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The Problem

The problem is to count the number of non-induced subgraphs of an
undirected graph G(V, E), which are isomorphic to a given template T(VT , ET),
as shown in Fig. 1.
• non-induced subgraph: A subgraph H(V′, E′) which is isomorphic to the
template T (there is a bijection f: VT →V′ such that if (u, v) ∈ ET then (f(u),
f(v)) ∈ E′);
• induced subgraph: (u, v) ∈ ET i.f.f. (f(u), f(v)) ∈ E′).

Figure 1: Non-induced and induced occurrences of the template, in which H1 is 
both an induced and non-induced subgraph, and H2 is only a non-induced subgraph.

Color Coding Technique

Color-coding is an approximating algorithm to estimate the subgraph
embeddings emb(T,G) for a given template T and graph G, by counting the
colorful embeddings C. All the vertices in a “colorful” embedding has distinct
color. The procedure of color coding is briefly given below:

1. For i from 1 to N=O[(ek ∙ log 1/δ)/ε2] perform the following steps, such 
that the approximation satisfies: 

Pr[|Z - emb(T,G)|> ε∙emb(T,G)]≤ δ

(Here Z is the estimated number of embeddings. k is the template size, ε
and δ are parameters to control the error.)

a) Color each vertex of G uniformly at random with a color from {1,...,k}.
b) Count Xi, the “colorful” embeddings of T in G.
2. Partition the N samples above into O(log 1/δ) sets, and let Yj be the 

average of the j set. Output the median C of (Y1,…,Yt). 
3. Since the possibility that an embedding to be colorful is k!/kk, the number 

of actual embeddings can be estimated as Z = C∙ kk/k!. 

ParSE

 Overview of ParSE
The high-level peudo-code of ParSE is given below:

Figure 2: Illustration of the dynamic programming step of color coding. Template T is
partitioned into two subgraphs T1 and T2, with roots 2 and 3, respectively. We have C(g, 2, T1, S1

= {black, red}) = 2 and C(f, 3, T2, S2 = {brown, blue, green}) = 2. So the colorful embeddings of T
located at edge (g, f) is C(g, 2, T1, S1)C(f, 3, T2, S2) = 4.

ParSE deals with the template which can be split into two sub-templates by a
“cut-edge” (u, v). We let u and v to be the roots of the two sub-templates T1 and
T2. We first count the number of sub-template embeddings rooted from each
vertex w in the graph. Then we will aggregate the sub-template countings to
obtain the number of template embeddings in the graph. In the following we
use C(w, u, Ti, Si) to denote the number of colorful embeddings of sub-template
Ti with root u lying on w, specifying the color set Si . Fig. 2 is an example.

Figure 3: A schematic description of ParSE

 Cover-based Graph Partitioning
Several notations:
• Gp(Vp, Ep): Graph partition.
• Nr(v): Nr(v) = {u : d(u, v) ≤ r}, where d(u, v) is the distance between u and v.
• core(Gp): core(Gp) = {v : Nr(v) ⊂ Vp}

 G is partitioned to a number of Gp s.t.:

We let r equal to the radius of the Ti, so that the counting of the sub-template
rooted from each vertex in core(Gp) can be done locally in Gp.

 Template Enumeration
Goal: The process of counting the number of colorful sub-template embeddings
rooted from each vertex v ∈ core(Gp), i.e., C(v, ρ(Ti), Ti, Si), is shown in Fig. 4.

Running Time
The total running time of ParSE can be bounded by:

 Here P is the number of partitions, Q is the number of processors, k’ is
max(|T1|, (|T2|). And we suppose rP/Q < kk’.

Experiments

We perform the experiments using the following graphs and templates:

Figure 5: Datasets used in the experiment. 

Figure 6: Templates used in the experiment.

 Approximation Quality

Figure 7: Error for counting T4 on GNP100, T6 on GNP100, and T4 on NRV, from left to right.

 Speed up over Huffner’s Sequential Color-coding

Figure 8: Running time for T4 and P6, conducted on GNP50.

 Time Cost of Various Steps of ParSE

Figure 9: Time usage on various steps for T4 and T6, on NRV.

 Scaling of ParSE

Figure 4: An example of colorful template counting

1. Partition G(V, E) and assign processors.
2. Partition T into T1 and T2, let ρ(Ti) denote the root of Ti

3. Assign each node v in V a random color from {1,...,k}.
4. For each processor q and each partition Gp assigned to it, do
5. For each node v in core(Gp), each set Si ⊂ {1,...,k}, |Si| = |Ti|, i = 1, 2, do
6. Compute C(v, ρ(Ti), Ti, Si)
7. For each edge e=(u,v) ∈ E, do
8. Compute C(e) = ∑S1,S2

C(u, ρ(T1), T1, S1) C(v, ρ(T2), T2, S2)
9. + C(v, ρ(T1), T1, S1) C(u, ρ(T2), T2, S2)
10. where the sum is over all S1∪S2 = {1,...,k}.
11. X = ∑e C(e)/β,
12. Repeat line 3–11 until the average of X reaches the precision requirement.

 Here β is the number of cut-edges in T, for which the template is isomorphic
to itself.

Table 1: A high level description of ParSE

Motivation & Challenges
Subgraph/template counting has been widely applied in many areas, say
biochemistry, neurobiology, ecology and engineering, e.g.:

- Motif counting in protein-protein network
- Cascade frequency in blog/posts network
- Information cascades in recommendation network

Challenges in subgraph counting:
- Running time is exponential in the template size.
- Parallel implementation is difficult, due to the backtracking process in

the subgraph counting.
- Previous work are limited in graphs with thousands of nodes, due to

the high computational cost and memory usage.

Our Approach
We propose a parallel algorithm called ParSE, to estimate the number of
occurrences of a template in very large graphs using color-coding and graph
partitioning.
Features:

- Can handle graphs with millions of nodes.
- Deal with more generalized and larger templates.
- Estimation error is controllable.

Basic steps of ParSE:
- Partition the graph, as well as split the template.
- Use color coding to count the number of sub-template embeddings in

each partition.
- Calculate the number of template embeddings in the whole graph, by

aggregating the sub-templates’ countings.

Results
Algorithm is tested on:

- million-nodes social contact graphs, random graphs 
- various templates

The results showing that our algorithm has: 
- High precision in approximation.
- Good scaling to processor, and template size.
- Large speed up over sequential color-coding algorithm.

Summary

Figure 10: Strong and weak scaling on Miami.            Figure 11: Time VS. Template on NRV

Graph Number of Nodes Average Degree

Synthetic  Social Contact 
Networks

NRV 151,783 164

Miami 2,092,147 50

Random G(n,p) graph
GNP50 50,000 20

GNP100 100,000 20
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