
The P-tree Algebra1, 2

Qin Ding, Maleq Khan, Amalendu Roy and William Perrizo
Computer Science Department, North Dakota State University

Fargo, ND 58105-5164, USA

qin.ding@ndsu.nodak.edu

ABSTRACT
The Peano Count Tree (P-tree) is a quadrant-based lossless tree
representation of the original spatial data. The idea of P-tree is to
recursively divide the entire spatial data, such as Remotely Sensed
Imagery data, into quadrants and record the count of 1-bits for
each quadrant, thus forming a quadrant count tree. Using P-tree
structure, all the count information can be calculated quickly. This
facilitates efficient ways for data mining. In this paper, we will
focus on the algebra and properties of P-tree structure and its
variations. We have implemented fast algorithms for P-tree
generation and P-tree operations. Our performance analysis shows
P-tree has small space and time costs compared to the original
data. We have also implemented some data mining algorithms
using P-trees, such as Association Rule Mining, Decision Tree
Classification and K-Clustering.

Keywords
Compression, Quadrant, Peano Ordering, Spatial Data, Tree
Structure

1. INTRODUCTION
More and more spatial data have been collected in various ways.
An important issue is how to efficiently store spatial data and
derive useful information from them. Data mining can help to
find interesting patterns or derive useful rules from spatial data.
However, existing data mining algorithms do not scale well on
large sized spatial data.

In this paper, we try to discuss a data structure, called Peano
Count Tree (or P-tree), and its algebra and properties. P-tree
structure is a lossless representation of the original spatial data.
The P-tree structure can be viewed as a data-mining-ready
structure as it facilitates efficient ways for data mining [7].

One feature of spatial data is the neighborhood property. For
example, in an image, neighboring pixels may have similar
properties. The P-tree structure is based on this feature.

In this paper, we will focus on remotely sensed imagery data,
including satellite images, aerial photography, and ground data. A
remotely sensed image typically contains several attributes, called
bands. For example, TM (Thematic Mapper) scenes contain at

1
Patents are pending on the bSQ and P-tree technology.

2 This work is partially supported by GSA Grant ACT# K96130308, NSF
Grant OSR-9553368 and DARPA Grant DAAH04-96-1-0329.

Permission to make digital or hard copies of all of part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2002, Madrid, Spain
 2002 ACM 1-58113-445-2/02/03…$5.00

least seven bands (Blue, Green, Red, NIR, MIR, TIR and MIR2)
while a TIFF image contains three bands (Blue, Green and Red).
Each band contains a relative reflectance intensity value in the
range 0-to-255 (one byte) for each pixel location. Ground data are
collected at the surface of the earth and can also be organized into
images. Yield is a typical example of ground data.

An image can be viewed as a relational table in which each pixel
is a tuple and each band is an attribute. The primary key can be
expressed as x-y coordinates or as latitude-longitude pairs. RSI
data are collected in different ways and are organized in different
formats. BSQ, BIL and BIP are three typical formats. The Band
Sequential (BSQ) format is similar to the relational format. In
BSQ format, each band is stored as a separate file and each
individual band uses the same raster order. TM scenes are in BSQ
format. The Band Interleaved by Line (BIL) format stores the
data in line-major order, i.e., the first row of all bands, followed
by the second row of all bands, and so on. For example, SPOT
data, which comes from French satellite sensors, is in BIL format.
Band Interleaved by Pixel (BIP) is a pixel-major format. Standard
TIFF images are in BIP format.

We propose a new format, called bit Sequential (bSQ), to organize
spatial data [7]. A reflectance value in a band is a number in the
range 0-255 and is represented as a byte. We split each band into
eight separate files, one for each bit position. There are several
reasons why we use the bSQ format. First, different bits make
different contributions to the value. In some applications, the
high-order bits alone provide the necessary information. Second,
the bSQ format facilitates the representation of a precision
hierarchy (from one bit up to eight bit precision). Third, bSQ
format facilitates better compression.

By using bSQ format, neighborhood pixels may have the same bit
values in several high order bits. This facilitates high
compression for high order bit files and brings us the idea of
creating P-trees. P-trees are basically quadrant-wise, Peano-
order-run-length-compressed, representations of each bSQ file.
There are several operations of P-trees, in which AND is the most
important one. The neighborhood feature of image data also
makes P-tree operations fast. Operations on a group of pixels
having the same bit value can be done together without
considering each bit individually. Fast P-tree operations,
especially fast AND operation, provide the possibilities for
efficient data mining.

In Figure 1, we give a very simple illustrative example with only
two bands in a scene having only four pixels (two rows and two
columns). Both decimal and binary reflectance values are given.
We can see the difference of BSQ, BIL, BIP and bSQ formats.

The rest of the paper is organized as follows. Section 2
summarizes the basic ideas of Peano Count tree and its variation.
Section 3 describes the algebra of P-tree. Section 4 discusses the
properties of P-tree structure. Section 5 discusses the
implementation issues and experimental results. Section 6 gives
some related work. Conclusion is given in Section 7.

Figure 1. BSQ, BIP, BIL and bSQ formats for
a two-band 2××××2 image

2. PEANO COUNT TREES (P-TREES)
2.1 Basic P-trees
We reorganize each bit file of the bSQ format into a tree structure,
called a Peano Count Tree (P-tree). The idea is to recursively
divide the entire image into quadrants and record the count of 1-
bits for each quadrant, thus forming a quadrant count tree [7]. P-
trees are somewhat similar in construction to other data structures
in the literature (e.g., Quadtrees [3, 4, 5] and HHcodes [6]).

For example, given a 8×8 bSQ file (one-bit-one-band file), its P-
tree is as shown in Figure 2.

Figure 2. P-tree for a 8××××8 bSQ file

In this example, 36 is the number of 1’s in the entire image, called
root count. This root level is labeled level 0. The numbers 16, 7,
13, and 0 at the next level (level 1) are the 1-bit counts for the four
major quadrants in raster order. Since the first and last level-1
quadrants are composed entirely of 1-bits (called pure-1
quadrants) and 0-bits (called pure-0 quadrants) respectively, sub-
trees are not needed and these branches terminate. This pattern is
continued recursively using the Peano or Z-ordering (recursive
raster ordering) of the four sub-quadrants at each new level.
Eventually, every branch terminates (since, at the “leaf” level all
quadrant are pure). If we were to expand all sub-trees, including
those for pure quadrants, then the leaf sequence would be the
Peano-ordering of the image. The Peano-ordering of the original
image is called Peano Sequence. Thus, we use the name Peano
Count Tree for the tree structure above.

The fan-out of a P-tree need not be fixed at four. It can be any
power of 4 (effectively skipping levels in the tree). Also, the fan-
out at any one level need not coincide with the fan-out at another
level. The fan-out pattern can be chosen to produce maximum
compression for each bSQ file. We use P-Tree-r-i-l to indicate the

fan-out pattern, where r is the fan out of the root node, i is the fan
out of all internal nodes at level 1 to L-1 (where root has level L,
and leaf has level 0), and l is the fan out of all nodes at level 1.
We have implemented P-Tree-4-4-4, P-Tree-4-4-16, and P-Tree-
4-4-64.

Definition 1: A basic P-tree Pi, j is a P-tree for the jth bit of the ith

band i. The complement of basic P-tree Pi, j is denoted as Pi, j
’

(the complement operation is explained below).

For each band (assuming 8-bit data values, though the model
applies to data of any number bits), there are eight basic P-trees,
one for each bit position. We will call these P-trees the basic P-
trees of the spatial dataset. We will use the notation, Pb,i to denote
the basic P-tree for band, b and bit position, i. There are always
8n basic P-trees for a dataset with n bands.

P-trees have the following features:

• P-trees contain 1-count for every quadrant of every
dimension.

• The P-tree for any sub-quadrant at any level is simply
the sub-tree rooted at that sub-quadrant.

• A P-tree leaf sequence (depth-first) is a partial run-
length compressed version of the original bit-band.

• Basic P-trees can be combined to reproduce the original
data (P-trees are lossless representations).

• P-trees can be partially combined to produce upper and
lower bounds on all quadrant counts.

• P-trees can be used to smooth data by bottom-up
quadrant purification (bottom-up replacement of mixed
counts with their closest pure counts).

P-trees can be generated quite quickly and can be viewed as a
“data mining ready” and lossless format for storing spatial data.

2.2 P-tree variations
A variation of the P-tree data structure, the Peano Mask Tree
(PM-tree, or PMT), is a similar structure in which masks rather
than counts are used. In a PM-tree, we use a 3-value logic to
represent pure-1, pure-0 and mixed quadrants (1 denotes pure-1, 0
denotes pure-0 and m denotes mixed). The PM-tree for the
previous example is also given in Figure 3. Since a PM-tree is
just an alternative implementation for a Peano Count tree (PC-
tree, or PCT), we will use the term “P-tree” to cover both Peano
Count tree (PCT) and Peano Mask tree (PMT).

Figure 3. PM-tree

We can use some other variations, such as P1-tree and P0-Tree.
In P1-tree, we use 1 to indicate the pure-1 quadrant while use 0 to
indicate others. In P0-tree, we use 1 to indicate the pure-0
quadrant while use 0 to indicate others. Both P1-tree and P0-tree
are lossless representations of the original data.

The P1-tree and P0-tree of the previous example are given in
Figure 4.

BAND-1
254 127
(1111 1110) (0111 1111)
14 193
(0000 1110) (1100 0001)

BAND-2
37 240
(0010 0101) (1111 0000)
200 19
(1100 1000) (0001 0011)

BSQ format (2 files)

Band 1: 254 127 14 193
Band 2: 37 240 200 19

BIL format (1 file)

254 127 37 240
14 193 200 19

BIP format (1 file)

254 37 127 240
14 200 193 19

bSQ format (16 files, in columns)
B11 B12 B13 B14 B15 B16 B17 B18 B21 B22 B23 B24 B25 B26 B27 B28
1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1
0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1

1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0

P-tree 36
__________/ / \ __________

/ ___ / ___ \
/ / \ \

16 ____7__ _13__ 0
/ / | \ / | \ \

2 0 4 1 4 4 1 4
//|\ //|\ //|\

1100 0010 0001

1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0

PM-tree m
____________/ / \ ___________

/ ___ / ___ \
/ / \ \

1 ____m__ _m__ 0
/ / | \ / | \ \

m 0 1 m 1 1 m 1
//|\ //|\ //|\

1100 0010 0001

Figure 4. P1-tree and P0-tree

We can also use non-pure-0-tree (NP0-tree) and non-pure-1-tree
(NP1-tree). In non-pure-0-tree, we use 1 to indicate non-pure-0
quadrant that covers pure-1 quadrant and mixed quadrant while
use 0 to indicate pure-0 quadrant. NP1-tree can be defined in a
similar way.

3. P-TREE ALGEBRA
P-tree algebra includes three basic operations: complement, AND
and OR. Each basic P-tree has a natural complement. The
complement of a basic P-tree can be constructed directly from the
P-tree by simply complementing the counts at each level
(subtracting from the pure-1 count at that level), as shown in the
example below (Figure 4). Note that the complement of a P-tree
provides the 0-bit counts for each quadrant. P-tree AND/OR
operations are also illustrated in Figure 5.

Figure 5. P-tree Algebra (Complement, AND and OR)

Among three operations, AND is the most important operation.
OR operation can be implemented in the very similar way as
AND. Below we will discuss various options to implement P-tree
ANDing.

3.1 Levelwise P-tree ANDing
ANDing is a very important and frequently used operation for P-
trees. There are several ways to perform P-tree ANDing. First
let’s look at a simple way. We can perform ANDing level-by-
level starting from the root level. Table 1 gives the rules for
performing P-tree ANDing. Operand 1 and Operand 2 are two P-
trees (or subtrees) with root X1 and X2 respectively. Using PM-
trees, X1 and X2 could be any value among 1, 0 and m (3-value
logic representing pure-1, pure-0 and mixed quadrant). Rules for
P-tree ANDing are given in Table 1. For example, to AND a
pure-1 P-tree with any P-tree will result in the second operand; to
AND a pure-0 P-tree with any P-tree will result in the pure-0 P-
tree. Note that it is possible that ANDing two m’s results in a
pure-0 quadrant if their four subquants result in pure-0 quadrants.

Table 1. P-tree ANDing rules

Operand 1 Operand 2 Result

1 X2 Subtree with root X2

0 X2 0

X1 1 Subtree with root X1

X1 0 0

m m 0 if four sub-quadrants result
in 0; Otherwise m

3.2 P-tree ANDing using Pure-1 paths
There is another way to do P-tree ANDing which is more
efficient. The approach is to store only the basic P-trees and then
generate the value and tuple P-tree root counts “on-the-fly” as
needed. In this algorithm, we will assume P-trees are coded in a
compact, depth-first ordering of the paths to each pure-1 quadrant.
We use a hierarchical quadrant id (Qid) scheme (Figure 6) to
identify quadrants. At each level, we append a sub-quadrant id
number (0 means upper left, 1 means upper right, 2 means lower
left, 3 means lower right).

Figure 6. Quadrant id (Qid)

For a spatial data set with 2n-row and 2n-column, there is a
mapping from raster coordinates (x, y) to Peano coordinates
(called quadrant id or Qid). If x and y are expressed as n-bit
strings, x1x2…xn and y1y2…yn, then the mapping is (x,
y)=(x1x2…xn, y1y2…yn) ! (x1y1 . x2y2 … . xnyn). Thus, in an 8 by
8 image, the pixel at (3,6) = (011,110) has quadrant id 01.11.10 =
1.3.2. For simplicity, we wrote the Qid as 132 instead of 1.3.2 in
Figure 6.

100 101
11

0 102 103

12 13

2 3

P-tree 55 PM-tree m
______/ / \ _______ ______/ / \ ______

/ __ / ___ \ / __ / \ __ \
/ / \ \ / / \ \

16 __8____ _15__ 16 1 m m 1
/ / | \ / | \ \ / / \ \ / / \ \

3 0 4 1 4 4 3 4 m 0 1 m 1 1 m 1
//|\ //|\ //|\ //|\ //|\ //|\

1110 0010 1101 1110 0010 1101

P-tree-1: m
______/ / \ ______

/ / \ \
/ / \ \

1 m m 1
/ / \ \ / / \ \

m 0 1 m 1 1 m 1
//|\ //|\ //|\

1110 0010 1101

P-tree-2: m
______/ / \ ______

/ / \ \
/ / \ \

1 0 m 0
/ / \ \

1 1 1 m
//|\

0100

AND-Result: m
________ / / \ ___

/ ____ / \ \
/ / \ \

1 0 m 0
/ | \ \

1 1 m m
//|\ //|\

1101 0100

OR-Result: m
________ / / \ ___

/ ____ / \ \
/ / \ \

1 m 1 1
/ / \ \

m 0 1 m
//|\ //|\

1110 0010

Complement 9 m
______/ / \ _______ ______/ / \ ______

/ __ / ___ \ / __ / \ __ \
/ / \ \ / / \ \

0 __8____ _1__ 0 0 m m 0
/ / | \ / | \ \ / / \ \ / / \ \

1 4 0 3 0 0 1 0 m 1 0 m 0 0 m 0
//|\ //|\ //|\ //|\ //|\ //|\

0001 1101 0010 0001 1101 0010

P1-tree 0 P0-tree 0
______/ / \ _______ ______/ / \ ______

/ __ / ___ \ / __ / \ __ \
/ / \ \ / / \ \

1 __0____ _0__ 0 0 0 0 1
/ / | \ / | \ \ / / \ \ / / \ \

0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0
//|\ //|\ //|\ //|\ //|\ //|\

1100 0010 0001 1100 0010 0001

An example is given in Figure 7. Each path is represented by the
sequence of quadrants in Peano order, beginning just below the
root. Since a quadrant will be pure-1 in the result only if it is
pure-1 in both/all operands, the AND is done as follows: scan the
operands; output matching pure-1 paths.

The AND operation is effectively the pixel-wise AND of bits
from bSQ files or their complement files. However, since such
files can contain hundreds of millions of bits, shortcut methods
are needed. Implementations of these methods have been done
which allow the performance of an n-way AND of Tiff-image P-
trees (1320 by 1320 pixels) in about 20 milliseconds. We discuss
such methods later in the paper. The process of converting data to
P-trees is also time consuming unless special methods are used.
For example, our methods can convert even a large TM satellite
image (approximately 60 million pixels) to its basic P-trees in just
a few seconds using a high performance PC computer. This is a
one-time process.

Figure 7. P-tree ANDing using pure-1 path

3.3 Value and Tuple P-trees
By performing the AND operation on the appropriate subset of the
basic P-trees and their complements, we can construct P-trees for
values with more than one bit.

Definition 2: A value P-tree Pi (v), is the P-tree of value v at
band i. Value v can be expressed in 1-bit upto 8-bit precision.

Value P-trees can be constructed by ANDing basic P-trees or their
complements. For example, value P-tree Pi (110) gives the count
of pixels with band-i bit 1 equal to 1, bit 2 equal to 1 and bit 3
equal to 0, i.e., with band-i value in the range of [192, 224). It can
be constructed from the basic P-trees as:

Pi (110) = Pi,1 AND Pi,2 AND Pi,3’

P-trees can also represent data for any value combination from
any band, even the entire tuple. In the very same way, we can
construct tuple P-trees.

Definition 3: A tuple P-tree P (v1, v2, …, vn), is the P-tree of
value vi at band i, for all i from 1 to n. We have,

P (v1, v2, …, vn) = P1(v1) AND P2(v2) AND … AND Pn(vn)

If value vj is not given, it means it could be any value in Band j.
For example, P (110, ,101,001, , , ,) stands for a tuple P-tree of
value 110 in band 1, 101 in band 3 and 001 in band 4 and any
value in any other band.

Definition 4: A interval P-tree Pi (v1, v2), is the P-tree for value
in the interval of [v1, v2] of band i. We have,

Pi (v1, v2) = OR Pi (v), for all v in [v1, v2].

Any value P-tree, tuple P-tree can be constructed by performing
ANDing on basic P-trees and their complements. Interval P-trees
can be constructed by combining AND and OR operations of
basic P-trees. All the P-tree operations, including AND, OR,
COMPLEMENT and XOR, can be performed on any kinds of P-
trees we defined above. The process of ANDing basic P-trees and
their complements to produce value P-trees or tuple P-trees can be
done at any level of precision -- 1-bit precision up to 8-bit
precision.

4. PROPERTIES OF P-TREES
In this section, we will discuss the good properties of P-trees.
We will use the following notations:

yxp , is the pixel with coordinate (x, y), iyxV ,, is the value for the
band i of the pixel yxp , , jiyxb ,,, is the jth bit of iyxV ,, (bits are
numbered from left to right, 0,,, iyxb is the leftmost bit). Indices: x:
column (x-coordinate), y: row (y-coordinate), i: band, j: bit.

For any P-trees P, P1 and P2, P1 & P2 denotes P1 AND P2, P1 | P2

denotes P1 OR P2, P1 ⊕ P2 denotes P1 XOR P2, P′ denotes
COMPLEMENT of P.

Pi, j is the basic P-tree for bit j of band i, Pi(v) is the value P-tree
for the value v of band i, Pi(v1, v2) is the interval P-tree for the
interval [v1, v2] of band I, rc(P) is the root count of P-tree P. 0P is
pure-0 tree, 1P is pure-1 tree. N is the number of pixels in the
image or space under consideration.

Lemma 1: For any two P-trees P1 and P2, rc(P1 | P2) = 0 ⇒
rc(P1) = 0 and rc(P2) = 0. More strictly, rc(P1 | P2) = 0, if and
only if rc(P1) = 0 and rc(P2) = 0.

Proof: (Proof by contradiction) Let, rc(P1) ≠ 0. Then, for some
pixels there are 1s in P1 and for those pixels there must be 1s in P1

| P2 i.e. rc(P1 | P2) ≠ 0, But we assumed rc(P1 | P2) = 0. Therefore
rc(P1) = 0. Similarly we can prove that rc(P2) = 0.
The proof for the inverse, rc(P1) = 0 and rc(P2) = 0 ⇒ rc(P1 | P2)
= 0 is trivial. This immediately follows the definitions.

Lemma 2: a) rc(P1) = 0 or rc(P2) = 0 ⇒ rc(P1 & P2) = 0
b) rc(P1) = 0 and rc(P2) = 0 ⇒ rc(P1 & P2) = 0.
c) rc(0P) = 0
d) rc(1P) = N
e) 00& PPP =
f) PPP =1&
g) PPP =0|
h) 11| PPP =
i) 0'& PPP =
j) 1'| PPP =

Proofs are immediate.

Lemma 3: v1 ≠ v2 ⇒ rc{Pi (v1) & Pi(v2)}=0, for any band i.

P-tree-1: m
______/ / \ ______

/ / \ \
/ / \ \

1 m m 1
/ / \ \ / / \ \

m 0 1 m 1 1 m 1
//|\ //|\ //|\

1110 0010 1101

P-tree-2: m
______/ / \ ______

/ / \ \
/ / \ \

1 0 m 0
/ / \ \

1 1 1 m
//|\

0100

AND-Result: m
____________ / / \ ____________

/ ________ / \ \
/ / \ \

1 0 m 0
/ | \ \

1 1 m m
//|\ //|\

1101 0100

0 100 101 102 12 132 20 21 220 221 223 23 3 & 0 20 21 22 231 ! RESULT
0 0 ! 0

20 20 ! 20
21 21 ! 21

220 221 223 22 ! 220 221 223
23 231 ! 231

Proof: Pi (v) represents all the pixels having value v for the band i.
If v1 ≠ v2, no pixel can have the values of both v1 and v2 for the
same band. Therefore, if there is a 1 in Pi (v1) for any pixel, there
must be 0 in Pi(v2) for that pixel and vice versa. Hence rc{Pi (v1)
& Pi(v2)} = 0.

Lemma 4: rc(P1 | P2) = rc(P1) + rc(P2) - rc(P1 & P2).

Proof: Let the number of pixels for which there are 1s in P1 and
0s in P2 is n1, the number of pixels for which there are 0s in P1

and 1s in P2 is n2 and the number of pixels for which there are 1s
in both P1 and P2 is n3.

Now, rc(P1) = n1 + n3, rc(P2) = n2 + n3, rc(P1 & P2) = n3

and rc(P1 | P2) = n1 + n2 + n3 = (n1 + n3) + (n2 + n3) - n3

= rc(P1) + rc(P2) - rc(P1 & P2)

Theorem: rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)}, where v1 ≠
v2.

Proof: rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)} - rc{Pi (v1) &
Pi(v2)} (Lemma 4)
If v1 ≠ v2, rc{Pi (v1) & Pi(v2)} = 0. (Lemma 3)
Therefore, rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)}.

5. IMPLEMENTATION ISSUES AND
EXPERIMENTAL RESULTS
5.1 P-tree Header
To make a generalized P-tree structure, the following header for a
P-tree file is proposed in table 2.

Table 2. P-tree header

1 byte 2 bytes 1 byte 4 bytes 2 bytes
Format
Code

Fan-
out

of
levels

Root
count

Length of
the body

Body of
the P-tree

Format code: Format code identifies the format of the P-tree,
whether it is a PCT or PMT or in any other format.

Fan-out: This field contains the fan-out information of the P-tree.
Fan-out information is required to traverse the P-tree in
performing various P-tree operations.

of levels: Number of levels in the P-tree. When we encounter a
pure1 or pure0 node, we cannot tell whether it is an interior node
or a leaf unless we know the level of that node and the total
number of levels of the tree. This is required to know the number
of 1s represented by a pure1 node.

Root count: Root count i.e. the number of 1s in the P-tree.
Though we can calculate the root count of a P-tree on the fly from
the P-tree data, these only 4 bytes of space can save computation
time when we only need the root count of a P-tree. The root count
of a P-tree can be computed at time of construction of P-tree with
a very little extra cost.

Length of the body: Length of the body is the size of the P-tree
file in bytes excluding the header. Sometimes we may want to
keep the whole P-tree into RAM to increase the efficiency of
computation. Since the size of the P-tree varies, we need to
allocate memory dynamically, which requires knowing the size of
the required memory size before reading the data from disk.

5.2 Performance Analysis
We only store the basic P-trees for each dataset. All other P-trees
(value P-trees and tuple P-trees) are created on the fly as needed.
This results in a considerable saving of space. Figure 8, 9 and 10
give the storage needs for various formats of data (TIFF, SPOT
and TM scene) using various formats of P-trees (PCT or PMT)
with different fan-out patterns.

The AND operation of basic P-trees is fast. Figure 11 and 12
show the time required to perform P-tree ANDing. The ANDing
time varies from 6.72 ms to 52.12 ms for two TM scenes
with size 2048×2048.

Figure 8. Comparison of file size for different
bits of Band 1 & 2 of a TIFF image

Figure 9. Comparison of file size for different
bits of Band 3 & 4 of a SOPT image

File Size Vs Bit Number

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Bit Number

F
ile

S
iz

e
(K

B
)

PC-Tree-4-4-4

PC-Tree-4-4-16

PMT

File Size Vs Bit Number

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Bit Number

F
ile

S
iz

e
(K

B
)

PC-Tree-4-4-4

PC-Tree-4-4-16

PMT

File Szie Vs Bit Number

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9

Bit Number

F
ile

S
iz

e
(K

B
)

PC-Tree-4-4-4

PC-Tree-4-4-16

PMT

File Szie Vs Bit Number

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9

Bit Number

F
ile

S
iz

e
(K

B
)

PC-Tree-4-4-4

PC-Tree-4-4-16

PMT

Figure 10. Comparison of file size for different
bits of Band 5 & 6 of a TM image

Figure 11. Comparison of time required to perform
ANDing operation

Figure 12. Average time required to perform
ANDing operation

6. RELATED WORK
Concepts related to the P-tree data structure, include Quadtrees [1,
2, 3, 4, 5] and its variants (such as point quadtrees [3] and region
quadtrees [4]), and HH-codes [6].

Quadtrees decompose the universe by means of iso-oriented
hyperplanes. These partitions do not have to be of equal size,
although that is often the case. The decomposition into subspaces
is usually continued until the number of objects in each partition
is below a given threshold. Quadtrees have many variants, such
as point quadtrees and region quadtrees.

HH-codes, or Helical Hyperspatial Codes, are binary
representations of the Riemannian diagonal. The binary division
of the diagonal forms the node point from which eight sub-cubes
are formed. Each sub-cube has its own diagonal, generating new
sub-cubes. These cubes are formed by interlacing one-
dimensional values encoded as HH bit codes. When sorted, they
cluster in groups along the diagonal. The clusters are order in a
helical pattern, thus the name "Helical Hyperspatial".

The similarities among P-tree, quadtree and HHCode are that they
are quadrant based. The difference is that P-trees focus on the
count. P-trees are not index, rather they are representations of the
datasets themselves. P-trees are particularly useful for data
mining because they contain the aggregate information needed for
data mining.

7. CONCLUSION
In this paper, we describe the properties and algebra of a lossless
data structure, Peano Count Tree (P-tree). P-tree structure has
nice features so that it can be used for efficient data mining, such
as association rule mining, classification and clustering. The
details of how to use P-trees in data mining is beyond the scope of
this paper. The basic idea is that in the processing of data mining,
a lot of counts are needed. With the information in P-trees, these
counts can be collected in a fast way by ANDing appropriate P-
trees instead of scanning the entire database. The idea of P-tree
initially came from the spatial data, however, it can be extended to
represent other kinds of data, such as DNA Microarray data and
VLSI data.

8. REFERENCES
[1] Volker Gaede and Oliver Gunther, “Multidimensional Access

Methods”, Computing Surveys, 30(2), 1998.

[2] H. Samet, “The quadtree and related hierarchical data
structure”. ACM Computing Survey, 16, 2, 1984.

[3] H. Samet, “Applications of Sptial Data Structures”, Addison-
Wesley, Reading, Mass., 1990.

[4] H. Samet, “The Design and Analysis of Spatial Data
Structures”, Addison-Wesley, Reading, Mass., 1990.

[5] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure
for retrieval of composite keys”, Acta Informatica, 4, 1,
1974.

[6] HH-codes. Available at
http://www.statkart.no/nlhdb/iveher/hhtext.html

[7] William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy,
“Deriving High Confidence Rules from Spatial Data using
Peano Count Trees”, Springer-Verlag, LNCS 2118, July
2001.

File Size Vs Bit Number

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8 9

Bit Number

F
ile

si
ze

(K
B

)

PC-Tree-4-4-4

PC-Tree-4-4-16

PC-Tree-4-4-64

PMT

File Size Vs Bit Number

0

2000

4000

6000

8000

10000

0 1 2 3 4 5 6 7 8 9

Bit Number

F
ile

si
ze

(K
B

)

PC-Tree-4-4-4

PC-Tree-4-4-16

PC-Tree-4-4-64

PMT

Time Required Vs Bit Number

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8

Bit Number

T
im

e
(m

s)

Time Vs Lowest Bit Nuber

0

1

2

3

4

0 1 2 3 4 5 6 7 8

Lowest Bit Number

T
im

e
(m

s) PC-Tree

PMT

Peano Sequence

