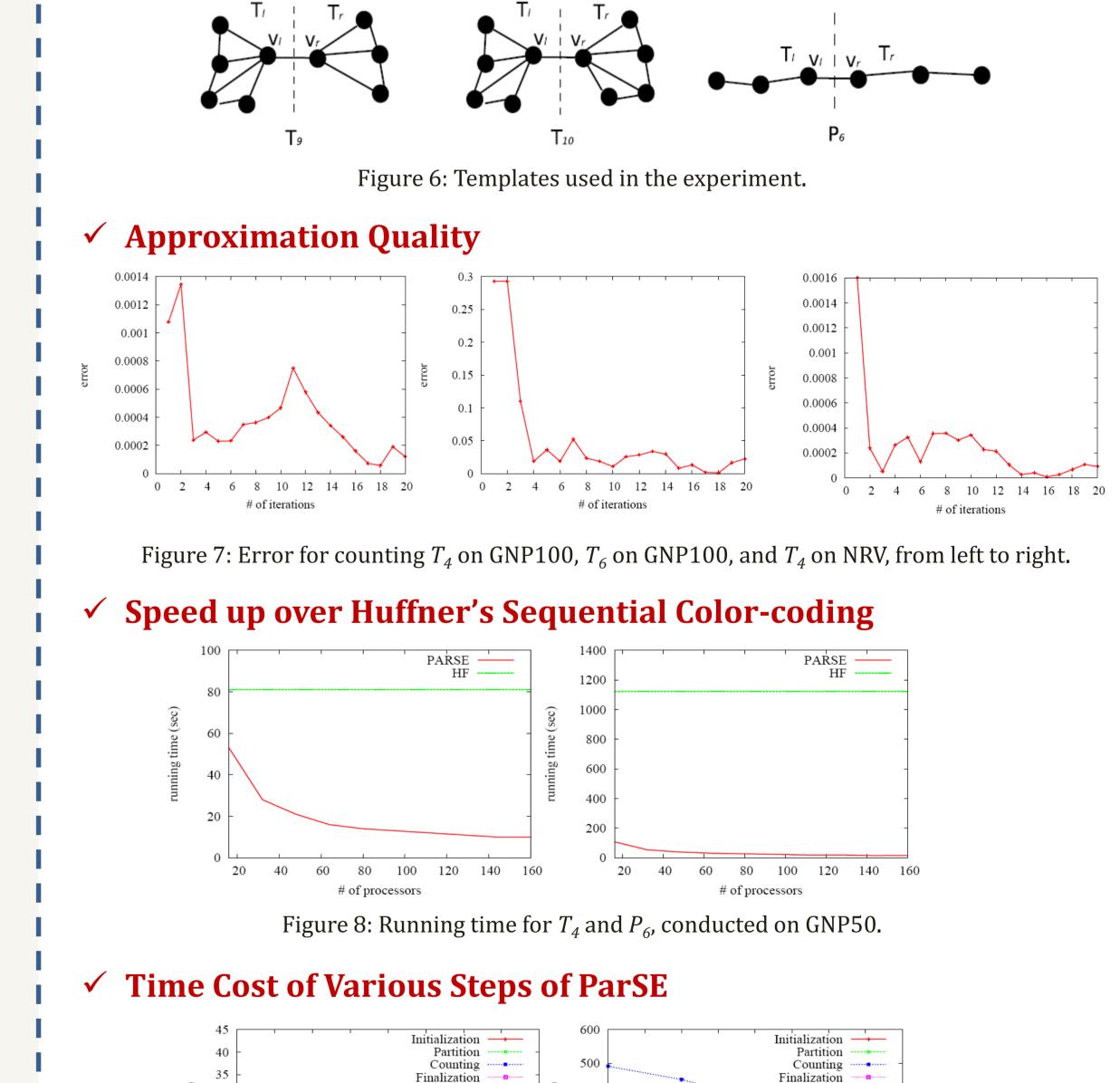
- ✓ Cover-based Graph Partitioning
- Several notations:
- $G_p(V_p, E_p)$: Graph partition.
- $N_r(v)$: $N_r(v) = \{u : d(u, v) \le r\}$, where d(u, v) is the distance between u and v. • $core(G_p)$: $core(G_p) = \{v : N_r(v) \subset V_p\}$
- *G* is partitioned to a number of G_n s.t.:

i) $\bigcup core(G_p) = V$

ii) $\forall p_1 \neq p_2$, $core(G_{p_1}) \cap core(G_{p_2}) = \phi$

• We let *r* equal to the radius of the T_i , so that the counting of the sub-template rooted from each vertex in $core(G_p)$ can be done locally in G_p .

✓ **Template Enumeration**



of processors

template size

Figure 11: Time VS. Template on NRV

of processors

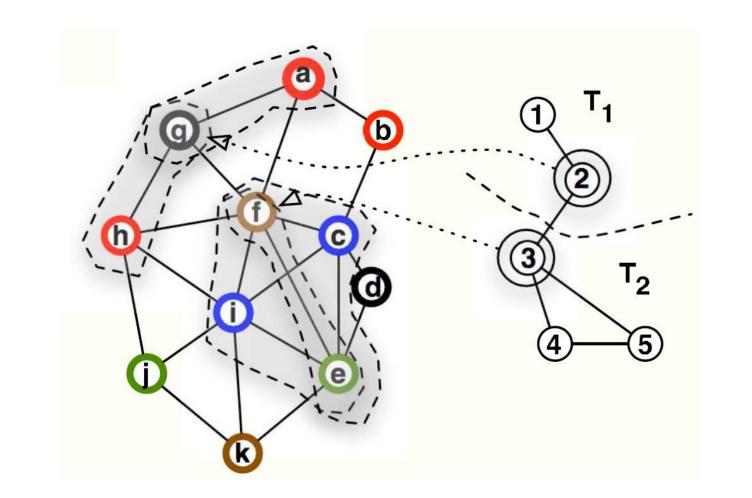
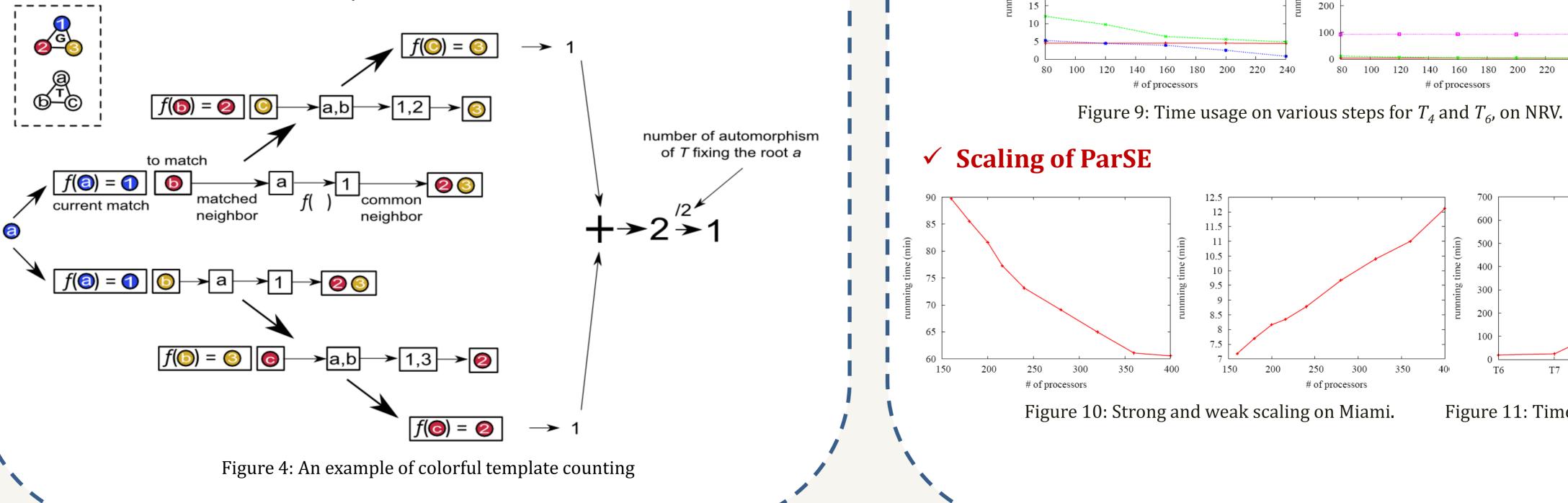


Figure 2: Illustration of the dynamic programming step of color coding. Template T is partitioned into two subgraphs T_1 and T_2 , with roots 2 and 3, respectively. We have $C(g, 2, T_1, S_1)$ = {black, red}) = 2 and C(f, 3, T_2 , S_2 = {brown, blue, green}) = 2. So the colorful embeddings of Tlocated at edge (g, f) is $C(g, 2, T_1, S_1)C(f, 3, T_2, S_2) = 4$.

Goal: The process of counting the number of colorful sub-template embeddings rooted from each vertex $v \in core(G_p)$, i.e., $C(v, \rho(T_i), T_i, S_i)$, is shown in Fig. 4.



This work has been partially supported by NSF Nets Grant CNS-0626964, NSF HSD Grant SES-0729441, NIH MIDAS project 2U01GM070694-7, NSF PetaApps Grant OCI-0904844, DTRA R&D Grant HDTRA1-0901-0017, DTRA CNIMS Grant HDTRA1-07-C-0113, NSF NETS CNS-0831633, NSF CAREER 0845700, DHS 4112-31805, DOE DE-SC0003957 and NIH/CDC 1P01CD000284-01.