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| Motivation & Challenges |
I Subgraph/template counting has been widely applied in many areas, say |
Ibiochemistry, neurobiology, ecology and engineering, e.g.: I
| - Motif counting in protein-protein network

: - Cascade frequency in blog/posts network

: - Information cascades in recommendation network

' Challenges in subgraph counting:
| - Running time is exponential in the template size.
| - Parallel implementation is difficult, due to the backtracking process in |

:the subgraph counting. I

\ - Previous work are limited in graphs with thousands of nodes, due tol

Ithe high computational cost and memory usage. l
I
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The Problem

The problem is to count the number of non-induced subgraphs of an
undirected graph G(V, E), which are isomorphic to a given template T(V, E;),
as shown in Fig. 1.

* non-induced subgraph: A subgraph H(V', E') which is isomorphic to the
template T (there is a bijection f: V; =V’ such that if (u, v) € E; then (f(u),
fv)) e EY);

* induced subgraph: (u, v) € E; LLf. (flu), f{v)) € E').

Figure 1: Non-induced and induced occurrences of the template, in which H;, is
both an induced and non-induced subgraph, and H, is only a non-induced subgraph.

Color Coding Technique

Color-coding is an approximating algorithm to estimate the subgraph
embeddings emb(T,G) for a given template T and graph G, by counting the
colorful embeddings C. All the vertices in a “colorful” embedding has distinct
color. The procedure of color coding is briefly given below:

1. Forifrom 1 to N=0[(e*-log 1/6)/€?] perform the following steps, such
that the approximation satisfies:

Pr[|Z - emb(T,G)|> e:emb(T,G)]< 6

(Here Z is the estimated number of embeddings. k is the template size, €

and 6 are parameters to control the error.)

Color each vertex of G uniformly at random with a color from {1,...,k}.

Count X, the “colorful” embeddings of T in G.

2. Partition the N samples above into O(log 1/9) sets, and let Y; be the
average of the j set. Output the median C of (Y,...,Y,).

3. Since the possibility that an embedding to be colorful is k//k*, the number
of actual embeddings can be estimated as Z = C- k*/k!.

ParSE

ParSE deals with the template which can be split into two sub-templates by a
“cut-edge” (u, v). We let u and v to be the roots of the two sub-templates T, and
T,. We first count the number of sub-template embeddings rooted from each
vertex w in the graph. Then we will aggregate the sub-template countings to
obtain the number of template embeddings in the graph. In the following we
use C(w, u, T, S;) to denote the number of colorful embeddings of sub-template
T, with root u lying on w, specifying the color set S, . Fig. 2 is an example.

Figure 2: Illustration of the dynamic programming step of color coding. Template T is
partitioned into two subgraphs T, and T,, with roots 2 and 3, respectively. We have C(g, 2, T;, S;
= {black, red}) = 2 and C(f, 3, T,, S, = {brown, blue, green}) = 2. So the colorful embeddings of T
located at edge (g, f) is C(g, 2, T;, S;)C(f, 3, T,, S,) = 4.

| Features:
: - Can handle graphs with millions of nodes.
: - Deal with more generalized and larger templates.

Summary

Our Approach
I'We propose a parallel algorithm called ParSE, to estimate the number of I
loccurrences of a template in very large graphs using color-coding and graph I
I partitioning.

I Basic steps of ParSE:

- Estimation error is controllable.

- Partition the graph, as well as split the template.
- Use color coding to count the number of sub-template embeddings in|
each partition.
- Calculate the number of template embeddings in the whole graph, by |

I aggregating the sub-templates’ countings.
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1 11. X =¥,C(e)/B,

1 12. Repeat line 3-11 until the average of X reaches the precision requirement.
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to itself.

Partition G(V, E) and assign processors.
Partition T into T, and T),, let p(T,) denote the root of T;
Assign each node vin Varandom color from {1,...,k}.
For each processor q and each partition G, assigned to it, do
For each node vin core(G,), each set S, c {1,...k}, |S;| = [T}, i1 =1, 2, do
Compute C(v, p(T)), T, S;)
For each edge e=(u,v) € E, do
Compute C(e) = Y5, 5, C(u, p(T1), T1, S1) C(v, p(T2), T, S5)
+C(v, p(T,), Ty, S1) C(u, p(T7), T, S3)
where the sum is over all S,US,={1,...,.k}.

Table 1: A high level description of ParSE
¢ Here f is the number of cut-edges in T, for which the template is isomorphic
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Figure 3: A schematic description of ParSE

v’ Cover-based Graph Partitioning
Several notations:

* G,(V, E,): Graph partition.
*N(v): N(v) ={u:d(u,v) <r}, where d(u, v) is the distance between u and v.
* core(G,): core(G,) ={v:N,(v) C V}

** G is partitioned to a number of G, s.t.:

i) | core(Gy)

1<p<P

v

it) Vp1 # pa, core(G,,) Ncore(G,,) = ¢

“* We let r equal to the radius of the T, so that the counting of the sub-template
rooted from each vertex in core(G,) can be done locally in G,,.

v' Template Enumeration
Goal: The process of counting the number of colorful sub-template embeddings
rooted from each vertex v € core(G,), i.e,, C(v, p(T}), T}, S;), is shown in Fig. 4.
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I Algorithm is tested on:

I The results showing that our algorithm has:

- million-nodes social contact graphs, random graphs
- various templates

- High precision in approximation.
- Good scaling to processor, and template size.
- Large speed up over sequential color-coding algorithm.
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; The total running time of ParSE can be bounded by: \
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runnning time (min)

¢ Here P is the number of partitions, Q is the number of processors, k’ is
max(|T,|, (|T,]). And we suppose rP/Q < k*.

We perform the experiments using the following graphs and templates:

I
NRV

v’ App

error

v Speed up over Huffner’s Sequential Color-coding

v" Time Cost of Various Steps of ParSE

v" Scaling of ParSE
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Figure 5: Datasets used in the experiment.
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Figure 7: Error for counting T, on GNP100, T, on GNP100, and T, on NRV, from left to right.
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Figure 6: Templates used in the experiment.
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Figure 8: Running time for T, and P,, conducted on GNP50.
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Figure 9: Time usage on various steps for T, and T, on NRV.
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Figure 10: Strong and weak scaling on Miami. Figure 11: Time VS. Template on NRV /
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