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Abstract—Many real-world systems and networks are modeled
and analyzed using various random graph models. These models
must incorporate relevant properties such as degree distribution
and clustering coefficient. Many models, such as the Chung-Lu
(CL), stochastic Kronecker, stochastic block model (SBM), and
block two–level Erdős-Rényi (BTER) models have been devised
to capture those properties. However, the generative algorithms
for these models are mostly sequential and take prohibitively
long time to generate large-scale graphs. In this paper, we
present a novel time and space efficient algorithmic method to
generate random graphs using CL, BTER, and SBM models.
First, we present an efficient sequential algorithm and an efficient
distributed-memory parallel algorithm for the CL model. Our
sequential algorithm takes O(m) time and O(Λ) space, where
m and Λ are the number of edges and distinct degrees, and
our parallel algorithm takes O

(
m
P

+ Λ + P
)

time w.h.p. and
O(Λ) space using P processors. These algorithms are almost
time optimal since any sequential and parallel algorithms need
at least Ω(m) and Ω(m

P
) time, respectively. Our algorithms

outperform the best known previous algorithms by a significant
margin in terms of both time and space. Experimental results
on various large-scale networks show that both of our sequential
and parallel algorithms require 400–15000 times less memory
than the existing sequential and parallel algorithms, respectively,
making our algorithms suitable for generating very large-scale
networks. Moreover, both of our algorithms are about 3–4
times faster than the existing sequential and parallel algorithms.
Finally, we show how our algorithmic method also leads to
efficient parallel and sequential algorithms for the SBM and
BTER models.

Index Terms—network theory, random graphs, parallel pro-
gramming, distributed computing

I. INTRODUCTION

The advancements of hardware technologies, software, and
algorithms have enabled the detailed study of complex sys-
tems. These systems, such as the Internet [1, 2], biological net-
works [3], and social networks [4–6] are sometimes modeled
by random graphs for the purpose of studying their behavior.
Degree distribution is one of the most prominent features
of these networks. Some well-understood graph models have
been developed to capture the diversity of the degree distri-
butions such as Erdős–Rényi [7], stochastic block models [8],
small-world [9], Barabási–Albert [10, 11], exponential random
graph [12, 13], recursive matrix [14], stochastic Kronecker
graph [15, 16], and HOT [17] models.

Each of these models has been developed considering some
aspect of the networks. The Erdős–Rényi model [7] was

the first attempt to perform a systematic study of networks.
The stochastic block model [8] has been studied for a long
time to study the community structures found in many real–
world networks. The small-world model [9] was proposed to
capture the small-world property found in many real–world
systems. The Barabási–Albert model [10] famously captured
the preferential attachment and power–law degree distribution
properties. However, these models generate graphs with a
specific type of degree distributions. The Chung-Lu model
[18, 19] can generate a random graph with a given sequence
of expected degrees and is capable of generating networks
from almost any real-world degree distribution. Another model
called the block two–level Erdős–Rényi (BTER) [20, 21] had
been developed recently to study community structure, which
can capture both degree distribution and clustering coefficients.
A generalization of BTER was proposed in [22]. A joint
degree distribution model [23] was also presented to study
the assortativity of real–world networks.

As the complex systems are growing larger and larger, it re-
quires the generation of massive random networks efficiently.
Analyzing a very large complex system using a smaller model
may not produce accurate results. As the interactions in a
larger network lead to complex collective behavior [24], a
smaller network may not exhibit the same behavior, even if
both networks are generated using the same model. In [24], by
experimental analysis, it was shown that the structure of larger
networks is fundamentally different from small networks, and
many patterns emerge only in massive datasets.

Demand for large random graphs necessitates efficient algo-
rithms, in terms of both time and space requirements, to gener-
ate such graphs. However, even efficient sequential algorithms
for generating such graphs were nonexistent until recently.
Although recently some efficient sequential algorithms have
been developed [14, 15, 25, 26], these algorithms can generate
graphs with only millions of vertices in a reasonable time.
Generating graphs with billions of vertices can take an unde-
sirably long time. Further, a large memory requirement may
even prohibit the generations of such large graphs. As a result,
distributed-memory parallel algorithms are now desirable in
dealing with these problems.

There have been some efforts to deal with massive networks.
In one such effort, the Graph500 group [27] choose the SKG
model in the supercomputer benchmark due to its simpler
parallel implementation. The CL model is very similar to theSC16; Salt Lake City, Utah, USA; November 2016
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SKG model [28], which could replace the SKG model due
to similar properties and ability to generate a wider range of
degree distributions. In this paper, our main focus is on the CL
model. The previous best known sequential algorithm for the
CL model is given in [26] which takes O (m+ n) expected
time and O(n) space, where m and n are the number of edges
and nodes in the graph. Based on this sequential algorithm,
a distributed-memory parallel algorithm is presented in [29],
which is the only known parallel algorithm for the CL model.
This parallel algorithm takes O

(
m+n
P + P

)
time with high

probability (w.h.p.) and O(n) space using P processors.
In this paper, we present a novel method (called the DG

method), based on grouping the vertices by their degrees,
that leads to space and time efficient algorithms for several
random graph models, including the CL model, with rigorous
guarantees. Our main contributions are summarized below.
1. Space efficiency: Both of our sequential and parallel algo-
rithms for the CL model require only O(Λ) space, where
Λ is the number of distinct degrees, comparing to O(n)
space required by the previous algorithms. In the real-world
networks, Λ is significantly smaller than n. Experimental
results on a wide range of large-scale networks show that
our algorithms require 400–15000 times less memory than
the previous algorithms. This space efficiency makes our
algorithms suitable for generating very large-scale graphs.
2. Time efficiency: Our algorithms are more efficient in terms
of runtime also. We prove that our sequential and parallel
algorithms have running time O(m) and O

(
m
P + Λ + P

)
,

respectively, with high probability (this is discussed formally
later), where P denotes the number of processors. In contrast
to earlier algorithms, the associated constants and overheads
are significantly smaller for our algorithms. Experimental
results show that our algorithms are about 3–4 times faster
than the previous algorithms. Moreover, our parallel algorithm
achieves an almost optimal load balancing using an efficient
load balancing technique and scales very well to a large
number of processors. Our parallel algorithm can generate
a network with 250 billion edges in just 12 seconds using
1024 processors.
3. Extensions to other models: Finally, we show how our al-
gorithmic method extends naturally to the BTER and SBM
models and leads to significantly improved sequential and par-
allel algorithms. Experimental results show that after applying
the DG method, the runtime for the BTER model improves by
a factor of 5–80 for various types and sizes of networks.

The rest of the paper is organized as follows. In Section II,
we describe the problem and the DG method. In Section III, we
present the efficient parallel algorithm along with the optimal
load balancing technique. In Section IV and V, we present the
algorithms for BTER and SBM models, respectively, applying
the DG method. Finally, we conclude in Section VI.

II. GENERATING RANDOM GRAPHS WITH A DESIRED
DEGREE DISTRIBUTION

Many models have been proposed to generate random
graphs from a desired degree distribution or sequence. The

configuration model [30, 31] is one of the first models that
generates a graph with a given degree sequence. This model
can generate every possible graph with the given degree
sequence with equal probability [31]. However, it can produce
graphs with some undesirable properties such as parallel edges
and self-loops that are unacceptable for many applications.
The Chung–Lu (CL) model [18, 19] is another widely used
model that generates random graphs from a given sequence of
expected degrees by avoiding these undesirable properties.

A. The Chung–Lu Model

Assume that we are given n vertices labeled as 1, 2, . . . , n
and a sequence of expected degrees W = 〈w1, w2, . . . , wn〉
such that a vertex u has an expected degree of wu. In the
Chung–Lu (CL) model, any pair of vertices u and v are
connected by an edge with the probability pu,v = wuwv

S , where
S =

∑
u wu (assuming maxu w

2
u ≤ S, we have pu,v ≤ 1

for all u and v) [18, 19]. For simple graphs without self-
loops, i.e., u 6= v, the expected degree of a vertex u is∑
v
wuwv
S = wu−w2

u

S , which converges to wu for large graphs.
A naı̈ve algorithm for the CL model is: individually consider

each of the n(n−1)
2 possible pairs of vertices {u, v} and create

edge (u, v) with probability pu,v . It requires O
(
n2
)

time
and O(n) space. Pinar et al. [28] presented a sampling-based
algorithm (henceforth referred to as the PSK algorithm), where
each of the m edge is created by selecting two end points
randomly and independently using the degree distribution as
the probability distribution. Each end point is sampled in
constant time using O(m) memory. This algorithm requires
O(m) time and O(m) space. Although this algorithm is
simple, it does not eliminate self-loops and parallel edges and
requires large memory.

Miller and Hagberg presented an O(m+n) time algorithm
(referred to as the MH algorithm) that avoids self-loops or
parallel edges and requires O(n) memory [26]. They used an
accept–reject sampling along with the edge skipping technique
introduced in [25] for the Erdős–Rényi model. Although this
is the fastest known sequential algorithm for the CL model, it
has some limitations. It requires the sequence W be sorted in a
non-increasing order leading to some computational overhead.
Additionally, due to the rejection sampling, some potential
edges are rejected. The number of such edges has been shown
to be O(m), which also incurs significant computational
overhead, especially for skewed degree distributions found in
most real–world graphs [26]. Moreover, the MH algorithm
needs to generate two random numbers per edge (in contrast
to one random number per edge in our algorithm).

We present an algorithm for the CL model using a novel
method, called the DG algorithm, which takes O(m) time and
O(Λ) space, where Λ is the number of distinct values in W .
A comparison of the algorithms for the CL model is given in
Table I. Notice that Λ < n, and in most cases, Λ is very small
compared to n. Thus, our algorithm requires significantly less
memory comparing to the previous algorithms, making our
algorithm suitable for generating large–scale graphs. Further-
more, although the time complexity is similar, lower overhead



of our algorithm leads to smaller constant associated with the
time complexity and makes our algorithm approximately three
times faster than the MH algorithm.

TABLE I: A comparison of the algorithms for the CL model

Algorithm Runtime Space

Naı̈ve O(n2) O(n)

PSK [28] O(m) O(m)

MH [26] O(m + n) O(n)

DG (this paper) O(m) O(Λ)

B. DG: A New Time and Memory Efficient Algorithm
In this section, we present DG, a new time and memory

efficient algorithm for the CL model. We are given a se-
quence of n expected degrees W = {w1, w2, . . . wn}. Let
D = {d1, d2, . . . , dΛ} be the set of all Λ distinct expected
degrees in W and ni be the number of vertices with expected
degree di. Then {ni}1≤i≤Λ represents the degree distribution.
The number of vertices n =

∑Λ
i=1 ni, and the sum of the

degrees S =
∑Λ
i=1(dini). DG takes either a sequence of

degrees or a degree distribution as input. If a sequence is
the input, it is converted into a degree distribution on the fly,
without storing the sequence in the memory. Only the degree
distribution is stored in the memory, and it takes O(Λ) space.

The vertices are grouped by their expected degrees. Let Vi =
{u : wu = di}1≤u≤n be the group of vertices with expected
degree di, and ni = |Vi| be the number of vertices in Vi for
1 ≤ i ≤ Λ. Now, there can be two types of edges: i) Intra
edges: where both end-points of an edge (u, v) belong to the
same group, i.e., u, v ∈ Vi for some i, and ii) Inter edges:
where the two end-points belong to two different groups, i.e.,
u ∈ Vi and v ∈ Vj with i 6= j.
Creating Intra Edges. For any u, v ∈ Vi, the edge (u, v)

is created with probability pu,v = wuwv
S =

d2i
S , since

wu = wv = di. Notice that for all pairs of u, v ∈ Vi, the
probabilities pu,v are equal. Thus generating the intra edges
on Vi is equivalent to generating an Erdős-Rényi (ER) random
graph G(n, p) with n = ni = |Vi| and p =

d2i
S . The ER model

G(n, p) generates a random graph with n vertices where each
of n(n−1)

2 possible potential edges is selected and added to the
generated graph with probability p. We generate the intra edges
on Vi for all i by generating ER random graphs G(ni,

d2i
S ).

A Naı̈ve algorithm to generate random graph G(n, p) is: for
each of the n(n−1)

2 potential edges, toss a biased coin and
select the edge with probability p. This Naı̈ve algorithm takes
O(n2) time. An efficient algorithm for the ER model is given
in [25], which runs in O(m) time. This algorithm uses a
technique called edge skipping technique. From a sequence of
all potential edges, it selects a subset of the edges using the
skipping technique. We also use this edge skipping technique
to generate the inter edges. Below we briefly describe the edge
skipping technique (see [25] for details).
Edge Skipping Technique. Consider a sequence of potential
edges as shown in Fig. 1. The goal is to select a subset of the

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

` = 1 ` = 2 ` = 0 ` = 3

Fig. 1: Selecting edges from a sequence of potential edges. The black
circles represents the selected edges.

edges such that each potential edge is selected with probability
p. In Fig. 1, each circle represents a potential edge, and a
black circle represents a selected edge. Notice that before
selecting an edge, a sequence of zero or more potential edges
is discarded (white circles), e.g., in Fig. 1, edge e1 is discarded
and e2 is selected. Then e3 and e4 are discarded, and e5 is
selected, and so on. Let ` be a random variable, which denotes
the number of consecutive edges discarded before selecting the
next edge. Then the probability that ` edges are discarded is

Pr{` edges are discarded} = (1− p)`p. (1)

Notice that ` is a geometric random variable. A geometric
random number can be generated in constant time from a
uniform random number r ∈ (0, 1] using the inverse transform
method [25], which gives

` =

⌊
log r

log (1− p)

⌋
(2)

Now to generate the intra edges, i.e., ER random graph
G(ni,

d2i
S ), we apply the edge skipping technique on a se-

quence of the potential edges. To save memory space, we
do not create any explicit sequence of the edges. Instead,
the edges are represented by a set of consecutive integers
1, 2, . . . ,M , where M =

(|Vi|
2

)
=
(
ni
2

)
, following a lexico-

graphic order of the edges as shown in Fig. 2(a) and 2(b).
Now we select a subset of the integers from 1, 2, . . . ,M by
applying the skipping technique with the probability p =

d2i
S

as follows. Let x be the last selected edge (initially x = 0).
Then the skip length ` is computed using the Equation 2. The
next selected edge is given by x ← x + ` + 1. The selected
edge number x is converted into an edge using the equations
shown in Fig. 2(c). This process is repeated until x ≥M .

v4

v0

v2v3

v1

Vi

p =
d2

i
S

(a) Intra edges

(v1, v0)
1

2 3

4 5 6

7 8 9 10

(v2, v0) (v2, v1)

(v3, v0) (v3, v1) (v3, v2)

(v4, v0) (v4, v1) (v4, v2) (v4, v3)
v4

v1

v2

v3

v1 v2 v3v0

(b) The sequence of possible edges

k =
⌈
−1+
√

1+8x
2

⌉

l = x − (k2
) − 1

x ≡ (vk, vl)

(c) Vertex pair conversion

Fig. 2: Group Vi using G(n, p) model with ni = 5 and p =
d2i
S

.

Creating Inter Edges. For any u ∈ Vi, v ∈ Vj , the edge (u, v)

is created with probability pu,v =
didj
S . Note that for all pairs

of u ∈ Vi, v ∈ Vj , the probabilities pu,v are equal. Therefore,
generating the inter edges between Vi and Vj is equivalent
to generating a random bipartite graph [32] with ni and nj
vertices and p =

didj
S edge probability (see Fig. 3(a)).
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p = did j

S

(a) Intra edges

(u0, v0)
1 2 3 4

5 6 7 8
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(u1, v0) (u1, v1) (u1, v2) (u1, v3)

u0

u1
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(b) The sequence of possible edges

k =
⌊

x−1
n j

⌋

l = (x − 1) mod n j

x ≡ (uk, vl)

(c) Vertex pair conversion

Fig. 3: Inter edges between Vi and Vj (ni = 4 and nj = 2).

The edge skipping technique can also be applied to generate
the inter edges using the random bipartite model (Fig. 3(a)).
In this case, the potential edges are represented by consecutive
integers 1, 2, . . . ,M , where M = |Vi||Vj | = ninj (Fig. 3(b)).
Next, the edge skipping technique is applied on this sequence
with probability p =

didj
S . The selected numbers x are

converted to the edges using the equations shown in Fig. 3(c).
Vertex Labels. Each vertex is identified by a unique integer
label from 1 to n as follows. Let λi be the label of the first
vertex of a group Vi, where λ1 = 1 and λi = 1 +

∑i−1
j=1 nj

for i > 1. Then, the vertices in Vi are labeled by the integers
from λi to λi+1−1. Note that we only store the starting label
for each group, which requires O(Λ) memory.
Implementation. The pseudocode of our algorithm is pre-
sented in Algorithms 1 and 2. The procedure EDGE-SKIPPING
creates edges using the edge skipping technique. It takes two
group indices i, j, probability p, and the start and end of a
sequence of potential edges as input. Using a random number
r ∈ (0, 1], the skip length ` is computed in line 5. The next
selected edge x is computed in line 5 and converted to edge
(u, v) in line 8 (intra edges) and line 10 (inter edges). The
global labels of the endpoints u and v are denoted by λi + u
and λj + v, respectively.

Algorithm 1 Generating edges using edge skipping

1: procedure EDGE-SKIPPING(i, j, p, start, end)
2: x← start− 1
3: while x < end do
4: r ← a uniform random number in [0, 1)

5: `←
⌊

log r
log (1−p)

⌋
; x← x+ `+ 1

6: if x ≤ end then
7: if i = j then
8: u←

⌈
−1+

√
1+8x

2

⌉
; v ← x−

(
u
2

)
− 1

9: else
10: u←

⌊
x−1
nj

⌋
; v ← (x− 1) mod nj

11: Output edge (λi + u, λj + v)

The procedure DG-CL (Algorithm 2) generates edges for
all pairs of groups using the procedure EDGE-SKIPPING.
Lines 2 to 4 compute the starting label of each group. The
sum of expected degrees S is computed in line 5. Lines 6
and 7 iterate over all pairs of groups {{Vi, Vj} : 1 ≤
i ≤ j ≤ Λ}. For any pair {Vi, Vj}, if i = j, intra edges
for group Vi are created by calling the procedure EDGE-
SKIPPING(i, i, d

2
i

S , 1,
(
ni
2

)
) (line 9). Otherwise, inter edges

are created between groups Vi and Vj by calling EDGE-
SKIPPING(i, j, didjS , 1, ninj) (line 11).

Algorithm 2 The DG algorithm for the CL model

1: procedure DG-CL((D, {ni}i∈D))
2: λ1 ← 1
3: for i = 2 to Λ do . Starting Labels

4: λi ← λi−1 + ni

5: S ←∑Λ
i=1 (ni × di)

6: for i = 1 to Λ do
7: for j = 1 to j do
8: if i = j then . Intra edges for Vi

9: EDGE-SKIPPING(i, i, d
2
i

S , 1,
(
ni
2

)
)

10: else . Inter edges between Vi and Vj

11: EDGE-SKIPPING(i, j, didjS , 1, ninj)

Space Complexity. For each group Vi, we only store di, ni,
and λi, leading to the space complexity of O(Λ). In contrast,
the MH algorithm requires storing the entire degree sequence
W in the memory leading to the space complexity of O(n).
Time Complexity. Computing the starting label of the groups
takes O(Λ) time. Computing the sum S also takes O(Λ)
time. The for loops in lines 6 and 7 iterate O(Λ2) times.
Each iteration calls the procedure EDGE–SKIPPING. The while
loop in line 3 of procedure EDGE–SKIPPING iterates once
per generated edge. If m edges are generated, the while
loop takes O(m) time in total. Therefore, the algorithm takes
O(Λ+Λ2+m)=O(m+Λ2) time.

When Λ2 < O(m), our algorithm is asymptotically as good
as the MH algorithm. In fact experimental results show that
our algorithm about 3∼4 times faster than the MH algorithm.
Note that the CL model is only applicable when w2

max < S,
where wmax is the maximum expected degree. For integral
expected degrees, we have Λ < wmax, i.e., Λ2 < S = O(m).
Therefore, whenever the CL model is applicable, our algorithm
has a runtime of O(m). Clearly, we will use the CL model
only when it is applicable. In fact, in most of the real–
world graphs Λ2 is significantly smaller than m as shown in
Table II. Even for power–law networks that have very skewed
degree distributions and few vertices with very high degrees,
the maximum degree is O( γ

√
n) where γ is the power–law

exponent [33]. Typical values of γ is between 2 and 3.

TABLE II: Number of distinct degrees in real–world graphs

Network Type n m Λ Λ2

m

Miami [34] Contact 2M 51M 398 0.003

Weblinks Real-world 276M 1B 14K 0.190

Twitter [5] Real-world 41M 1B 20K 0.207

Friendstar [6] Real-world 65M 2B 3K 0.005

UK-Union [35] Real-world 131M 4B 30K 0.201

Erdős-Rényi (ER) Synthetic 1M 200M 117 0.00007

Power-Law (PL) Synthetic 1B 249B 10K 0.0004

Experimental Evaluation. Now we experimentally evaluate



the performance of our algorithm against the MH algorithm
[26], which is the best known sequential algorithm, using both
real-world and synthetic networks. We extracted the degree
sequences of these networks, and then generated new graphs
from these degree sequences. Fig. 4 demonstrates the runtime
and memory required by the algorithms. We observe that our
DG algorithm is approximately 3 times faster than the MH
algorithm as we discussed before. A huge improvement made
by our DG algorithm is on the memory requirement, by a
factor of 440–3474 for the networks shown in Fig. 4. Thus,
the DG algorithm is more efficient in both time and space
requirements. Moreover, our DG algorithm leads to a better
parallel algorithm, which is presented in the next section.
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Fig. 4: Performance of the sequential algorithms

We also compare the performance of our algorithm against
the Graph500 generator (Version 2.1.4), one of the most
used random graph generators [27] for benchmarking HPC
systems. Generating a graph with 1B edges requires 650.46
seconds using the sequential Graph500 generator. In contrast,
our algorithm takes only 67.34 seconds. Further, the Graph500
generator requires Θ(m) space whereas our algorithm requires
Θ(Λ) space, where Λ � m. Moreover, to fit the degree
distribution of an existing real-world network, the probability
matrix of the Graph500 generator has to be determined using a
maximum likelihood based fitting algorithm (KronFit), which
can take a significant amount of time, and often the fit is not
perfect [16, 28]. Fitting the degree distribution of a real–world
network (75K vertices, 508K edges) requires approximately
45 minutes in KronFit [16]. Our algorithm requires only the
degree distribution that can be extracted in a few seconds.

III. PARALLELIZATION OF THE DG ALGORITHM

In this section, we present the parallelization of the DG
algorithm. We assume that the input degree distribution of the
graph is available for every processor. Let P be the number of
processors. Efficient parallelization of Algorithm 2 requires:
• Computing the starting id (λi) of each group Vi
• Computing the sum S in parallel
• Generating the edges using the P processors with good

load balancing
Each processor computes the starting id of each group in
O(Λ) time. The sum S is efficiently computed using a parallel
sum operation in O( Λ

P + logP ) time. We divide the work of
generating edges into many independent tasks. Let Ti,j be the
task of generating edges between groups Vi and Vj , where
di, dj ∈ D. Note that all the tasks are mutually independent,

i.e., for any 1 ≤ i, i′, j, j′ ≤ Λ such that i 6= i′ or j 6= j′, tasks
Ti,j and Ti′,j′ can be executed independently by two different
processors. Also, notice that when i = j, task Ti,i generates
intra edges, otherwise Ti,j produces inter edges. There is a
total of Λ and

(
Λ
2

)
tasks for intra and inter edges, respectively.

Let τ = Λ +
(

Λ
2

)
= Λ(Λ+1)

2 be the number of tasks. In the
next section, we describe how the τ tasks are executed by the
P processors such that the loads are well balanced.

A. Task Distribution and Load Balancing

To distribute the tasks with good load balancing, we need
an accurate estimation of the computational cost of each
task. Estimating costs and distributing tasks to get the best
load balancing are the most challenging parts of our parallel
algorithm. For the best speedup, estimation and distribution
must also be done in parallel that are non-trivial problems.
Computational Cost. Let ci,j be the computational cost of
executing task Ti,j . Assume that α unit of time is required to
initialize a task and β unit of time to generate an edge. Let
mi,j be the expected number of edges generated by task Ti,j .
Then the expected computation cost for Ti,j is

E[ci,j ] = α+ βmi,j =

{
α+ β ni(ni−1)

2
d2i
S , i = j

α+ βninj
didj
S , i 6= j.

(3)

Therefore, the total expected computational cost C is given by

C=
∑

1≤j≤i≤Λ

E[ci,j ]=
∑

1≤j≤i≤Λ

(α+ βmi,j)=ατ + βm (4)

where m is the expected number of generated edges. For the
optimal load balancing, the tasks need to be distributed in such
a way that each processor has a computational cost of Ĉ = C

P .
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Fig. 5: Relabeling the tasks. The red and blue texts represent the
original and new labels of the tasks respectively.

Task Relabeling. So far, we used two indices i, j for a
task Ti,j . To simplify the discussion and implementation, we
relabel the tasks from two indices to a single natural task
number. Let Qx be the new label of the task Ti,j where
x = i(i−1)

2 + j. Let Π be the set of tasks using the new labels,



i.e., Π = {Q1,Q2,Q3, . . . ,Qτ}. The relabeled task Qx can
be converted to the original label Ti,j using the functions:

i =

⌈−1 +
√

1 + 8x

2

⌉
and j = x− i(i− 1)

2
. (5)

Task relabeling is depicted visually in Fig. 5. Let cx be the
cost of the task Qx, i.e., cx = ci,j for the original task Ti,j .
Task Distribution. To generate the edges in parallel, first,
the set of tasks Π is divided into P disjoint subsets
Π0,Π1, . . . ,ΠP−1; i.e., Πk ⊂ Π, such that for any k 6=
l, Πk ∩ Πl = ∅ and

⋃
k Πk = Π. Each processor Pk

is assigned the subset Πk and executes the tasks {Qx ∈
Πk}. The computational cost of a processor Pk is given by
c(Pk) =

∑
Qx∈Πk

cx. We need to find the subsets Πk such
that each processor has almost equal cost, i.e., c(Pk) ≈ Ĉ.
Finding such subsets is a well-known problem called chains-
on-chains partitioning (CCP) problem [36–38]. For better
speedup the CCP problem has to be computed in parallel.
In [29], the authors presented an efficient O( τP + P ) time
distributed memory parallel algorithm, called the uniform cost
partitioning (UCP) for the CCP problem. Their algorithm
uses cumulative cost Cx =

∑x
i=1 cx for each task Qx for

distributing tasks. Let any subset Πk starts with the task Qqk
and ends with the task Qqk+1−1 where qk is called the lower
boundary of Πk. The lower boundary qk satisfies the following
condition: Cqk−1 < kĈ ≤ Cqk for 0 < k ≤ P − 1. Then
qk = arg min

x
(Cx ≥ iĈ), i.e., a task Qx is executed by the

processor Pk where k =
⌊
Cx
Ĉ

⌋
. However, a task in the UCP

algorithm is non–divisible, i.e., the entire task is assigned to a
processor. If some boundary tasks are very large, it can lead
to imbalanced loads. If we can break those tasks into arbitrary
smaller subtasks, we can achieve a fine-grained granularity
on load balancing. In fact, we can show a task Qx can be
divided into arbitrary smaller subtasks. As a result, we present
an extension of the UCP algorithm, called UCP–DIV that
achieves fine-grained load balancing by dividing the tasks.
Dividing Tasks. Using the edge-skipping technique, a task
repeatedly computes the skip lengths with a probability p
(using the geometric distribution) and generates edges from
a sequence of potential edges (see Fig. 6(a)). We can also
divide the sequence into two arbitrary disjoint sub-sequences
and apply the edge skipping technique on those sub-sequences
individually (see Fig. 6(b)), with the same result and effect.
Both of these two processes are stochastically equivalent due
to the memoryless property of the geometric random variable.

1 Me′ e′′

(a) Original sequence

1 k-1 k Me′ e′′

(b) Two sub–sequences

Fig. 6: Dividing a task into multiple sub–tasks

Consider two edges e′ and e′′ in Fig. 6(a). In the original
sequence, both e′ and e′′ are selected with probability p
regardless of their distance from the beginning edge of the

sequence. In other words, regardless where the sequence
begins, every edge is selected with probability p. That is,
we can arbitrarily break the sequence into two subsequences
at any edge k and use that as the beginning of the second
subsequence (Fig. 6(b)). Any edge e′′ ≥ k will still be selected
with probability p if the edge skipping technique is applied on
that subsequence. In fact, any sequence can be divided into any
number of subsequences.
Uniform Cost Partitioning with Task Division. Now, we
present the UCP–DIV algorithm. Similar to the original UCP
algorithm, we also find the lower boundary x of a partition
Πk such that Cx−1 < kĈ ≤ Cx. Instead of assigning the entire
boundary task Qx to processor Pk where k =

⌊
Cx
Ĉ

⌋
(as done

in the UCP algorithm), we break it into two or more subtasks
(see Fig. 7). Let Qx,s,t be a subtask of the task Qx with the
subsequence starting from edge number s to t. Note that the
subtask Qx,1,M represents the entire task Qx where M is the
number of potential edges in Qx.

Cx

Pk Pk+1
(k + 1)Ĉ (k + 2)ĈkĈ

1

Cx−1

(k+1)Ĉ−Cx−1 cx

(a)

Pk Pk+1 Pl
(k + 1)Ĉ lĈkĈ (l + 1)Ĉ

1

Cx−1 Cx

cx(k+1)Ĉ−Cx−1 lĈ − Cx−1

(b)

Fig. 7: Dividing the boundary tasks. The blue and green texts
represent the cost boundaries among the processors and the subtask
partitions within the task respectively.

The first part of the boundary task Qx is executed by Pk
where k =

⌊
Cx−1

Ĉ

⌋
. To make c(Pk) = Ĉ, we assign (k+1)Ĉ−

Cx−1 more loads to Pk. Therefore, we divide the task Qx into
a subtask Qx,1,t such that t =

⌊
(i+1)Ĉ−Cx−1

cx
M
⌋

(see Fig. 7).

Now, if the remaining part of the task Cx − (k + 1)Ĉ ≤ Ĉ
(see Fig. 7(a)), Pk+1 executes the last part of the task, i.e., the
subtask Qx,t+1,M is assigned to Pk+1. Otherwise, we divide
the remaining part of the task again (see Fig. 7(b)). Let Pl be
the processor that executes the last part of the task Qx where
l =

⌊
Cx
Ĉ

⌋
. Each processor from Pk+1 to Pl−1 executes Ĉ

amounts of loads, i.e., Pz is assigned with the subtask Qx,sz,tz
where sz =

⌊
zĈ−Cx−1

cx
M
⌋

+ 1 and tz =
⌊

(z+1)Ĉ−Cx−1

cx
M
⌋

for
z = (k+1), . . . (l−1) (see Fig. 7(b)). The last part of the task,
i.e., the subtask Qx,sl,M is assigned to the processor Pl where
sl =

⌊
Cx−lĈ
cx

M
⌋

+1. Thus, the algorithm leads to optimal load
balancing.

B. Parallel Implementation

Now, we present the implementation details of the parallel
DG algorithm for the CL model. First, we show the parallel
algorithm for the UCP–DIV method for task distribution. Then
we present the parallel DG algorithm for the CL model.
Parallel UCP–DIV Algorithm. The pseudocode of the par-
allel UCP–DIV algorithm is presented in Algorithm 3. The
procedure UCP–DIV computes the task boundaries using the
procedure FIND–BOUNDARIES. The algorithm assumes that



Algorithm 3 Finding task boundaries using UCP–DIV

1: procedure UCP–DIV()
2: k ← Processor Id
3: . Executed by processor Pk in parallel
4: FIND-BOUNDARIES(kτP + 1, (k+1)τ

P )
5: A← Receive Message 〈start, qk, s, t〉
6: B ← Receive Message 〈end, qk+1 − 1, s′, t′〉
7: return 〈A,B〉

8: procedure FIND-BOUNDARIES(b, e)
9: if b > e then return . No boundary

10: x← b+e+1
2 ;

11: M ← # of potential edges in Qx
12: l← Cx

Ĉ ; k ← Cx−1

Ĉ
13: if k 6= l then
14: t←

⌊
(k+1)Ĉ−Cx−1

cx
M
⌋

15: Send Message 〈start, x, 1, t〉 to Pk
16: for z ← k + 1 to l − 1 do
17: s←

⌊
zĈ−Cx−1

cx
M
⌋

+ 1; t←
⌊

(z+1)Ĉ−Cx−1

cx
M
⌋

18: Send Message 〈start, x, s, t〉 to Pz
19: Send Message 〈end, x, s, t〉 to Pz
20: s←

⌊
lĈ−Cx−1

cx
M
⌋

+ 1;
21: Send 〈end, x, s,M〉 to Pl
22: FIND-BOUNDARIES(b, x− 1)
23: FIND-BOUNDARIES(x+ 1, e)

the cumulative costs Cx and average cost per processor Ĉ are
already computed (discussed in the next section).

Each processor Pk executes the procedure UCP–DIV in-
parallel. Pk is responsible for finding the boundary tasks
among τ

P tasks from kτ
P + 1 to (k+1)τ

P . A boundary task is
a task Qx where bCx−1

Ĉ c 6= b
Cx
Ĉ c. The boundary tasks are

found using the procedure FIND–BOUNDARIES (line 4). The
procedure FIND–BOUNDARIES takes parameters b, e and finds
all the boundaries among the tasks from Qb to Qe using a
recursive divide and conquer based algorithm. Each boundary
task Qx is divided into subtasks and assigned to processors
as discussed earlier. Let Qx,s,t be such a subtask assigned
to processor Pz . A message 〈type, x, s, t〉 representing the
subtask Qx,s,t is sent to Pz (from Pk), where type, x, s, t
represents the type of subtask (either start or end), the task
number, the starting edge, and the ending edge of the task,
respectively. Note that each processor Pz receives two such
messages. The pair of the messages is returned as output
(line 7). The runtime of the algorithm is O

(
τ
P + P

)
in the

worst case as shown in Theorem 1.

Theorem 1. The parallel UCP–DIV algorithm to distribute τ
tasks into P processors runs in O

(
τ
P + P

)
time.

Proof. It is easy to see that for each processor Pk, the runtime
of the algorithm is dictated by the number of task boundaries
found in the range

[
kτ
P + 1, (k+1)τ

P

]
. Finding a boundary on

these τ
P tasks require O

(
log τ

P

)
time. If the range has η

Algorithm 4 Parallel DG Algorithm for the CL Model

1: procedure PDG–CL(D, {nk}k∈D)
2: k ← processor id
3: . Executed by processor Pk in parallel
4: In-Parallel: Compute S =

∑Λ
l=1 nldl

5: λ1 = 1
6: for l← 2 to Λ do
7: λl ← λl−1 + nl

8: for x← kτ
P + 1 to (k+1)τ

P do
9: Cx ← Cx−1 + cx

10: zk ← C (k+1)τ
P

11: In Parallel: C ←∑P−1
l=0 zl

12: Ĉ ← C
P

13: 〈A,B〉 ← UCP-DIV()
14: for Qx,s,t = A to B do
15: i =

⌈
−1+

√
1+8x

2

⌉
; j = x− i(i−1)

2

16: EDGE–SKIPPING(i, j, didjS , s, t)

boundaries, then it takes O
(
min

{
τ
P , η log τ

P

})
time. For each

subtask, exactly two messages are sent to corresponding pro-
cessors. There are at most P boundaries in

[
iτ
P + 1, (i+1)τ

P

]
.

Thus, in the worst case, a processor may need to send at
most 2P messages taking O(P ) time. Therefore, the to-
tal time in the worst case is O

(
min

{
τ
P , η log τ

P

}
+ P

)
=

O
(
τ
P + P

)
.

Parallel DG Algorithm. The pseudocode of the parallel
DG algorithm using the UCP–DIV algorithm is presented in
Algorithm 4. The procedure PDG–CL is executed by each
processor Pk. It takes a degree distribution as input and
generates the edges in parallel. Pk computes the sum (line 4),
starting labels of each group (lines 5–7), and the total cost
and average computational costs (line 8–12) in parallel. Next,
the procedure UCP–DIV (Line 13) is called which return
the pair of messages 〈A,B〉. Recall that A and B represents
two subtasks Qx,s,t and Qx′,s′,t′ assigned to Pk. Pk executes
the subtasks, and all the tasks from Qx+1 to Qx′ using the
procedure EDGE–SKIPPING from Algorithm 1 (line 14).

The runtime of parallel Algorithm 4 is O
(
m+Λ2

P + Λ + P
)

w.h.p. as shown in Theorem 3. With Λ2 = O(m), the runtime
of the algorithm is O

(
m
P + Λ + P

)
. To prove Theorem 3, we

need a bound on computational cost shown in Theorem 2.

Theorem 2. The computational cost in each processor is
O
(
m+τ
P

)
w.h.p.

Proof. Let x be the number of potential edges processed in
processor Pk, and these are denoted by g1, g2, . . . , gx (in any
arbitrary order). Let Xi be an indicator random variable such
that Xi = 1 if Pk creates gi and Xi = 0 otherwise. Then the
number of edges created by Pk is X =

∑x
i=1Xi. As discussed

in Section II-B, generating the edges efficiently by grouping
and applying the edge skipping technique is stochastically
equivalent to generating each edge (u, v) independently with



probability pu,v = wuwv
S . Let µk be the expected number of

edges generated by Pk, i.e., µ = E[X] = mk. Using the
standard Chernoff bound for independent indicator random
variables for any 0<δ<1 with δ= 1

2 we have:

Pr {X ≥ (1 + δ)µ} ≤ e−δ2 µ3

Pr

{
X ≥ 3

2
mk

}
≤ e−

mk
12 ≤ 1

m3
k

for any mk ≥ 189. We assume m � P and consequently
mk > P for all k. Now using the union bound,

Pr

{
X ≥ 3

2
mk

}
≤ mk

1

m3
k

=
1

m2
k

for all k simultaneously. Then with probability at least 1− 1
m2
k

,
the computation cost βX + α|Πk| is bounded by 3

2βmk +
3
2α|Πk| = 3

2 (βmk + α|Πk|), where α, β are constants. By
construction of the partitions by our algorithm, we have
(βmk + α|Πk|) =

(
m+τ
P

)
. Therefore, the computational cost

in all processors is O
(
m+τ
P

)
w.h.p.

Theorem 3. Our parallel algorithm using UCP–DIV for
generating random graphs with the CL model runs in
O
(
m+Λ2

P + Λ + P
)

time w.h.p.

Proof. Computing the sum S in parallel takes O
(

Λ
P + logP

)
time. Computing the starting labels of each group requires
O(Λ) time. Computing the costs require O

(
τ
P + logP

)
time. Using the UCP–DIV algorithm, task distribution takes
O
(
τ
P + P

)
time (Theorem 1). In the UCP–DIV scheme,

each partition has O
(
m+τ
P

)
computation cost w.h.p. (The-

orem 2). Thus creating edges using procedure EDGE–
SKIPPING requires O

(
m+τ
P

)
time, and the total time is

O
(
m+τ
P + P + Λ

)
= O

(
m+Λ2

P + P + Λ
)

w.h.p.

C. Experimental Results

Now, we experimentally evaluate the accuracy and perfor-
mance of our algorithm. We show that the graphs generated
by our algorithm closely match the input degree distribution.
We also present the scalability and load balancing capabilities.
Experimental Setup. We used an 81-node HPC cluster for the
experiments. Each node has two octa-core SandyBridge E5-
2670 2.60GHz (3.3GHz Turbo) processors with 64GB RAM.
We used MPICH2 (v1.7) for the algorithm. The runtime does
not include the disk I/O time to write the graph.
Degree Distribution. Fig. 8 shows the input and generated
degree distributions of Twitter and UK–Union graphs (see
Table II). As observed from the figures, the generated degree
distributions closely follow the input, which visually validates
the correctness of our parallel algorithm. Some variations in
the distribution are due to the randomness. We also experi-
mented with several other graphs and observed the same result.

As a formal test, we use the Kullback–Leibler (KL) di-
vergence [39] to compute the statistical difference between
the input and output degree distributions. The KL divergence
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Fig. 8: Degree distributions of input and generated graph

measures the difference between two probability distributions
Q (input) and R (output) as information gain defined as:

DKL(Q‖R) =
∑
i

Q(i) log
Q(i)

R(i)
. (6)

In other words, it measures the amount of information lost
(in number of bits) when the output distribution R is used
in place of the input distribution Q. The average minimum
number of bits needed for each entry of input distribution Q
are 6.12777 and 6.69488 for Twitter and UK–Union networks
respectively. The KL divergences between the input and output
degree distributions of our parallel algorithm for Twitter and
UK–Union networks are 0.00693 and 0.01607, respectively.
That accounts for a difference of number of bits required in
percentage of 0.11% (Twitter) and 0.24% (UK-Union), which
are negligible and expected due to the randomness of the
network model. In fact, the original sequential algorithm for
the Chung–Lu model also produces outputs with very similar
KL divergences (0.00700 (0.11%) for Twitter and 0.01604
(0.24%) for UK-Union).
Strong and Weak Scaling. Strong scaling of a parallel
algorithm shows its performance with the increasing number
of processors while keeping the problem size fixed. Fig. 9(a)
shows the speedup of our parallel algorithm along with the best
known parallel algorithm [29] (referred as the AK algorithm)
for a massive synthetic (PL) and two large real–world graphs
(Twitter and UK-Union). Speedups are measured as Ts

Tp
, where

Ts and Tp are the running time of the sequential and the paral-
lel algorithm, respectively. The number of processors is varied
from 1 to 1024. As shown in Fig. 9(a), our algorithm achieves
almost linear speedup for each graph. The AK algorithm also
has a linear speedup. But our algorithm is approximately four
times faster than the AK algorithm (see Fig. 9(b)). Moreover,
our algorithm requires less memory (O(Λ) memory) than the
AK algorithm (O(n) memory). For example, for the Twitter,
UK-Union, and PL graphs, the DG algorithm takes about 440,
716, and 16000 times less memory than the AK algorithm,
respectively. Thus, our algorithm scales to a large number of
processors.

The weak scaling measures the performance of a parallel
algorithm when the input size per processor remains constant.
For this experiment, we varied the number of processors from
64 to 1024. For P processors, a PL graph with 106P vertices
and 108P edges is generated. Note that weak scaling can only
be performed on artificial graphs. Fig. 9(c) shows that our
algorithm also achieves very good weak scaling compared to
the AK algorithm with almost constant runtime.
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Fig. 10: Load balancing of the parallel DG algorithm

Load Balancing. Our parallel algorithms provide very good
load balancing. Fig. 10 demonstrates the quality of our load
balancing approaches described in Section III-A. We formally
quantify the quality of load balancing using Lorenz curves
and Gini coefficients as described below. Lorenz curves [40],
often used in economics for representing inequality of the
distribution of wealth, visualizes the load disparities [41]. In
a Lorenz curve, the cumulative proportion of a distribution is
plotted against the cumulative proportion of ordered individu-
als. In our context, the ordered individuals are the processors
ordered by their computational time. Let the computational
times of the P processors are denoted and ordered by yi,
where 1 ≤ i ≤ P and yi ≤ yi+1. Then the Lorenz
curve is the continuous piecewise linear function joining the
points

(
x
P ,
Yx
YP

)
, where x = 0, 1, 2, . . . , P , Y0 = 0, and

Yx =
∑x
i=1 yi. If all processors require the same amount of

time, the Lorenz curve is a straight line called the line of
perfect equality. For imbalanced loads, the curve falls below
that line. The Gini coefficient G ∈ [0, 1] [42] is defined as:

G =

(
2
∑P
i=1 iyi

P
∑P
i=1 yi

− P + 1

P

)
. (7)

For balanced loads, the Gini coefficient is closer to 0, whereas,
with increasing imbalanced load, it gradually reaches to 1.

Balancing the workloads for the real-world graphs are
more challenging than the synthetic graphs. Therefore, in
this experiment we demonstrate for the UK-Union graph, the
largest public real–world graph [35] using 1024 processors. We
experimentally determined α = 2 and β = 1 for the cost func-
tion (see Equation 4), which achieves the best load-balancing.
Fig. 10(a) shows the number of tasks, edges, and the estimated
cost of each processor. Note that the estimated cost is almost
the same in each processor. Fig. 10(b) demonstrates the time
required by each processor for initialization, summation, load–
balancing and graph computation steps. Fig. 10(c) also shows
the Lorenz curve based on the total time required by each

processor. Our algorithm using the UCP–DIV task distribution
scheme has a Gini coefficient of 0.015 indicating near perfect
load balancing. In contrast, using a naı̈ve scheme where
each processor executes equal number of tasks, has a Gini
coefficient of 0.63. The results strongly favor our choice of the
cost function and the UCP–DIV task distribution algorithm.
Thus, our algorithm achieves very good load–balancing, where
each processor spends almost an equal amount of time.

IV. BLOCK TWO-LEVEL ERDŐS–RÉNYI

The Block Two-Level Erdős–Rényi (BTER) is another mo-
del to generate random graphs using two fundamental proper-
ties: degree distribution and clustering coefficients [20, 21].
The clustering coefficient Cu of a vertex u is defined as
the ratio of the number of edges among its neighbors to the
maximum number of all possible such edges. More formally,
Cu = |{(v,w)∈E:v,w∈Nu}|

(δu2 )
, where Nu is the set of neighbors,

and δu is the degree of u. The BTER model takes as input (1)
the desired degree distribution {nd}d∈D, and (2) the desired
average clustering coefficients by degree {cd}d∈D where cd =
1
nd

∑
{u:δu=d} Cu. First, the vertices are divided into many

blocks called affinity blocks based on their expected degrees.
An affinity block with degree d contains d+1 vertices (except
the last block). Typically, there are many small blocks with a
low degree and a few large blocks with high degree vertices.
Next, the edges are generated in two phases. In Phase 1, edges
within each block are generated. Phase 1 generates triangle
rich non-overlapping communities. Each block is represented
by an ER model with probability p. For a block involving
degree-d vertices, the probability is given as p = 3

√
cd. In

Phase 2, edges across the blocks are created. Consider some
vertex i with expected degree δi. Suppose, in Phase 1, the
vertex created δ′i edges. Then, wi = δi−δ′i denotes the excess
degree of the vertex i. To get the desired degree δi of a vertex
i, wi more edges need to be incident on i. The Chung-Lu (CL)
model is applied to the expected degree sequence {wi}1≤i≤n
to get the desired degree distribution.



A complete, scalable implementation of BTER model is
given in [21]. We analyzed the BTER implementation and
observed that both Phase 1 and Phase 2 can be improved
significantly incorporating the DG method. To generate edges
in both Phase 1 and Phase 2, the implementation uses sampling
based edge generation similar to the approach proposed in
[28]. In the sampling based algorithm, each edge is generated
by randomly choosing two end-points based on their degrees.
Therefore, there is a possibility that an edge is selected
multiple times. Consider an affinity block b with nb vertices
and edge probability pb in Phase 1. The expected number
of edges generated by the ER model for the block b is
mb = pb

(
nb
2

)
. To ensure that mb distinct edges are generated,

their algorithm samples wb =
(
nb
2

)
ln 1

1−pb edges [21]. Note
that wb ≥ mb, because ln 1

1−pb ≥ pb for 0 ≤ pb ≤ 1.
When the edge probability is relatively high wb can be several
factor larger than mb. For example, during the generation
of UK-Union graph, Phase 1 produces approximately 3.2B
distinct edges. To generate those many edges, the original
BTER implementation generates 8.9B edges, which is about
2.8 times more than the required number of edges (about 64%
edges are discarded). Moreover, as the number of duplicate
edges is very large, removing duplicates edges becomes very
costly. In contrast, the edge skipping technique requires no
unnecessary operation. All the edges generated in Phase 1
are distinct. Therefore, duplicate removal step is not required.
Similar arguments can also be made for Phase 2. Moreover,
as we saw earlier, edge skipping technique is highly scalable
due to the ability to break a large task into multiple subtasks.

A. A DG–based Algorithm for the BTER Model

In this section, we present the DG–based BTER algorithm
by incorporating the DG method. Due to the lack of space,
we provide a brief outline of the algorithm here.
Sequential Algorithm. The sequential algorithm runs in three
steps: a) Initialization, b) Phase 1, and c) Phase 2. In the
initialization step, the affinity blocks are created using the
procedure BTER SETUP (Algorithm 1 in [21]). In Phase 1,
edges are produced using the edge skipping technique using
only the ER model. Next, in Phase 2, the DG algorithm for the
CL model is applied. Here, the vertices are grouped based on
their excess degrees as defined earlier. Note that the expected
excess degrees can contain fractions. After grouping, the rest
of the algorithm is similar to Algorithm 2.
Parallel Algorithm. We can parallelize the Phase 1 and
Phase 2 of our algorithm using the parallel framework used
in Section III. The task partitioning and load balancing are
done independently in each phase with different cost functions.
Phase 1 consists of a number of affinity blocks each executing
the ER model independently. Therefore, each affinity block
represents an independent task. To compute the computational
cost of the task, we assign α1 unit of time for processing
an affinity block and β1 unit of time for generating an edge.
We apply the UCP–DIV algorithm to distribute the tasks into
P processors. Parallelization of Phase 2 is quite similar to
the parallel DG algorithm for the CL model. In this case, we

assume α2 unit of time for processing a task and β2 unit of
time processing an edge. The suitable values of α1, α2, β1, β2

are determined experimentally.

B. Experimental Evaluation

In this section, we evaluate the accuracy and performance of
both our sequential and parallel algorithms with the original
BTER implementation [21]. For fairness, we used the same
set of graphs used in the original paper listed in Table III.
Henceforth, we refer BTER as the original implementation
[21], and DG–BTER as our algorithm.

TABLE III: Performance of the sequential algorithm for BTER

Runtime (s)

Graph Vertices Edges BTER [21] DG–BTER

LJournal [35] 5M 49M 160.21 1.99

Hollywood [35] 2M 115M 450.79 5.34

Twitter [5, 35] 41M 1.2B 230.00 48.38

UK-Union [35] 131M 4.6B 1350.00 209.74

Performance of the Sequential Algorithm. The runtimes of
the BTER and the sequential DG–BTER algorithms are also
shown in Table III. Runtimes for the LJournal and Hollywood
graphs are collected from the MATLAB–based implementa-
tion of BTER. Twitter and UK–Union graphs are generated
by scalable BTER on a Hadoop cluster with 32 computing
nodes [21]. Our sequential DG–BTER algorithm not only
outperforms the MATLAB–based BTER, it also outperforms
the Hadoop–based scalable BTER implementation.
Degree Distribution and Average Clustering Coefficients.
Due to page limit we only show the input and generated degree
distributions and average clustering coefficients for two real–
world graphs Hollywood and UK-Union in Fig. 11. The graphs
are generated using our parallel DG–BTER algorithm. As ob-
served from the plots, both the generated degree distributions
and average clustering coefficients closely follow the input.
Our experiments with other networks also give similar results.
The corresponding plots in the BTER paper [21] are exactly
the same as ours, verifying the correctness of DG–BTER.
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Fig. 11: Degree distributions and average clustering coefficient per
degree of input and generated networks



Load Balancing. Fig. 12 demonstrates the load balancing
performance of our parallel BTER algorithm for the UK-
Union graph. We experimentally determined the parameters
of the cost functions where α1 = 2, α2 = 1.5, β1 = β2 = 1.
Fig. 12(a) shows that the costs are distributed uniformly among
the processors for both phases. Fig. 12(b) demonstrates that
each processor takes almost the same amount of time in every
step of the algorithms, i.e., loads are well balanced.
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Fig. 12: Load Balancing of Parallel BTER. P1 and P2 denotes Phase
1 and Phase 2 respectively.

Strong Scaling. Fig. 13 shows the speedups of our parallel
BTER algorithm. As Fig. 13 demonstrates, we also achieve a
linear speedup for a large number of processors. For example
using 1024 processors, our algorithm took only 0.37 seconds
for the UK-Union graph, with a speed-up of about 572 (in
contrast to the 1350 seconds required by the BTER algorithm).
Also, note that the speed up increases with graph size. There-
fore, our algorithm is suitable for fast generation of massive
graphs, significantly faster than the existing algorithms.
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Fig. 13: Strong scaling of the parallel algorithms for BTER

V. STOCHASTIC BLOCK MODEL

Stochastic block model (SBM) is another popular model
first studied in mathematical sociology [8, 43]. A stochastic
block model is defined with the following three parameters:
1) a set of n vertices, 2) k disjoint subset of vertices
C1,C2, . . . ,Ck, called communities, and 3) a k×k matrix M ,
where Mi,j denotes the probability that a vertex of community
Ci is connected to a vertex of community Cj . With a given
set of parameters n, {Ci}1≤i≤k, and M the edges are created

as follows: any two nodes u ∈ Ci, v ∈ Cj is connected
with probability Mi,j . Note that for any pair of communities
{Ci,Cj}, any possible edge (u, v) : u ∈ Ci, v ∈ Cj is
created with probability pu,v = Mi,j , i.e., all potential edge
in a pair of communities are independent and identically
distributed. Observe that the groups in the DG algorithm
are remarkably similar to the SBM communities. The main
difference is that in the SBM model the probability p of an
edge between two communities is provided in M , whereas
in the DG algorithm, the probability depends on the degree
of the groups. As a result, we can use the Algorithm 2 for
generating edges efficiently using the SBM model by replacing
the lines 9 and 11 with EDGE–SKIPPING(i, i,Mi,i, 1,

(|Ci|
2

)
)

and EDGE–SKIPPING(i, j,Mi,j , 1, |Ci||Cj |) respectively. Note
that the parallel algorithm for the CL model can be applied to
the SBM model in a similar fashion.
Performance of the Parallel Algorithm. Fig. 14 shows
the speedup of our parallel algorithm for generating edges
using the SBM model for two graphs with 300 and 1000
communities with 2.4B and 17.8B edges, respectively. We
can see that the strong scaling of the algorithm is also linear.
Therefore, our algorithm is efficient and scalable to a large
number of processors. Our algorithm also achieves very good
load balancing. The result of the load balancing is omitted due
to lack of space.
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VI. CONCLUSION

Our DG method leads to novel algorithms with significantly
improved space and time efficiency for generating random
graphs using the CL, BTER, and SBM models, compared to
the state-of-the-art algorithms for these models. Our algori-
thms are exact, in the sense that they generate graphs with
the precise probability distribution, and improve on all prior
algorithms with respect to rigorous theoretical guarantees,
as well as their experimental performances. Further, the DG
method leads to better parallel algorithms with optimal load
balancing. The parallel algorithms scale very well to a large
number of processors and allows us to generate very-large
scale random graphs. Extending our DG method to other ran-
dom graph models with additional constraints is an interesting
open direction.
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