The P-tree Algebra®?

Qin Ding, Maleq Khan, Amalendu Roy and William Perrizo
Computer Science Department, North Dakota State University
Fargo, ND 58105-5164, USA

gin.ding@ndsu.nodak.edu

ABSTRACT

The Peano Count Tree (P-tree) is a quadrant-based lossless tree
representation of the original spatial data. The idea of P-treeisto
recursively divide the entire spatial data, such as Remotely Sensed
Imagery data, into quadrants and record the count of 1-bits for
each quadrant, thus forming a quadrant count tree. Using P-tree
structure, al the count information can be calculated quickly. This
facilitates efficient ways for data mining. In this paper, we will
focus on the algebra and properties of P-tree structure and its
variations. We have implemented fast agorithms for P-tree
generation and P-tree operations. Our performance analysis shows
P-tree has small space and time costs compared to the original
data. We have also implemented some data mining agorithms
using P-trees, such as Association Rule Mining, Decision Tree
Classification and K-Clustering.

Keywords
Compression, Quadrant, Peano Ordering, Spatiadl Data, Tree
Structure

1. INTRODUCTION

More and more spatia data have been collected in various ways.
An important issue is how to efficiently store spatia data and
derive useful information from them. Data mining can help to
find interesting patterns or derive useful rules from spatia data.
However, existing data mining algorithms do not scale well on
large sized spatia data.

In this paper, we try to discuss a data structure, called Peano
Count Tree (or P-tree), and its algebra and properties. P-tree
structure is a lossless representation of the original spatial data.
The P-tree structure can be viewed as a data-mining-ready
structure as it facilitates efficient ways for datamining [7].

One feature of spatial data is the neighborhood property. For
example, in an image, neighboring pixels may have similar
properties. The P-tree structure is based on this feature.

In this paper, we will focus on remotely sensed imagery data,
including satellite images, aeria photography, and ground data. A
remotely sensed image typically contains several attributes, called
bands. For example, TM (Thematic Mapper) scenes contain at

! patents are pending on the bSQ and P-tree technology.
2 Thiswork is partially supported by GSA Grant ACT# K96130308, NSF
Grant OSR-9553368 and DARPA Grant DAAH04-96-1-0329.

Permission to make digital or hard copies of all of part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or afee.

SAC 2002, Madrid, Spain

[0 2002 ACM 1-58113-445-2/02/03...$5.00

least seven bands (Blue, Green, Red, NIR, MIR, TIR and MIR2)
while a TIFF image contains three bands (Blue, Green and Red).
Each band contains a relative reflectance intensity value in the
range 0-to-255 (one byte) for each pixel location. Ground dataare
collected at the surface of the earth and can also be organized into
images. Yield isatypica example of ground data.

An image can be viewed as arelationa table in which each pixe
is atuple and each band is an attribute. The primary key can be
expressed as x-y coordinates or as latitude-longitude pairs. RS
data are collected in different ways and are organized in different
formats. BSQ, BIL and BIP are three typical formats. The Band
Sequential (BSQ) format is similar to the relational format. In
BSQ format, each band is stored as a separate file and each
individual band uses the same raster order. TM scenesarein BSQ
format. The Band Interleaved by Line (BIL) format stores the
data in lineemgjor order, i.e., the first row of al bands, followed
by the second row of all bands, and so on. For example, SPOT
data, which comes from French satellite sensors, isin BIL format.
Band Interleaved by Pixel (BIP) is apixel-major format. Standard
TIFF images are in BIP format.

We propose a new format, called bit Sequential (bSQ), to organize
spatial data[7]. A reflectance value in aband is a number in the
range 0-255 and is represented as abyte. We split each band into
eight separate files, one for each bit position. There are severa
reasons why we use the bSQ format. First, different bits make
different contributions to the value. In some applications, the
high-order bits aone provide the necessary information. Second,
the bSQ format facilitates the representation of a precision
hierarchy (from one bit up to eight bit precision). Third, bSQ
format facilitates better compression.

By using bSQ format, neighborhood pixels may have the same bit
values in severa high order bits. This facilitates high
compression for high order bit files and brings us the idea of
creating P-trees. P-trees are basically quadrant-wise, Peano-
order-run-length-compressed, representations of each bSQ file.
There are severa operations of P-trees, in which AND is the most
important one. The neighborhood feature of image data also
makes P-tree operations fast. Operations on a group of pixels
having the same bhit value can be done together without
considering each bit individualy. Fast P-tree operations,
especially fast AND operation, provide the possibilities for
efficient data mining.

In Figure 1, we give a very simple illustrative example with only
two bands in a scene having only four pixels (two rows and two
columns). Both decima and binary reflectance values are given.
We can see the difference of BSQ, BIL, BIP and bSQ formats.

The rest of the paper is organized as follows. Section 2
summarizes the basic ideas of Peano Count tree and its variation.
Section 3 describes the algebra of P-tree. Section 4 discusses the
properties of P-tree structure. Section 5 discusses the
implementation issues and experimental results. Section 6 gives
some related work. Conclusion isgiven in Section 7.

BAND-1 BAND-2

254 127 37 240
(11111110) (0111 1111) (00100101) (1111 0000)
14 193 200 19

(0000 1110) (1100 0001) (11001000) (0001 0011)

BSQ format (2 files)

Band 1: 254 127 14 193
Band 2: 37 240 200 19

BIL format (1file)

254127 37 240
14 193 200 19

BIP format (1file)

254 37 127 240
14 200 193 19

bSQ format (16 files, in columns)

B11l B12 B13 B14 B15 B16 B17 B18 B21 B22B23 B24 B25 B26 B27 B28
1 1 1 1 1 1 1 O o o0 1 0o o0 1 o0 1
o 1 1 1 1 1 1 1 1 1 1 1 0 0O o0 O
o o0 o0 o 1 1 1 O 1 1 0 0 1 0 o0 O
1 1 0 0 0 0o o0 1 o o0 o0 1 0o o0 1 1

Figurel. BSQ, BIP, BIL and bSQ formats for
atwo-band 2x2 image

2. PEANO COUNT TREES (P-TREES)

2.1 Basic P-trees

We reorganize each hit file of the bSQ format into atree structure,
caled a Peano Count Tree (P-tree). The idea is to recursively
divide the entire image into quadrants and record the count of 1-
bits for each quadrant, thus forming a quadrant count tree [7]. P-
trees are somewhat similar in construction to other data structures
in the literature (e.g., Quadtrees[3, 4, 5] and HHcodes [6]).

For example, given a 8x8 bSQ file (one-bit-one-band file), its P-
treeisasshownin Figure 2.

P-tree 36

\
1111 oo oof| * 4= A0 °
11 11 00 00 2 04 1 441 4
00 11 00 00 I\ I I\
01 11 00 00 1100 0010 0001

—

Figure2. P-treefor a8x8 bSQ file

In this example, 36 is the number of 1'sin the entire image, called
root count. Thisroot level islabeled level 0. The numbers 16, 7,
13, and O at the next level (level 1) are the 1-bit counts for the four
major quadrants in raster order. Since the first and last level-1
quadrants are composed entirely of 1-bits (caled pure-1
quadrants) and O-bits (called pure-0 quadrants) respectively, sub-
trees are not needed and these branches terminate. This pattern is
continued recursively using the Peano or Z-ordering (recursive
raster ordering) of the four sub-quadrants at each new level.
Eventually, every branch terminates (since, at the “leaf” level al
quadrant are pure). If we were to expand all sub-trees, including
those for pure quadrants, then the leaf sequence would be the
Peano-ordering of the image. The Peano-ordering of the original
image is called Peano Sequence. Thus, we use the name Peano
Count Tree for the tree structure above.

The fan-out of a P-tree need not be fixed at four. It can be any
power of 4 (effectively skipping levelsin the tree). Also, the fan-
out at any one level need not coincide with the fan-out at another
level. The fan-out pattern can be chosen to produce maximum
compression for each bSQ file. We use P-Tree-r-i-l to indicate the

fan-out pattern, wherer is the fan out of the root node, i is the fan
out of al internal nodes at level 1 to L-1 (where root has level L,
and leaf has level 0), and | is the fan out of all nodes at level 1.
We have implemented P-Tree-4-4-4, P-Tree-4-4-16, and P-Tree-
4-4-64.

Definition 1: A basic P-tree P, ;is a P-tree for the j™ bit of the i
band i. The complement of basic P-tree P, ; is denoted as P j
(the complement operation is explained below).

For each band (assuming 8-bit data values, though the model
applies to data of any number bits), there are eight basic P-trees,
one for each bit position. We will call these P-trees the basic P-
trees of the spatial dataset. We will use the notation, P,; to denote
the basic P-tree for band, b and bit position, i. There are always
8n basic P-trees for a dataset with n bands.

P-trees have the following features:

e P-trees contain 1-count for every quadrant of every
dimension.

e The P-tree for any sub-quadrant at any level is simply
the sub-tree rooted at that sub-quadrant.

A P-tree leaf sequence (depth-first) is a partial run-
length compressed version of the original bit-band.

e Basic P-trees can be combined to reproduce the origina
data (P-trees are | ossless representations).

e P-trees can be partially combined to produce upper and
lower bounds on all quadrant counts.

* P-trees can be used to smooth data by bottom-up
quadrant purification (bottom-up replacement of mixed
counts with their closest pure counts).

P-trees can be generated quite quickly and can be viewed as a
“datamining ready” and lossless format for storing spatial data.

2.2 P-treevariations

A variation of the P-tree data structure, the Peano Mask Tree
(PM-tree, or PMT), is a similar structure in which masks rather
than counts are used. In a PM-tree, we use a 3-value logic to
represent pure-1, pure-0 and mixed quadrants (1 denotes pure-1, 0
denotes pure-0 and m denotes mixed). The PM-tree for the
previous example is aso given in Figure 3. Since a PM-tree is
just an alternative implementation for a Peano Count tree (PC-
tree, or PCT), we will use the term “P-tree” to cover both Peano
Count tree (PCT) and Peano Mask tree (PMT).

11 11 11 00 || PM-tree m

11 11 00 00 AN

11 11 11 00 / 1 \

11 11 11 10 / / \ \
1 . m m_ 0

11 11 00 00 T et

1111 00 00 m 01 m 11m1

00 11 00 0O I\ I\ I\

01 11 00 00 1100 0010 0001

Figure 3. PM-tree

We can use some other variations, such as P1-tree and PO-Tree.
In P1-tree, we use 1 to indicate the pure-1 quadrant while use 0 to
indicate others. In PO-tree, we use 1 to indicate the pure-O
quadrant while use O to indicate others. Both P1-tree and PO-tree
are lossless representations of the original data.

The P1-tree and PO-tree of the previous example are given in
Figure 4.

Pl-tree 0 PO-tree 0
A /1 \\
/ o\ \ / o\ \
/ / \ \ / / \ \
1 _0 0o 0 0 0 1
[T\ A 1\ 1\
001 0 1101 0100 0000
A\ /N /N A\ /N /N
1100 0010 0001 1100 0010 0001

Figure4. Pl-treeand PO-tree

We can also use non-pure-O-tree (NPO-tree) and non-pure-1-tree
(NP1-tree). In non-pure-O-tree, we use 1 to indicate non-pure-0
quadrant that covers pure-1 quadrant and mixed quadrant while
use 0 to indicate pure-0 quadrant. NP1-tree can be defined in a
similar way.

3. P-TREE ALGEBRA

P-tree adgebra includes three basic operations: complement, AND
and OR. Each basic P-tree has a natura complement. The
complement of a basic P-tree can be constructed directly from the
P-tree by simply complementing the counts a each level
(subtracting from the pure-1 count at that level), as shown in the
example below (Figure 4). Note that the complement of a P-tree
provides the O-bit counts for each quadrant. P-tree AND/OR
operations are aso illustrated in Figure 5.

P-tree 55 PM-tree m
[\ \ 1\
/ o\ / o\ \
/ / \ / / \ \
16 _8 15 16 1 m m 1
I]\ [\ I\ AR
3 04 1 4434 mO1lm 11m1l
I\ /N 1IN I\ 1IN I\
1110 0010 1101 1110 0010 1101
Complement 9 m
/ 1\ /1 \\
/ _ u / o\ \
/ \ \ / / \ \
0 _8 10 0 m m 0
A I\ AR AR
140 3 0010 ml1O0Om 00mO
/N JIN I\ 1IN /N /N
0001 1101 0010 0001 1101 0010
P-tree-1: m P-tree-2: m
[\\ 1\
/ I\ \ / I\ \
/ / \ \ / / \ \
1 m m 1 1 0 m 0
I 1\\ AR /1A
mOlm 11m1l 111 m
I\ /N I\ I\
1110 0010 1101 0100
AND-Result: m OR-Result: m
I\ AT
/ !\ \ / I\ \
/ / \ \ / / \ \
1 0 m 0 1 m 1 1
Iy N 1\
11m m mO1lm
IIN - HIN I\ /N
1101 0100 1110 0010

Figure5. P-tree Algebra (Complement, AND and OR)

Among three operations, AND is the most important operation.
OR operation can be implemented in the very similar way as
AND. Below we will discuss various options to implement P-tree
ANDing.

3.1 Levelwise P-tree ANDing

ANDing is a very important and frequently used operation for P-
trees. There are severa ways to perform P-tree ANDing. First
let's look at a simple way. We can perform ANDing level-by-
level starting from the root level. Table 1 gives the rules for
performing P-tree ANDing. Operand 1 and Operand 2 are two P-
trees (or subtrees) with root X, and X, respectively. Using PM-
trees, X, and X, could be any value among 1, 0 and m (3-value
logic representing pure-1, pure-0 and mixed quadrant). Rules for
P-tree ANDing are given in Table 1. For example, to AND a
pure-1 P-tree with any P-tree will result in the second operand; to
AND a pure-0 P-tree with any P-tree will result in the pure-0 P-
tree. Note that it is possible that ANDing two m’'s results in a
pure-0 quadrant if their four subguants result in pure-0 quadrants.

Tablel. P-tree ANDingrules

Operand 1 Operand 2 Result
1 X2 Subtree with root X,
0 X2 0
X1 1 Subtree with root X
X1 0 0
m m 0 if four sub-quadrants result
in 0; Otherwisem

3.2 P-tree ANDing using Pure-1 paths

There is another way to do P-tree ANDing which is more
efficient. The approach is to store only the basic P-trees and then
generate the value and tuple P-tree root counts “on-the-fly” as
needed. In this agorithm, we will assume P-trees are coded in a
compact, depth-first ordering of the paths to each pure-1 quadrant.
We use a hierarchical quadrant id (Qid) scheme (Figure 6) to
identify quadrants. At each level, we append a sub-quadrant id
number (0 means upper left, 1 means upper right, 2 means lower
left, 3 means lower right).

100| 101

11

102 /103
0

12 13

Figure6. Quadrant id (Qid)

For a spatial data set with 2™row and 2"-column, there is a
mapping from raster coordinates (X, y) to Peano coordinates
(called quadrant id or Qid). If x and y are expressed as n-bit
strings, XiX...Xn and ypy, Yy, then the mapping is (X,
Y)=(X1Xz. - Xn, Y1¥2. Yn) > (XaY1. XaY2 Xayn). Thus, inan 8 by
8 image, the pixel at (3,6) = (011,110) has quadrant id 01.11.10 =
1.3.2. For simplicity, we wrote the Qid as 132 instead of 1.3.2in
Figure 6.

An example is given in Figure 7. Each path is represented by the
sequence of quadrants in Peano order, beginning just below the
root. Since a quadrant will be pure-1 in the result only if it is
pure-1 in both/all operands, the AND is done as follows. scan the
operands; output matching pure-1 paths.

The AND operation is effectively the pixel-wise AND of bits
from bSQ files or their complement files. However, since such
files can contain hundreds of millions of bits, shortcut methods
are needed. Implementations of these methods have been done
which allow the performance of an n-way AND of Tiff-image P-
trees (1320 by 1320 pixels) in about 20 milliseconds. We discuss
such methods later in the paper. The process of converting datato
P-trees is also time consuming unless special methods are used.
For example, our methods can convert even a large TM satellite
image (approximately 60 million pixels) to its basic P-treesin just
a few seconds using a high performance PC computer. Thisisa
one-time process.

P-tree-1: m P-tree-2: m
/1 \\ 1 \\
/ I\ \ / I\ \
/ / \ \ / / \ \
1 m 1 1 0
/1 \ \ 1\ / / \\
mO1lm 11m1l 111m
I\ I\ /N /IN
1110 0010 1101 0100
AND-Result: m
AR
/ /A \
/ / \ \
1 0 m 0
IV N
11m m
/NN
1101 0100
[0100 101 102 12 132 20 21 220 221 223233 | & [02021 22231 > |[RESULT|
0 0 >0
20 20 > 20
21 21 > 21
220221223 22 > 220221223
23 231 > 231

Figure7. P-tree ANDing using pure-1 path

3.3Valueand Tuple P-trees

By performing the AND operation on the appropriate subset of the
basic P-trees and their complements, we can construct P-trees for
values with more than one bit.

Definition 2: A value P-tree P; (v), is the P-tree of value v at
band i. Vaue v can be expressed in 1-bit upto 8-bit precision.

Value P-trees can be constructed by ANDing basic P-trees or their
complements. For example, value P-tree P, (110) gives the count
of pixels with band-i bit 1 equal to 1, bit 2 equa to 1 and bit 3
equa to 0, i.e., with band-i value in the range of [192, 224). It can
be constructed from the basic P-trees as:

P, (110)=P,; AND P, AND P53

P-trees can aso represent data for any value combination from
any band, even the entire tuple. In the very same way, we can
construct tuple P-trees.

Definition 3: A tuple P-tree P (vq, Vs, ..., V), is the P-tree of
valuev; at band i, for al i from 1 to n. We have,

Vy) = Py(v1) AND Py(v,) AND ... AND Py(v,)

If valuev; is not given, it meansit could be any valuein Band j.
For example, P (110, ,101,001, , , ,) stands for atuple P-tree of
value 110 in band 1, 101 in band 3 and 001 in band 4 and any
valuein any other band.

P(V11 V21 seey

Definition 4: A interval P-tree P; (v, V,), is the P-tree for value
in theinterval of [vy, V5] of bandi. We have,
P, (v, Vo) = OR P, (v), for dl vin[vy, vol.

Any vaue P-treg, tuple P-tree can be constructed by performing
ANDing on basic P-trees and their complements. Interval P-trees
can be constructed by combining AND and OR operations of
basic P-trees. All the P-tree operations, including AND, OR,
COMPLEMENT and XOR, can be performed on any kinds of P-
trees we defined above. The process of ANDing basic P-trees and
their complements to produce value P-trees or tuple P-trees can be
done at any level of precision -- 1-bit precision up to 8-bit
precision.

4. PROPERTIES OF P-TREES

In this section, we will discuss the good properties of P-trees.
We will use the following notations:

p,, isthe pixel with coordinate (x, y), V, ,; is the value for the
band i of the pixel Py Doy |sthejth bit of V, . (bits are
numbered from left to rlght b yio 1S the leftmost blt) Indlces X:
column (x-coordinate), y: row (y-coordinate), i: band, j: bit.

For any P-trees P, P, and P,, P; & P, denotes P; AND Py, P; | P,
denotes P; OR P,, P; O P, denotes P; XOR P,, P’ denotes
COMPLEMENT of P.

P; ; is the basic P-tree for bit j of band i, Pi(v) is the value P-tree
for the value v of band i, P;(vy, V) is the interval P-tree for the
interval [vy, v,] of band I, re(P) is the root count of P-tree P. P° is
pure-0 tree, P' is pure-1 tree. N is the number of pixelsin the
image or space under consideration.

Lemma 1: For any two P-trees P; and P,, re(Py | Pp) = 0 =
re(Py) = 0 and rc(P,) = 0. More strictly, re(P; | P,) = 0, if and
onlyif rc(P;) = 0and rc(P,) = 0

Proof: (Proof by contradiction) Let, rc(P;) # 0. Then, for some
pixels there are 1sin P, and for those pixels there must be 1sin P,
| Poi.e rc(Py | Py) #0, But we assumed rc(P; | P,) = 0. Therefore
rc(P,) = 0. Similarly we can prove that rc(P,) = 0.

The proof for the inverse, rc(P,) = 0 and rc(Py) = 0 = rc(Py | Py)
= Oistrivial. Thisimmediately follows the definitions.

Lemma2: &) rc(Py) = 0orrc(Py) =0 =rc(P1 & Py)) =0
b) rc(Py) = 0andrc(Py) = 0 = rc(P1 & P,) = 0.

c)re(P°) =0
dyre(P)=N
e P&P°=P°
fy P& P =P
g) P|P’=

h) P|P' =P
i) P& P'=P°
i) P|P'=P*

Proofs are immediate.

Lemma 3: v 2V, = rc{P; (V1) & Pi(v,)}=0, for any band i.

Proof: P; (v) represents al the pixels having value v for the band i.
If vi ZV,, no pixel can have the values of both v; and v, for the
same band. Therefore, if thereisa 1 in P; (v;) for any pixel, there
must be 0 in P;(v,) for that pixel and vice versa. Hence rc{P; (v1)
& Pi(v)} = 0.

Lemma4: rc(Py | Py) = rc(Py) + rc(Py) - re(Py & Py).

Proof: Let the number of pixels for which there are 1sin P, and
Os in P, is ny, the number of pixels for which there are Osin Py
and 1sin P, is n, and the number of pixels for which there are 1s
in both P; and P, isns.

Now, rc(Py) = ny + nz, rc(Py) = Ny + N, re(P1 & Py) = ng

and re(Py | Po) = np+ np+ ng=(ng + ng) + (Nz + ng) - ng

=rc(Py) + rc(Py) - re(PL & Py)

Theorem: rc{P; (v1) | Pi(v2)} = rc{P; (vi)} + rc{Pi(w)}, where v, #
Vo

Proof: re{P; (vy) | Pi(v2)} = re{P; (o)} + re{Pi(v2)} - re{Pi (vy) &
Pi(v,)} (Lemma4)

If v; Zv, re{P; (v1) & Pi(vp)} = 0. (Lemma 3)

Therefore, re{P; (v1) | Pi(vo)} = rc{P; (vi)} + re{Pi(vo)}.

5. IMPLEMENTATION
EXPERIMENTAL RESULTS
5.1 P-tree Header

To make ageneralized P-tree structure, the following header for a
P-treefileis proposed in table 2.

ISSUES AND

Table 2. P-tree header

1byte | 2bytes 1 byte 4 bytes 2 bytes
Format Fan- #of Root Length of Body of
Code out levels count the body the P-tree

Format code: Format code identifies the format of the P-tree,
whether itisaPCT or PMT or in any other format.

Fan-out: Thisfield contains the fan-out information of the P-tree.
Fan-out information is required to traverse the P-tree in
performing various P-tree operations.

of levels: Number of levels in the P-tree. When we encounter a
purel or pured node, we cannot tell whether it is an interior node
or a leaf unless we know the level of that node and the total
number of levels of the tree. Thisis required to know the number
of 1srepresented by a purel node.

Root count: Root count i.e. the number of 1s in the P-tree.
Though we can calculate the root count of a P-tree on the fly from
the P-tree data, these only 4 bytes of space can save computation
time when we only need the root count of a P-tree. The root count
of a P-tree can be computed at time of construction of P-tree with
avery little extra cost.

Length of the body: Length of the body is the size of the P-tree
file in bytes excluding the header. Sometimes we may want to
keep the whole P-tree into RAM to increase the efficiency of
computation. Since the size of the P-tree varies, we need to
allocate memory dynamically, which requires knowing the size of
the required memory size before reading the data from disk.

5.2 Performance Analysis

We only store the basic P-trees for each dataset. All other P-trees
(value P-trees and tuple P-trees) are created on the fly as needed.
This results in a considerable saving of space. Figure 8, 9 and 10
give the storage needs for various formats of data (TIFF, SPOT
and TM scene) using various formats of P-trees (PCT or PMT)
with different fan-out patterns.

The AND operation of basic P-trees is fast. Figure 11 and 12
show the time required to perform P-tree ANDing. The ANDing
time varies from 6.72 ms to 52.12 ms for two TM scenes
with size 2048x2048.

File Size Vs Bit Number

o 50 <> =
E3 400 -Tree-4-4-4
o
N 300 VN ——fll——PC-Tree-4-4-16
@ 00 PMT
o | | |
LI I - —
0
0 1 2 3 4 5 6 7 8 9
Bit Number

File Size Vs Bit Number

600
500 O>—=>
400 \g -Tree-4-4-4

300 ——PC-Tree-4-4-16
200 | TEH T HHHHY

‘ PMT

File Size (KB)

00| | |

0 1 2 3 4 5 6 7 8 9
Bit Number

Figure 8. Comparison of filesizefor different
bitsof Band 1 & 2 of a TIFF image

File Szie Vs Bit Number
3500
o 3000
X 2500 ——t——PC-Tree-4-4-4
% 2000 =——l——PC-Tree-4-4-16
& 1500 ‘JHH‘ e
© 1000 I | PMT
T 500
i
o+—J
0 1 2 3 4 5 6 7 8 9
Bit Number
File Szie Vs Bit Number
3500
o 3000 6
X 2500 ~ Tree-4-4-4
© 2000
% 1500 VY il PC-Tree-4-4-16
o 1000 \ i i PMT
= |
500
T T, 1 \
0 1 2 3 4 5 6 7 8 9
Bit Number

Figure 9. Comparison of filesizefor different
bits of Band 3 & 4 of a SOPT image

File Size Vs Bit Number
10000 &—&é
—~ ﬁ v v
g 8000 & -Tree-4-4-4
< &w—"—"
6000 — =—{l——PC-Tree-4-4-16
[}
N ot P
@ 40004 e PC-Tree-4-4-64
2 2000 PMT
w
0 —
0 1 2 3 4 5 6 7 8 9
Bit Number
File Size Vs Bit Number
—~ 10000
3 |
X 8000 -Tree-4-4-4
@ 6000 — wlllPC-Tree-4-4-16
N d
o 4000 - Se PC-Tree-4-4-64
Q2 2000 / PMT
ic o i
0 1 2 3 4 5 6 7 8 9
Bit Number

Figure 10. Comparison of file size for different
bitsof Band 5 & 6 of aTM image

Time Vs Lowest Bit Nuber

T M‘—{!
4
0 1 2

Lowest Bit Number

———PC-Tree
—B—PMT

Peano Sequence

Time (ms)
o 9N w

4 5 6 7 8

Figure 11. Comparison of timerequired to perform
ANDing operation

Time Required Vs Bit Number

60

50 >
40

30

2 |
10 ‘/‘

0 1 2 3 4 5 6 7 8

Bit Number

Time (ms)

Figure 12. Averagetimerequired to perform
ANDing operation

6. RELATED WORK

Concepts related to the P-tree data structure, include Quadtrees|[1,
2, 3, 4, 5] and its variants (such as point quadtrees [3] and region
quadtrees [4]), and HH-codes [6].

Quadtrees decompose the universe by means of iso-oriented
hyperplanes. These partitions do not have to be of egua size,
athough that is often the case. The decomposition into subspaces
is usually continued until the number of objects in each partition
is below a given threshold. Quadtrees have many variants, such
as point quadtrees and region quadtrees.

HH-codes, or Helica Hyperspatid Codes, are hinary
representations of the Riemannian diagonal. The binary division
of the diagonal forms the node point from which eight sub-cubes
are formed. Each sub-cube has its own diagonal, generating new
sub-cubes. These cubes are formed by interlacing one-
dimensional values encoded as HH bit codes. When sorted, they
cluster in groups along the diagonal. The clusters are order in a
helical pattern, thus the name "Helical Hyperspatia".

The similarities among P-tree, quadtree and HHCode are that they
are quadrant based. The difference is that P-trees focus on the
count. P-trees are not index, rather they are representations of the
datasets themselves. P-trees are particularly useful for data
mining because they contain the aggregate information needed for
data mining.

7. CONCLUSION

In this paper, we describe the properties and algebra of a lossless
data structure, Peano Count Tree (P-tree). P-tree structure has
nice features so that it can be used for efficient data mining, such
as association rule mining, classification and clustering. The
details of how to use P-trees in data mining is beyond the scope of
this paper. The basic ideais that in the processing of data mining,
alot of counts are needed. With the information in P-trees, these
counts can be collected in a fast way by ANDing appropriate P-
trees instead of scanning the entire database. The idea of P-tree
initially came from the spatial data, however, it can be extended to
represent other kinds of data, such as DNA Microarray data and
VLS data.

8. REFERENCES
[1] Volker Gaede and Oliver Gunther, “Multidimensional Access
Methods’, Computing Surveys, 30(2), 1998.

[2] H. Samet, “The quadtree and related hierarchical data
structure”. ACM Computing Survey, 16, 2, 1984.

[3] H. Samet, “Applications of Sptial Data Structures’, Addison-
Wesley, Reading, Mass., 1990.

[4] H. Samet, “The Design and Analysis of Spatial Data
Structures’, Addison-Wesley, Reading, Mass., 1990.

[5] R.A.Finkel and J. L. Bentley, “Quad trees: A data structure
for retrieval of composite keys’, ActaInformatica, 4, 1,
1974.

[6] HH-codes. Available at
http://Aww.statkart.no/nlhdb/iveher/hhtext.html

[7] William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy,
“Deriving High Confidence Rules from Spatial Data using
Peano Count Trees’, Springer-Verlag, LNCS 2118, July
2001.

