Parallel Color Coding and Graph Partitioning Enabling

Subgraph Counting for Massive Graphs

Zhao Zhao, Maleq Khan, V.S. Anil Kumar, Madhav V. Marathe
Virginia Tech

| Motivation & Challenges |
I Subgraph/template counting has been widely applied in many areas, say |
Ibiochemistry, neurobiology, ecology and engineering, e.g.: I
| - Motif counting in protein-protein network

: - Cascade frequency in blog/posts network

: - Information cascades in recommendation network

' Challenges in subgraph counting:
| - Running time is exponential in the template size.
| - Parallel implementation is difficult, due to the backtracking process in |

:the subgraph counting. I

\ - Previous work are limited in graphs with thousands of nodes, due tol

Ithe high computational cost and memory usage. l
I

L e e e e e e e e e e e e e e e e == =

-~ pes TN OO O W WRommOmoOWDWDW WD WS mmmmm m e . —— — oy ~

’ N

N\
The Problem

The problem is to count the number of non-induced subgraphs of an
undirected graph G(V, E), which are isomorphic to a given template T(V, E;),
as shown in Fig. 1.

* non-induced subgraph: A subgraph H(V', E') which is isomorphic to the
template T (there is a bijection f: V; =V’ such that if (u, v) € E; then (f(u),
fv)) e EY);

* induced subgraph: (u, v) € E; LLf. (flu), f{v)) € E').

Figure 1: Non-induced and induced occurrences of the template, in which H;, is
both an induced and non-induced subgraph, and H, is only a non-induced subgraph.

Color Coding Technique

Color-coding is an approximating algorithm to estimate the subgraph
embeddings emb(T,G) for a given template T and graph G, by counting the
colorful embeddings C. All the vertices in a “colorful” embedding has distinct
color. The procedure of color coding is briefly given below:

1. Forifrom 1 to N=0[(e*-log 1/6)/€?] perform the following steps, such
that the approximation satisfies:

Pr[|Z - emb(T,G)|> e:emb(T,G)]< 6

(Here Z is the estimated number of embeddings. k is the template size, €

and 6 are parameters to control the error.)

Color each vertex of G uniformly at random with a color from {1,...,k}.

Count X, the “colorful” embeddings of T in G.

2. Partition the N samples above into O(log 1/9) sets, and let Y; be the
average of the j set. Output the median C of (Y,...,Y,).

3. Since the possibility that an embedding to be colorful is k//k*, the number
of actual embeddings can be estimated as Z = C- k*/k!.

ParSE

ParSE deals with the template which can be split into two sub-templates by a
“cut-edge” (u, v). We let u and v to be the roots of the two sub-templates T, and
T,. We first count the number of sub-template embeddings rooted from each
vertex w in the graph. Then we will aggregate the sub-template countings to
obtain the number of template embeddings in the graph. In the following we
use C(w, u, T, S;) to denote the number of colorful embeddings of sub-template
T, with root u lying on w, specifying the color set S, . Fig. 2 is an example.

Figure 2: Illustration of the dynamic programming step of color coding. Template T is
partitioned into two subgraphs T, and T,, with roots 2 and 3, respectively. We have C(g, 2, T;, S;
= {black, red}) = 2 and C(f, 3, T,, S, = {brown, blue, green}) = 2. So the colorful embeddings of T
located at edge (g, f) is C(g, 2, T;, S;)C(f, 3, T,, S,) = 4.

| Features:
: - Can handle graphs with millions of nodes.
: - Deal with more generalized and larger templates.

Summary

Our Approach
I'We propose a parallel algorithm called ParSE, to estimate the number of I
loccurrences of a template in very large graphs using color-coding and graph I
I partitioning.

I Basic steps of ParSE:

- Estimation error is controllable.

- Partition the graph, as well as split the template.
- Use color coding to count the number of sub-template embeddings in|
each partition.
- Calculate the number of template embeddings in the whole graph, by |

I aggregating the sub-templates’ countings.

1.
12,
03
'4,
'S,
| 6.
7.
' 8.
9.
1 10.

1 11. X =¥,C(e)/B,

1 12. Repeat line 3-11 until the average of X reaches the precision requirement.
L e o e e e e = e = = = = e = I

to itself.

Partition G(V, E) and assign processors.
Partition T into T, and T),, let p(T,) denote the root of T;
Assign each node vin Varandom color from {1,...,k}.
For each processor q and each partition G, assigned to it, do
For each node vin core(G,), each set S, c {1,...k}, |S;| = [T}, i1 =1, 2, do
Compute C(v, p(T)), T, S;)
For each edge e=(u,v) € E, do
Compute C(e) = Y5, 5, C(u, p(T1), T1, S1) C(v, p(T2), T, S5)
+C(v, p(T,), Ty, S1) C(u, p(T7), T, S3)
where the sum is over all S,US,={1,...,.k}.

Table 1: A high level description of ParSE
¢ Here f is the number of cut-edges in T, for which the template is isomorphic

Master Node

Initialization:
random vertex coloring
global vertex ID mapping

yd

7

Non-blocking MP|_Recv()
valMatrix

Finalization:

For each edge, aggregating
colorful counts of the sub-
template to obtain the final

counts of the template

Counts of the sub-template
rooted from a vertex
specifying a color set Si

Graph
partitions

rooted from a vertex

.-""_Fi_:_--_““
f O
|

BIGCQV MPI Send()
s 'aansui | 1

Colorful counts of
the sub-template

~

s

\

i

* s
= -

ey -
—

_— —

Worker Node

rooted from a vertex !

[S

HEEEEEEN
Colorful counts of
the sub-template

N —

Wu;rker N::de

[(TTTTTTT]
Colorful counts of
the sub-template

rooted from a vertex

Worker Node

Figure 3: A schematic description of ParSE

v’ Cover-based Graph Partitioning
Several notations:

* G,(V, E,): Graph partition.
*N(v): N(v) ={u:d(u,v) <r}, where d(u, v) is the distance between u and v.
* core(G,): core(G,) ={v:N,(v) C V}

** G is partitioned to a number of G, s.t.:

i) | core(Gy)

1<p<P

v

it) Vp1 # pa, core(G,,) Ncore(G,,) = ¢

“* We let r equal to the radius of the T, so that the counting of the sub-template
rooted from each vertex in core(G,) can be done locally in G,,.

v' Template Enumeration
Goal: The process of counting the number of colorful sub-template embeddings
rooted from each vertex v € core(G,), i.e,, C(v, p(T}), T}, S;), is shown in Fig. 4.

; |
' |
i : @=0] — 1
r3 ol
I : f®) =8 ||[O}—{a.b|—[1.2} =[O
------- number of automorphism
to match / of Tﬁxinag :I?e :::Et :
f@=0][0}——{a} {1—{eo /
/ current match m‘?tChEd f() common /2
neighbor neighbor
&) +—>2>
N fi@=o]ol a1} @
flO) = O ||®—>a,b|—{1,3|>|®
@=0| — 1
\ \ Figure 4: An example of colorful template counting
S 4
S - —_ e e e e e e e e e e -

I Algorithm is tested on:

I The results showing that our algorithm has:

- million-nodes social contact graphs, random graphs
- various templates

- High precision in approximation.
- Good scaling to processor, and template size.
- Large speed up over sequential color-coding algorithm.

NDSSL

Network Dynamics and
Simulation Science Laboratory

IVirginiaTech

ol
L]
"

VIRGINIA
BIOINFORMATICS
INSTITUTE

AT VIRGINIA TECH

Results

———————————————————————————— =
-~ > — oy ~
’ N
/ N\
,/\/ Running Time \\
; The total running time of ParSE can be bounded by: \

———————@__—

runnning time (min)

¢ Here P is the number of partitions, Q is the number of processors, k’ is
max(|T,|, (|T,]). And we suppose rP/Q < k*.

We perform the experiments using the following graphs and templates:

I
NRV

v’ App

error

v Speed up over Huffner’s Sequential Color-coding

v" Time Cost of Various Steps of ParSE

v" Scaling of ParSE

90

85

80

65

60

Synthetic Social Contact 151,783
Networks Miami 2,092,147 50
GNP50 50,000 20
Random G(n,p) graph
GNP100 100,000 20
Figure 5: Datasets used in the experiment.
| |
: Ti Vi V- T: Ti \/ :"L-"r 1. T \i | Vr T
Ty T v—r—v |
.,’O—,—.—/‘. | | |
| | | |
T" Tﬁ T}' TS

0.0014

0.0012 r

0.001 r

0.0008

0.0006 r

0.0004 r

0.0002 r

0

Figure 7: Error for counting T, on GNP100, T, on GNP100, and T, on NRV, from left to right.

roximation Quality

k 0o n ./ /
O (E’ 1631/6 <§Ak + (n+m)k*F))

Experiments

Number of Nodes Average Degree
164

Tq Tio Pe

Figure 6: Templates used in the experiment.

0.3 0.0016 ——

025 | 0.0014

0.0012 r

02 f
0.001

0.15 | 0.0008 |-

0.0004 r

0.05 r
0.0002 r

0

0o 2

running time (sec)

running time (min)

0

0 2 4 6 8 10 12 14 16 18 20

of iterations

0o 2 4 6 § 10 12 14 16 18 20
of iterations

4 6 8§ 10 12 14 16 18 20
of iterations

100 =

T T 1400 T T T T
PARSE PARSE
HF 1200 - HF
80 F)

1000 |

60 r 800 |

10+ 600 |

running time (sec)

400 r

20 r
200 r

0 1 1 1 1 |
20 40 60 80 100
of processors

O 1 1 1 I T
160 20 40 60 80 100

of processors

120 140 120 140 160

Figure 8: Running time for T, and P,, conducted on GNP50.

45 600

Initialization ——— Initialization ———
40 - Partition Partition
Counting - 500 g Counting e
35 r Finalization - &~ 7 _ Finalization &~
30 o Ee T é 400
25 + z
= 300
20 r EJ
15 E 200 f
et
10 +
LOD B oo o o oo Th
5 Sieraasunaesga. - —
0 | 1 | | | | I | 0

100 120 140 160 180 200 220 240

of processors

80 100 120 140 160 180

of processors

200 220 240 80

Figure 9: Time usage on various steps for T, and T, on NRV.

12.5 700

115 | 600 r

500 r
10.5 |
400

300 ¢

runnning time (min)

runnning time (min)

200 r

100

150

200

1 0 1 h 1 1
350 401 T6 T7 T8 T9

template size

250 300

of processors

1 1 3 1
250 300 350 400 200

of processors

150 T10

Figure 10: Strong and weak scaling on Miami. Figure 11: Time VS. Template on NRV /

This work has been partially supported by NSF Nets Grant CNS-0626964, NSF HSD Grant SES-0729441, NIH MIDAS project 2U01GMO070694-7, NSF PetaApps Grant OCI-0904844, DTRA R&D Grant
HDTRA1-0901-0017, DTRA CNIMS Grant HDTRA1-07-C-0113, NSF NETS CNS-0831633, NSF CAREER 0845700, DHS 4112-31805, DOE DE-SC0003957 and NIH/CDC 1P01CD000284-01.

