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ABSTRACT
Recently, there has been substantial interest in the study of
various random networks as mathematical models of com-
plex systems. As these complex systems grow larger, the
ability to generate progressively large random networks be-
comes all the more important. This motivates the need for
efficient parallel algorithms for generating such networks.
Naive parallelization of the sequential algorithms for gener-
ating random networks may not work due to the dependen-
cies among the edges and the possibility of creating duplicate
(parallel) edges. In this paper, we present MPI-based dis-
tributed memory parallel algorithms for generating random
scale-free networks using the preferential-attachment model.
Our algorithms scale very well to a large number of proces-
sors and provide almost linear speedups. The algorithms
can generate scale-free networks with 50 billion edges in 123
seconds using 768 processors.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; G.2.2 [Discrete Mathemat-
ics]: Graph Theory
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1. INTRODUCTION
Advances in hardware technology as well as the develop-

ments in software and algorithms have enabled the detailed
study of complex networks. Complex networks such as the
Internet [12, 26], biological networks [14], social networks
[21, 18], and various infrastructure networks [4, 19, 8] are
abstracted as random graphs for the purposes of obtain-
ing rigorous mathematical results; see e.g. [8]. The study
of these complex systems have significantly increased the
interest in various random graph models [5]. As some of
the complex networks grow, it has become necessary to cor-
respondingly generate massive random networks efficiently.
As discussed in [20], a smaller network may not exhibit the
same behavior, even if both networks are generated using the
same model. In [20], by experimental analysis, it was shown
that the structure of larger networks is fundamentally differ-
ent from small networks, and many patterns emerge only in
massive datasets. In the areas of network science and data
mining as well as social sciences and physics, large-scale net-
work analysis is becoming a dominant field [2].

Many random graph models have been developed in the
past. Among them, the first and well-studied model is the
Erdös–Rényi model [11]. However, the Erdös–Rényi model
does not exhibit the characteristics observed in many real-
world complex systems [5]. As a result, many other random
graph models, such as small-world [27], Barabási–Albert [3,
1], Chung-Lu [23], exponential random graph [13, 25], R-
MAT [7], and HOT [6] models, have been proposed.

Barabási and Albert [3] discovered a class of inhomoge-
neous networks, called scale-free networks, characterized by
a power-law degree distribution P (k) ∝ k−γ , where k repre-
sents the degree of a node. While highly connected nodes are
improbable in exponential networks, they do occur with sta-
tistically significant probability in scale-free networks. Fur-
thermore, the work of Albert et al. [1] suggests these highly
interconnected nodes appear to play an important role in
the behavior of scale-free systems, particularly with respect
to their resilience [8].

Watts and Strogatz [27] described small-world networks,
which also lead to relatively homogenous topology [8]. This
model transforms a regular one-dimensional lattice (with
vertex degree of four or higher) by rewiring each edge, with
certain probability, to a randomly chosen vertex. It has



been found that, even with the small rewiring probability,
the average shortest-path length of the resulting graphs is
of the order of random graphs, and generates graphs with
fat-tailed degree distributions [28].

Demand for large random networks necessitates efficient,
both in terms of running time and memory consumption, al-
gorithms to generate such networks. Although various ran-
dom graph models are being used and studied over the last
several decades, even efficient sequential algorithms for gen-
erating such graphs were nonexistent until recently. Batagelj
and Brandes [5] justifiably said “To our surprise we have
found that the algorithms used for these generators in soft-
ware such as BRITE, GT-ITM, JUNG, or LEDA are rather
inefficient. . . . superlinear algorithms are sometimes toler-
able in the analysis of networks with tens of thousands of
nodes, but they are clearly unacceptable for generating large
numbers of such graphs.” As a step towards meeting this
goal, recently efficient sequential algorithms have been devel-
oped to generate certain classes of random graphs: Erdös–
Rényi [5], small world [5], Preferential Attachment [5, 24],
and Chung-Lu [23].

However, although efficient sequential algorithms are able
to generate networks with millions of nodes quickly, gener-
ating networks with billions of nodes can take substantially
longer. Further, a large memory requirement often makes
generation of such large networks using these sequential al-
gorithms infeasible. Shared memory parallel machines pro-
vide one alternative to overcome the problems. Distributed-
memory parallel algorithms provide another natural alter-
native.

The design of parallel distributed memory algorithms poses
two main challenges in the context of generating random
graphs. Firstly, the dependencies among the edges, espe-
cially in the preferential-attachment model, impede inde-
pendent operations of the processors. Second, different pro-
cessors can create duplicate edges, which must be avoided.
Dealing with both of these problems requires complex syn-
chronization and communications among the processors, and
thus gaining satisfactory speedup by the parallelization be-
comes a challenging problem. Even for the Erdös–Rényi
model where the existence of edges are independent of each
other, parallelization of a non-naive efficient algorithm, such
as the algorithm by Batagelj and Brandes [5], is a non-trivial
problem. A parallelization of Batagelj and Brandes’s algo-
rithm was recently proposed in [24].

For the preferential attachment model, the only previ-
ously known distributed-memory parallel algorithm is given
by Yoo and Henderson [28]. Although useful, the algorithm
has two weaknesses: (i) to deal the dependencies and the
required complex synchronization, they came up with an
approximation algorithm rather than an exact algorithm;
and (ii) the accuracy of their algorithm depends on several
control parameters, which are manually adjusted by running
the algorithm repeatedly. Several other studies were done
on the evolving and growth model. Machta and Machta
[22] described how an evolving network can be generated
in parallel. Dorogovtsev et al. [10] proposed a model that
can generate graphs with fat-tailed degree distributions. In
this model, starting with some random graph, edges are ran-
domly rewired according to some preferential choices.

In this paper, we study the problem of designing a dis-
tributed memory parallel algorithm for generating massive
scale-free networks based on the preferential attachment (PA)

model. To the best of our knowledge, our algorithms are the
first distributed-memory parallel algorithms for generating
random graphs following the preferential attachment model
exactly.

The rest of the paper is organized as follows. Preliminar-
ies, notations and a description of the parallel computation
model is given in Section 2. In Section 3, we describe the
problem and algorithms. Some sequential algorithms are
discussed in Section 3.1. In Section 3.2, we present our par-
allel algorithm for distributed memory architecture for the
case where each node connects a single edge to the existing
network. In Section 3.3, we extend the algorithm for a gen-
eral case where each node contributes x edges to the existing
network. Experimental results showing the performance of
our parallel algorithms are presented in Section 4. Finally,
we conclude in Section 5.

2. PRELIMINARIES AND NOTATIONS
In the rest of the paper, we use the following notations.

We denote a network G(V,E), where V and E are the sets of
vertices (nodes) and edges, respectively, with m = |E| edges
and n = |V | vertices labeled as 0, 1, 2, . . . , n − 1. We use
the terms node and vertex interchangeably. If (u, v) ∈ E,
we say u and v are neighbors of each other. The set of all
neighbors of v ∈ V is denoted by N(v), i.e., N(v) = {u ∈
V |(u, v) ∈ E}. The degree of v is dv = |N(v)|. If u and v
are neighbors, sometime we say that u is connected to v and
vice versa.

We develop parallel algorithms for the message passing in-
terface (MPI) based distributed memory system, where the
processors do not have any shared memory and each proces-
sor has its own local memory. The processors can exchange
data and communicate with each other by exchanging mes-
sages. The processors have a shared file system and they
read-write data files from the same external memory. How-
ever, such reading and writing of the files are done indepen-
dently.

We use K, M and B to denote thousands, millions and
billions, respectively; e.g., 2B stands for two billion.

3. PREFERENTIAL ATTACHMENT MODEL
Preferential attachment model is a model for generating

random evolving scale-free networks using a preferential at-
tachment mechanism. In a preferential attachment mecha-
nism, a new node is added to the network and connected to
some existing nodes that are chosen preferentially based on
some properties of the nodes. In the most common appli-
cation, preference is given to nodes with larger degrees: the
higher the degree of a node, the higher the probability of
choosing it. In this paper, we study only the degree-based
preferential attachment, and in the rest of the paper, by pref-
erential attachment (PA) we mean degree-based preferential
attachment.

Before presenting our parallel algorithms for generating
PA networks, we briefly discuss the sequential algorithms
for the same.

3.1 Sequential Algorithms for Preferential At-
tachment Model

One way to generate a random PA network is to use the
Barabási–Albert (BA) model. In [3], Barabási and Albert
showed many real-world networks have two important char-



acteristics: (i) they are evolving in nature and (ii) the net-
work tends to be scale free. They provided a model, known
as the Barabási–Albert (BA) model, where a new node is
connected to an existing node that is chosen with probabil-
ity directly proportional to its current degree. The networks
generated by BA model are called BA networks, which bear
those two characteristics of a real-world network. BA net-
works have power law degree distribution. A degree distri-
bution is called power law if the probability that a node has
degree d is given by Pr{d} ∼ d−γ , where γ is a positive
constant.

The BA model works as follows. Starting with a small
clique of x̂ nodes, in each phase t, a new node t is added to
the network and connected to x ≤ x̂ randomly chosen exist-
ing nodes: Ft(k) for 1 ≤ k ≤ x with Ft(k) < t; that is, Ft(k)
denotes the kth node which t is connected to. Thus each
phase adds x new edges (t, Ft(1)), (t, Ft(2)), . . . , (t, Ft(x))
to the network, which exhibits the evolving nature of the
model. For each of the x new edges, nodes Ft(1), Ft(2), . . . , Ft(x)
are randomly selected based on the degrees of the nodes in
the current network. In particular, the probability Pt(i) that

node t is connected to node i < t is given by Pt(i) = di∑
j dj

,

where dj represents the degree of node j. Barabási and Al-
bert showed this preferential attachment method of selecting
nodes results in a power-law degree distribution [3].

In the following discussion, we assume x = 1, and for this
case, we use Ft for Ft(1). We discuss the general case x ≥ 1
later. A naive implementation of the above algorithm can
take Ω(n2) time. One naive approach is to maintain a list
of the degrees of the nodes, and in each phase t, generate

a uniform random number in

[
1,
t−1∑
i=0

di

]
and scan the list

of the degrees sequentially to find Ft. In this case, phase t
takes Θ(t) time, and the total time is Ω(n2). Batagelj and
Brandes [5] give an efficient algorithm with running time
O(m). This algorithm maintains a list of nodes such that
each node i appears in this list exactly di times. The list
can easily be updated dynamically by simply appending u
and v to the list whenever a new edge (u, v) is added to
the network. Now to find Ft, a node is chosen from the
list uniformly at random. Since each node i occurs exactly
di times in the list, we have Pr{Ft = i} = di∑

j dj
. Notice

for the case x > 1, this algorithm may produce duplicate
edges. To avoid duplicate edges efficiently, the algorithm
requires each node to maintain separate lists of neighbors.
A sequential implementation of this algorithm is given in the
graph algorithm library NetworkX [16].

As it turns out none of the above algorithms lead to an effi-
cient parallelization. Another algorithm, called copy model,
proposed in [17] also leads to preferential attachment and
power law degree distribution. The algorithm works as fol-
lows. In each phase t,

Step 1: first a random node k ∈ [1, t−1] is chosen with
uniform probability.

Step 2: then Ft is determined as follows:

Ft = k with prob. p (1)

= Fk with prob. (1− p) (2)

It can be easily shown that Pr{Ft = i} = di∑
j dj

when p =
1
2
. Thus when p = 1

2
, this algorithm follows the Barabási–

Albert model as shown below. Ft can be equal to i in two
mutually exclusive ways: i) i is chosen in the first step and
assigned to Ft in the second step (Eq. 1); this event occurs
with probability 1

t−1
· p; or ii) a neighbor of i, v ∈ {u|Fu =

i} is chosen in the first step, and Fv is assigned to Ft in
the second step (Eq. 2); this event occurs with probability
di−1
t−1
· (1− p). Thus we have

Pr{Ft = i} =
1

t− 1
· p+

di − 1

t− 1
· (1− p)

=
p+ (di − 1)(1− p)

1
2

∑
j dj

When p = 1
2
, we have Pr{Ft = i} = di∑

j dj
.

Thus, the copy model is more general than the BA model.
In [17], it has been shown that the copy model produces net-
works with degree distribution following a power law d−γ ,
where the value of the exponent γ depends on the choice of p.
Further, it is easy to see the running time of the copy model
is O(m), and we found that copy model leads to more effi-
cient parallel algorithms for generating preferential attach-
ment networks. We develop our parallel algorithm based on
the copy model.

3.2 Parallel Algorithm for Preferential Attach-
ment Model with x = 1

The dependencies among the edges pose a major challenge
in parallelizing preferential attachment algorithms. In phase
t, to determine Ft, it requires that Fi is known for each i < t.
As a result, any algorithm for preferential attachment seems
to be highly sequential in nature: phase t cannot be executed
until all previous phases are completed. However, a careful
observation reveals that Ft can be partially, or sometime
completely, determined even before completing the previ-
ous phases. The copy model helps us exploit this observa-
tion in designing a parallel algorithm. However, it requires
complex synchronizations and communications among the
processors. To keep the algorithm efficient, such synchro-
nizations and communications must be done carefully. In
this section, we present a parallel algorithm based on the
copy model.

For the ease of discussion, we first present our algorithm
for the case x = 1. We present the general case x ≥ 1 in
Section 3.3.

Let P be the number of processors. The set of nodes
V is divided into P disjoint subsets V1, V2, . . . , VP ; that is,
Vi ⊂ V , such that for any i and j, Vi∩Vj = ∅ and

⋃
i Vi = V .

Processor Pi is responsible for computing and storing Ft for
all t ∈ Vi. The load balancing and performance of the algo-
rithm crucially depend on how V is partitioned. We study
three partitioning approaches. In the first two approaches,
consecutive nodes are assigned to a processor whereas in the
last approach, nodes are assigned in a round robin fashion.
The details of these partitioning schemes are given later in
Section 3.5. Some network analysts may prefer to generate
networks on the fly and analyze it without performing disk
I/O. Many network analysis algorithms require partitioning
the graph into equal number of edges per processor. Some
algorithms require the consecutive nodes to be stored in the
same processor. Our different partitioning schemes can be
used to satisfy many such requirements.

The basic principle behind our parallel algorithm is as
follows. Recall the sequential algorithm for the copy model.



Each processors Pi can independently compute step 1 for
each t ∈ Vi, as a random k ∈ [1, t−1] is chosen with uniform
probability (independent of the node degrees). Also in step
2, if Ft is chosen to be k, Ft is determined immediately. If
Ft is chosen to be Fk, determination of Ft need to be waited
until Fk is known. If k ∈ Vj where i 6= j, processor i sends a
request message to processor j to find Fk. Note that at the
time when processor j receives this message, Fk can still be
unknown. If so, Pj keeps this message in a queue until Fk is
known. Once Fk is known, Pj sends back a resolved message
to Pi. The basic method executed by a processor Pi is given
in Algorithm 3.1. An example instance of the execution of
this algorithm with seven nodes is depicted in Figure 1.

Algorithm 3.1 Parallel PA with x = 1

1: Each processor Pi executes the following in parallel:

2: for each t ∈ Vi do
3: k ← a uniform random node in [1, t− 1]
4: c← a uniform random number in [0, 1]
5: if c < p (i.e., with probability p) then
6: Ft ← k
7: else
8: Ft ← NILL // to be set later to Fk
9: send message 〈request, t, k〉 to Pj , where k ∈ Vj

10: Next, processor Pi receives messages sent to it and pro-
cesses them as follows:

11: Upon receipt of message 〈request, t′, k′〉 from P ′j : note
that k′ ∈ Vi

12: if Fk′ 6= NILL then
13: send message 〈resolved, t′, Fk′〉 to P ′j
14: else
15: store t′ in queue Qk′

16: Upon receipt of message 〈resolved, t, v〉:
17: Ft ← v
18: for each t′ ∈ Qt do
19: send message 〈resolved, t′, v〉 to Pj where t′ ∈ Vj

1 2 3 4 5 6

1 2 3 4 5 6

0

0

a

b

Figure 1: A network with 7 nodes generated by Al-
gorithm 3.1: a) an intermediate instance of the net-
work in the middle of the execution of the algorithm,
b) the final network. Solid lines show final resolved
edges, and dashed lines show waiting of the nodes.
For example, for node t = 4, k is chosen to be 2, F4

is chosen to be set to k = 2 (in Line 5-6), and thus
edge (4, 2) is finalized immediately. For node t = 5,
k is 3 and F5 is set to be F3 (in Line 8); as a result,
determination of F5 is waited until F3 is known. At
the end, we have F5 = F3 = F2 = 1.

3.3 Parallel Algorithm with x ≥ 1

In Section 3.2, we presented the algorithm for the simpler
case x = 1. In this section, we modify this algorithm for
the general case where each node creates x ≥ 1 edges. The
pseudocode of the algorithm is given in Algorithm 3.2. The
basic structure of the algorithm for the general case is the
same as that of the special case x = 1. We mainly focus our
discussion only on the modifications required and the differ-
ences between the two cases. The main difference is that,
for each node t, instead of computing one edge (t, Ft), we
need to compute x edges (t, Ft(1)), (t, Ft(2)), . . . , (t, Ft(x)),
and make sure such edges are distinct and do not create
any parallel edges. For this general case, the set of nodes
{Ft(1), Ft(2), . . . , Ft(x)} is denoted by Ft.

The algorithm starts with an initial network, which is a
clique of the first x nodes labeled 0, 1, 2, . . . , x − 1. Each
of the other nodes from x to n − 1 generates x new edges.
There are fundamentally two important issues that need to
be handled for the general case: i) how we select Ft(e) for
node t where 1 ≤ e ≤ x, and ii) how we avoid duplicate
edge creation. Multiple edges for a node t are created by
repeating the same procedure x times (Line 3), and dupli-
cate edges are avoided by simply checking if such an edge
already exists – such checking is done whenever a new edge
is created.

For the e-th edge of a node t, another node k is chosen
from [x, t − 1] uniformly at random (Line 4). Edge (t, k) is
created with probability p (Line 6). However, before creat-
ing such an edge (t, k) in Line 8, the existence of such an
edge is checked immediately before creating them in Line
7. If the edge already exists at that time, the process is
repeated again (Line 10). With the remaining 1− p proba-
bility, t is connected to some node in Fk; that is, we make an
edge (t, Fk(`)), such that ` is chosen from [1, x] uniformly at
random. Similar to the special case x = 1, if k is in another
processor, a request message is sent to that processor to find
Fk(`) (Line 14). The request and response messages are also
processed in the same way. The only major change is that
instead of one queue for each node, x queues are maintained
for each node.

Duplicate edges can also be created during the execution
of Line 23. For example, suppose node t creates two edges
(t, Fk(e)) and (t, Fk′(e

′)). Also assume both k and k′ are
not in the same processor as t. Hence, request messages are
sent to the processors containing k and k′ to resolve Fk(e)
and Fk′(e

′). If the e-th edge of k and e′-th edge of k′ both
connects to the same node u, then Fk(e) = Fk′(e

′) = u.
Hence, t may create a duplicate edge (t, u) which could not
be detected early. To deal with such duplicate edges, after
receiving a resolved message < resolved, t, e, v >, the adja-
cency list of t is checked to find whether edge (t, v) already
exists (Line 22). If the edge does not exist, it is created.
Otherwise, new k and ` are selected (Line 27-28), and a new
request message is sent (Line 29).

3.4 Dependency Chains
In our parallel algorithm, it is possible that computation

of Ft for some node t can be waited until Fk for some other
node k is known. Such waiting can form a chain namely
a dependency chain. For example, as demonstrated in Fig-
ure 1, computation of F5 is waited for F3, which in turn is
waited for F2, and so on, and thus we have chain of depen-
dency 〈5, 3, 2〉. If the length of these chains are very large,



Algorithm 3.2 Parallel PA with x ≥ 1

1: Each processor Pi executes the following in parallel:

2: for each t ∈ Vi do
3: for e = 0 to x− 1 do
4: k ← a uniform random node in [x, t− 1]
5: c← a uniform random number in [0, 1]
6: if c < p (i.e., with probability p) then
7: if k /∈ Ft then
8: Ft(e)← k
9: else

10: go to line 4
11: else
12: l← a uniform random number in [1, x]
13: Ft(e)← NILL // to be set later to Fk(l)
14: send message 〈request, t, e, k, l〉 to Pj , where k ∈

Vj

15: Next, processor Pi receives messages sent to it and pro-
cesses them as follows:

16: Upon receipt of message 〈request, t′, e′, k′, l′〉 from P ′j :
note that k′ ∈ Vi

17: if Fk′(l
′) 6= NILL then

18: send message 〈resolved, t′, e′, Fk′〉 to P ′j
19: else
20: store 〈t′, e′〉 in queue Qk′,l′

21: Upon receipt of message 〈resolved, t, e, v〉:
22: if v /∈ Ft then
23: Ft(e)← v
24: for each 〈t′, e′〉∈ Qt,e do
25: send message 〈resolved, t′, e′, v〉 to Pj where t′ ∈ Vj
26: else
27: k ← a uniform random node in [x, t− 1]
28: l← a uniform random number in [1, x]
29: re-send message 〈request, t, e, k, l〉 to Pj , where k ∈ Vj

the waiting period for some nodes can be quite long leading
to poor performance of the parallel algorithm. Fortunately,
the length of a dependency chain is small, and the perfor-
mance of the algorithm is hardly affected by such waiting.
In this section, we formally define a dependency chain and
provide a rigorous analysis showing that maximum length of
a dependency chain is at most O(logn) with high probability
(w.h.p.). For a large n, O(logn) is very small compared to
n. Moreover, while O(logn) is the maximum length, most
of the chains have much smaller length. It is easy to see
that for a constant p, average length of a dependency chain
is also constant, which is at most 1

p
. For an arbitrary p, the

average length is still bounded by logn as shown in Theo-
rem 3.3. Thus, while for some nodes a processor may need
to wait for O(logn) steps, the processor hardly remains idle
as it has other nodes to work with.

For the purpose of analysis, first we introduce another
chain named selection chain. In the first step (Line 3 of Al-
gorithm 3.1), for each node t, another node k ∈ [1, t − 1]
is selected. In turn for node k, another node in [1, k − 1]
is selected. We can think such a selection process creates
a chain called selection chain. Formally, we define a selec-
tion chain St starting at node t to be a sequence of nodes
〈u0, u1, u2, . . . , ui, . . . ux〉 such that u0 = t, ux = 1, and ui+1

is selected for node ui for 0 ≤ i < x. Notice that a selection

chain must end at node 1. The length of a selection chain
St denoted by |St| is the number of nodes in St.

In the next step (see Eqn. 2 and Line 4-8 of Algorithm
3.1), Ft is computed by assigning k or Fk to it. If Fk is se-
lected to be assigned to Ft, Ft cannot be determined until Fk
is known; that is, the computation of Ft for node t depends
on node k. In such a case, we say node t is dependent on
k; otherwise, we say node t is independent. In turn, node k
can depend on some other node, and eventually such succes-
sive dependencies can form a dependency chain. Formally,
a dependency chain Dt starting at node t is a sequence of
nodes 〈v0, v1, v2, . . . , vi, . . . vy〉 such that v0 = t, vi depends
on vi+1 for 0 ≤ i < y, and vy is independent. Notice that
if vi ∈ Dt, Dvi is a subsequence and a suffix of Dt. Also it
is easy to see that Dt is a subsequence and a prefix of St,
and we have |Dt| ≤ |St|. Examples of a selection chain and
a dependency chain are shown in Figure 2. Bounds on the
length of dependency chains are given in Theorem 3.3. The
following lemmas, Lemma 3.1 and 3.2, are needed to prove
Theorem 3.3.

n-1tki j0 1 2
u1u2 u0u3ux
v1v2 v0vy

Figure 2: Selection chain and dependency chain.
The entire chain, which is marked by the solid lines,
is a selection chain 〈t, k, j, i, 2, 1, 0〉, and the sub-chain
marked by the thick solid lines is a dependency chain
〈t, k, j, i〉.

Lemma 3.1. Let Pt(i) be the probability that node i is in
selection chain St starting at node t. Then for any 1 ≤ i < t,
Pt(i) = 1

i
.

Proof. Node i can be in St in two ways: a) node i is
selected for t (in Line 3 of Algorithm 3.1); the probability
of such an event is 1

(t−1)
; b) node k is selected for t, where

i < k < t, with probability 1
(t−1)

, and i is in Sk. Hence, for

1 ≤ i < t, we have

Pt(i) =
1

t− 1
+

t−1∑
k=i+1

1

t− 1
Pr{i ∈ Ck} (3)

⇒ (t− 1)Pt(i) = 1 +

t−1∑
k=i+1

Pk(i) (4)

Substituting t with t+ 1, for any i with 1 ≤ i < t+ 1, we
have

tPt+1(i) = 1 +

t∑
k=i+1

Pk(i) (5)

By subtracting Eqn. 3 from Eqn. 5,

tPt+1(i)− (t− 1)Pt(i) = Pt(i) (6)

⇒ Pt+1(i) = Pt(i) (7)

From Eqn. 7 by induction, we have Pk(i) = Pt(i) for any
k and t such that 1 ≤ i < min{k, t}. Now consider k = i+1.



Notice that i is in Si+1 if and only if i is selected for node
i+ 1; that is, Pi+1(i) = 1

i
. Hence, for any t > i, we have

Pt(i) = Pk(i) = Pi+1(i) =
1

i
.

Lemma 3.2. Let Ai denote the event that i ∈ St. Then
the events Ai for all i, where 1 ≤ i < t, are mutually inde-
pendent.

Proof. Consider a subset {Ai1 , Ai2 , . . . , Ai`} of any `
such events where i1 < i2 < . . . < ik. To prove the lemma,
it is necessary and sufficient to show that for any ` with
2 ≤ ` < t,

Pr

{⋂̀
k=1

Aik

}
=
∏̀
k=1

Pr {Aik} . (8)

We know

Pr

{⋂̀
k=1

Aik

}
= Pr

{
Ai1 |

⋂̀
k=2

Aik

}
· Pr

{⋂̀
k=2

Aik

}

When it is given that
⋂`
k=2Aik , i.e., i2, . . . , i` ∈ St, by

the constructions of selection chains Si2 and St and since
i1 < i2, we have i1 ∈ St if and only if i1 ∈ Si2 . Then

Pr

{
Ai1 |

⋂̀
k=2

Aik

}
= Pr

{
i1 ∈ Si2 |

⋂̀
k=2

Aik

}
.

Let Ri be a random variable that denotes the random
node selected for node i. Now observe that the occurrence
of event i1 ∈ Si2 can be fully determined by the variables in
{Rj | i1 < j ≤ i2}; that is, event i1 ∈ Si2 does not depend
on any random variables other than the variables in {Rj |
i1 < j ≤ i2}. Similarly, the events i2, . . . , i` ∈ St do not
depend on any random variables other than the variables in
{Rj | i2 < j ≤ t}. Since the random variables Ris are chosen
independently at random and the sets {Rj | i1 < j ≤ i2}
and {Rj | i2 < j ≤ t} are disjoint, the events i1 ∈ Si2 and⋂`
k=2Aik are independent; that is,

Pr

{
i1 ∈ Si2 |

⋂̀
k=2

Aik

}
= Pr {i1 ∈ Si2} .

By Lemma 3.1, we have Pr {i1 ∈ Si2} = 1
i1

= Pr {i1 ∈ St} =

Pr {Ai1} and thus,

Pr

{⋂̀
k=1

Aik

}
= Pr {Ai1} · Pr

{⋂̀
k=2

Aik

}
. (9)

Next, by using Eqn. 9 and applying induction on `, we
prove Eqn. 8. The base case, ` = 2, follows immediately
from Eqn. 9:

Pr

{
2⋂
k=1

Aik

}
= Pr {Ai1} · Pr {Ai2} .

By induction hypothesis, for ` − 1 events Aik , 2 ≤ k ≤ `,

we have Pr
{⋂`

k=2Aik

}
=
∏`
k=2 Pr {Aik}. Then using Eqn.

9 for case 2 < ` < t, we have

Pr

{⋂̀
k=1

Aik

}
= Pr {Ai1} ·

∏̀
k=2

Pr {Aik} =
∏̀
k=1

Pr {Aik} .

Theorem 3.3. Let Lt be the length of the dependency
chain starting at node t and Lmax = maxt Lt. Then the
expected length E[Lt] ≤ logn and Lmax = O(logn) w.h.p.,
where n is the number of nodes.

Proof. Let St and Dt be the selection chain and depen-
dency chain starting at node t, respectively, and Xt(i) be an
indicator random variable such that Xt(i) = 1 if i ∈ St and
Xt(i) = 0 otherwise. Then we have

Lt = |Dt| ≤ |St| =
t−1∑
i=1

Xi(t).

Let Pt(i) be the probability that i ∈ St; that is, Pt(i) =
Pr[Xt(i) = 1] and E[Xt(i)] = Pt(i) = 1

i
. By linearity of

expectation, we have

E[Lt] =

t−1∑
i=1

E[Xi] =

t−1∑
i=1

1

i

= Ht−1 ≤ log t ≤ logn

By Lemma 3.2, the random variables Xt(i), for 1 ≤ i < t,
are mutually independent. Applying the Chernoff bound on
independent Poisson trials, we have

Pr

{∑
t

Xt(i) ≥ (1 + δ)µ

}
≤

(
eδ

(1 + δ)(1+δ)

)µ
In the Chernoff bound, we set δ = 5 logn

µ
− 1. Since µ ≤

logn, we have δ > 0. Then,

Pr {L ≥ 5 logn} = Pr {L ≥ (1 + δ)µ}

≤
(

eδ

(1 + δ)(1+δ)

)µ
≤

(
e

1 + δ

)µ(1+δ)
≤

(
eµ

5 logn

)5 logn

≤
(
e logn

5 logn

)5 logn

≤ 1

n3

Thus, with probability at least 1− 1
n3 , length of the depen-

dency chain is O(logn). Using union bound, it holds simul-
taneously for all n nodes with probability at least 1 − 1

n2 .
Hence, we can say, the length of the dependency chain is
O(logn) w.h.p.

3.5 Partitioning and Load Balancing
Recall the formal definition of partitioning of the set of

nodes V = {0, 1, . . . , n−1} into P partitions V0, V1, . . . , VP−1

as described at the beginning of Section 3.2. A good load
balancing is achieved by properly partitioning the set of
nodes V and assigning each partition to one processor. Node
partitioning has significant effects on the performance of the
algorithm. In this section, we study several partitioning
schemes and their effects on load balancing and the perfor-
mance of the algorithm. In our algorithm, we measure the
computational load in terms of the number of nodes per pro-
cessor, the number of outgoing messages (request message)



from a processor, and the number of incoming messages (re-
sponse messages) to a processor.

There are several efficiency issues related to the partition-
ing of the nodes as described below. It is desirable that a
partitioning of the nodes satisfies the following criteria.

A. For any given k ∈ V , finding of j, where k ∈ Vj (Line
9, Algorithm 3.1), can be done efficiently, preferably in
constant time without communicating with the other
processors.

B. The partitioning should lead to a good load balancing.
The degrees of the nodes vary significantly, and a node
with a larger degree causes more messages to work
with. As a result, naive partitioning may lead to poor
load balancing.

C. As we discuss later, combining multiple messages (to
the same destination) and using one MPI send oper-
ation for them can increase the efficiency of the al-
gorithm. However, combining multiple messages may
not be possible with an arbitrary partitioning as it may
cause deadlocks.

With the objective of satisfying the above criteria, we
study the following nodes partition schemes.

3.5.1 Consecutive Node Partitioning (CP)
In this partitioning scheme, the nodes are assigned to the

processors sequentially. Partition Vi starts at nodes ni and
ends at ni+1 − 1, where n0 = 0 and nP = n. That is,
Vi = {ni, ni + 1, . . . , ni+1 − 1} for all i.

With the consecutive node partitioning, the only decision
to be made is the number of nodes to be assigned to each
partition Vi. The simplest way to do so is uniform parti-
tioning (UCP) where there are an equal number of nodes
in each partition, i.e., |Vi| =

⌈
n
P

⌉
for all i. This uniform

partitioning satisfies Criterion A and C above; however, it is
clear that such partitioning can lead to poor load balancing.
The computation in each processor i involves the following
three types of load:

A. generating random numbers and some other processing
for each node t ∈ Vi,

B. sending request messages for the nodes in Vi and re-
ceiving their replies, and

C. receiving request messages from other processors and
sending their replies.

The computation load for load type A and B above is di-
rectly proportional to the number of nodes in partition Vi.
Computation load for load type C depends not only on the
number of nodes in a processors but also on i, the rank of
the processor. With uniform consecutve node partitioning
(UCP), a lower ranked processor receives more request mes-
sages than a higher ranked processor, because with j < k,
E[Mj ] > E[Mk], where Mk is the number of request mes-
sages received for Node k (see Lemma 3.4).

Lemma 3.4. Let Mk be the number of request messages
received for node k. Then E[Mk] = (1 − p)(Hn−1 − Hk),
where Hk is the kth harmonic number.

Proof. Node k receives a request message from node t >
k if and only if t randomly picks k and decided to assign Fk
to Ft. The probability of such an event is (1−p) 1

t
. Then the

expected number of messages received for Node k is given
by

n−1∑
t=k+1

(1− p)1

t
= (1− p)(Hn−1 −Hk)

Next we calculate the computation load for each processor
with an arbitrary number of nodes assigned to the proces-
sors. To do so, we make the following simplifying assump-
tions: i) Sending a message takes the same computation
time as receiving a message, and ii) p = 1

2
(the same anal-

ysis will follow for arbitrary p by simply multiplying each
term with 2(1− p)). The number of nodes in Processor i is
ni+1 − ni. Then computation cost for load of type A and B
is c(ni+1 − ni) for some constant c. Following Lemma 3.4,
the expected load for type C in Processor i is

ni+1−1∑
k=ni

(Hn−1 −Hk)

= (ni+1 − ni)Hn−1 −
ni+1−1∑
k=ni

(Hk)

= (ni+1 − ni)Hn−1 − (ni+1Hni+1 − niHni) + (ni+1 − ni)
= (ni+1 − ni)(Hn−1 + 1)− (ni+1Hni+1 − niHni)

The second last line follows from Eqn. 2.36 in page 41 of
[15]. Thus, using another constant b = 1 + c, the total
computation load at Processor i is

(ni+1 − ni)(Hn−1 + b)− (ni+1Hni+1 − niHni)

The combined load for all processors is c′n for some con-

stant c′ and desired load in each processor is c′n
P

. Thus ni,
for all i, can be determined by solving the following system
of equations, which is unfortunately nonlinear.

n0 = 0

nP = n− 1

(ni+1 − ni)(Hn−1 + b)− (ni+1Hni+1 − niHni) = c′n
P

(10)

A good load balancing can be achieved by solving the
above system of equations. However two major difficulties
arise:

• It seems the only way the above equations can be
solved is by numerical methods and can take a pro-
hibitively large time to compute.

• Criterion A for load balancing may not be satisfied
leading to poor performance.

To overcome these difficulties, guided by experimental re-
sults, we approximate the solution of the above system of
equations with a linear function and call the resultant parti-
tioning scheme linear consecutive node partitioning (LCP).
Figure 3 shows the distribution of the nodes among proces-
sors for actual solutions of Equation 10 and linear approxi-
mation. As we will see later in Section 4, our approximate
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Figure 3: Distribution of the nodes among proces-
sors for actual solutions of Equation 10 and its linear
approximation.

scheme LCP provides a very good load balancing and per-
formance of the algorithm.

As in the LCP scheme, the number of nodes is increasing
linearly with i (the ranks of the processors), the number of
nodes in Processor i follows arithmetic progression a, a+ d,
a+ 2d, . . . , a+ (i− 1)d, . . . , that is, the number of nodes in
Processor i is a+(i−1)d, where d is the slope of the line for
linear approximation as shown in Figure 3. Slope d can be
approximated easily by sampling two points on the actual
line. How the parameter a and processor rank form a given
node (Criterion A) can be computed is given in Appendix
A.2.

Message Buffering: The processors exchange two types
of messages: request messages and resolve messages. For
each node t, a processor may need to send one request mes-
sage and receive one resolve message. If a Processor i has
multiple messages destined to the same processor, say Pro-
cessor j, Processor i can combine them into a single mes-
sage by buffering them instead of sending them individually.
Each processor can do so by maintaining P − 1 buffers, one
for each other processor. If the messages are not combined,
for large n, there can be a large number of outstanding mes-
sages in the system, and the system may not be able to deal
with such a large number of messages at a time, limiting our
ability to generate a large network. Further message buffer-
ing reduces overhead of packet header and thus improves
efficiency.

3.5.2 Round-Robin Node Partitioning (RRP)
In this scheme, nodes are distributed in a round robin fash-

ion among all processors. Partition Vi contains the nodes
〈i, i+p, i+2p, . . . , i+kp〉 such that i+kp ≤ n < i+(k+1)p;
that is, Vi = {j|j mod P = i}. In other words, node i is
assigned to partition Vi mod p. Similar to UCP, in this RRP
scheme also, the number of nodes in the partitions is almost
equal. The number of nodes in a partition is either dn/pe or
bn/pc. The difference between the number of nodes in two
partitions is at most 1.

From Lemma 3.4, it is clear that the expected number
of received messages decreases monotonically with increas-
ing node labels. Round robin partition on such monotonic
distribution typically performs better. For the round robin
node partitioning scheme, the computation load among pro-
cessors are well-balanced as shown analytically in Appendix
A.3. The difference between the computation load for any
two processors is at most O(logn), while the total compu-
tation load is Ω(n). RRP Scheme also satisfies Criterion A:
given a node, finding the processor where the node belongs

to can be computed in constant time (see Appendix A.3).
Message buffering: For consecutive node partitioning

(both UCP and LCP), message buffering (combining mes-
sages) does not require any special care to avoid deadlock.
In UCP and LCP, since Processor i may wait only for Pro-
cessor k such that k < i, there cannot be a circular waiting
among the processors, and therefore deadlock cannot arise.

However, in the RRP scheme, deadlock can occur if the
messages are not buffered carefully. The request messages
can be buffered as it is done in UCP or LCP. The resolved
message can also be buffered, but it needs to be done in a
special way to avoid deadlock. To avoid deadlock, resolved
messages must be sent out from the buffer (even if the buffer
is not full yet) after processing every group of received mes-
sages (when buffering is used, messages are sent and received
in groups). Sending the resolved messages cannot wait any
longer. Otherwise, it can cause circular waiting among the
processors leading to a deadlock situation.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our algo-

rithms. Our parallel algorithms’ accuracy is demonstrated
by showing that the algorithm produces networks with power
law degree distribution. Then we present the strong and
weak scaling of the algorithms. These algorithms scale very
well with the number of processors. We also present ex-
perimental results showing the impact of the partitioning
schemes on load balancing and performance of the algo-
rithms.

4.1 Experimental Setup
We used a high performance computing cluster of 48 Intel

Sandy Bridge nodes. Each node consists of two dual-socket
Intel Sandy Bridge E5-2670 2.60GHz 8-core processors (16
cores per node) and 64GB of 1600MHz DDR3 RAM. The
nodes are interconnected by QLogic QDR InfiniBand inter-
connects. For the MPI based implementation of our algo-
rithms, we used the MPICH2 (version 1.7), which optimized
for QLogic InfiniBand cards.

In the experiments, we used up to 768 processors. We
varied n from 107 to 109 and x from 4 to 10. Each of the
algorithms we considered generates the network in the main
memory, and the runtime does not include the time required
to write the graph into the disk.

4.2 Degree Distribution
The degree distribution of the graph generated by our

parallel algorithm is shown in Figure 4 in a log− log scale.
We used n = 109 nodes each adding x = 4 new edges with
a total of 4× 109 edges.

As the figure shows, the distribution is heavy tailed, which
is a distinct feature of the real-world power-law networks.
The exponent γ of this power-law degree distribution is mea-
sured to be 2.7, which supports the fact that for a finite av-
erage degree of a scale-free network, the exponent γ satisfies
2 < γ <∞ [9]. The above results show that our algorithms
produce scale-free networks very accurately.

4.3 Strong Scaling
Strong scaling of a parallel algorithm shows its perfor-

mance with the increasing number of processors keeping the
problem size fixed. Figure 5 shows speedup factors of our
algorithms with partitioning schemes uniform consecutive
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Figure 4: The degree distribution (in log− log scale)
of the network generated by our parallel algorithms.
The network is generated with n = 109 and x = 4.

(UCP), linear consecutive (LCP), and round-robin parti-
tioning (RRP) as the number of processors increases with
problem size n = 1B and x = 6. Speedup factors are mea-
sured as Ts/Tp, where Ts and Tp are the running time of
a sequential algorithm and the parallel algorithm, respec-
tively. We have implemented the sequential version of our
algorithm in C++. This sequential implementation outper-
forms the best available implementation of BA model given
in NetworkX graph algorithm library [16]. As the sequential
algorithm cannot generate more than 6 × 109 edges due to
memory limitation, we choose n = 109 and x = 6. We varied
the number of processors from 1 to 768 for this experiment.
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Figure 5: The strong scaling of our parallel algo-
rithms for the problem size n = 109 and x = 6.

Parallelization of network algorithms is notoriously hard.
Furthermore, we have observed that the problem of gener-
ating a scale-free random network is quite sequential in na-
ture due to the dependencies among the edges. As Figure 5
shows, the speedups of our algorithms are increasing almost
linearly with the number of processors. Given the sequen-
tial nature of the problem, our algorithms show very good
speedup. Further, the speedup of both LCP and RRP is
better than UCP, due to better load-balancing as discussed
in Section 4.6.

4.4 Weak Scaling
The weak scaling measures the performance of a parallel

algorithm when the input size per processor remains con-
stant. For this experiment, we varied the number of pro-
cessors from 16 to 768. With the number of processors, the
input size is also increased proportionally: for P processors,
a network with 107P edges is generated. Figure 6 shows the
weak scaling of our algorithms with the increasing number
of procesors.

In a perfect weak scaling case, the runtime is expected to
remain constant as the number of processors (P) increases.
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Figure 6: Weak scaling of our parallel PA algorithm.

However, in practice, communication among processors in-
creases with P, leading to an increase in runtime. Our al-
gorithm with load balancing schemes LCP and RRP show
very good weak scaling, almost constant runtime. Again,
due to poor load balancing in UCP scheme, we have worse
weak scaling.

4.5 Generating Large Networks
Our main goal for designing this algorithm is to generate

very large random networks. Using our algorithm with the
RRP scheme, we are able to generate a network with 50
billion edges, with n = 1B and x = 5. Using 768 processors,
the generation of this network takes only 123 seconds.

4.6 Partitioning and Load Balancing
Node partitioning has significant effects on load balanc-

ing and performance of the algorithm. In Section 3.5, we
have discussed three partitioning schemes UCP, LCP and
RRP, and theoretically analyzed them. In this section, we
experimentally study these schemes and their effect on the
performance of the algorithm. In these experiments, we use
n = 108 nodes, x = 10 edges per node, and 160 processors.
160 processors are sufficient to demonstrate the behavior and
differences of the partitioning schemes. For each of the three
schemes, we measure the computational load in the proces-
sors by the number of nodes per processor, the number of
outgoing messages from the processors, and the number of
incoming messages to the processors. The results are shown
in Figure 7.

4.6.1 Node Distribution
The node distribution is shown in Figure 7(a). For UCP

and RRP, nodes are distributed uniformly among the pro-
cessors, and each processor has about 62,500 nodes. For
LCP, the number of nodes in the processors are increasing
linearly with the rank of the processors.

4.6.2 Message Distribution
In a consecutive partitioning (UCP and LCP), processor i

sends outgoing request messages to processors 0 to i−1 and
receives incoming messages from processors i + 1 to P − 1.
For each node, a processor sends a request message with
probability at most 1 − p (see Eqn. 2). Thus, the expected
number of request messages sent by a processor is propor-
tional to the number of nodes in the processor, as shown
in Figure 7(b). Note that in the UCP and LCP schemes,
processor 0 does not need to send any request messages at
all.

Figure 7(c) shows the number of incoming request mes-
sages for each processor. It is clear that a lower ranked pro-
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Figure 7: Node and message distribution for the three partitioning schemes: UCP, LCP, RRP

cessor receives more messages than a higher ranked proces-
sor in consecutive partitioning (UCP and LCP) as suggested
by Lemma 3.4. In the RRP scheme, both incoming and out-
going messages are evenly distributed among the processors.

4.6.3 Total Load Distribution
Besides sending and receiving messages, for each node,

a processor can incur a constant other computation cost.
Thus, for analysis purposes, we measure the total computa-
tion load of a processor as the sum of the number of nodes
in the processor and the number of incoming and outgoing
messages. Figure 7(d) shows the total load for the three par-
titioning schemes. Scheme RRP distributes the load almost
perfectly among the processors. Load balancing in the LCP
scheme is also quite good. On the other hand, UCP scheme
distribute the load very poorly. These experimental results
verify our theoretical analysis given in Section 3.5.

5. CONCLUSION
We developed a parallel algorithm to generate massive

scale-free networks using the preferential attachment model.
We analyzed the dependency nature of the problem in detail
that led to the development of an efficient parallel algorithm
for the problem. Various node partitioning schemes and
their effect on the algorithm were discussed as well. Our
algorithm produces networks which strictly follow power-law
distribution. The linear scalability of our algorithm enables
us to produce 50 billion edges in just 123 seconds. It will be
interesting to develop scalable parallel algorithms for other
classes of random networks in the future.
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APPENDIX
A. PARTITIONING SCHEME

In this section, we describe some additional details of the
partitioning schemes. For a given n nodes and P processors,
we create P partitions V0, V1, . . . VP−1. The processors are
labeled as 0, 1, . . . P − 1. Partition Vi is processed by pro-
cessor i. For each scheme, we need to know i) the sizes of
the partitions, ii) the set of nodes in each partition, and iii)
for a given a node u, find the partition number to which u
belongs. Below we show how to calculate them for the three
partitioning schemes.

A.1 Uniform Consecutive Partitioning (UCP)
UCP is the simplest among the partitioning schemes. Con-

secutive and equal number of nodes are assigned to the par-
titions.

Partition size: The sizes of the partitions are almost equal.
Let B =

⌈
n
P

⌉
. Then, the size of a partition is either B or

B − 1.

Partition range: Partition i includes the nodes from iB
to (i+ 1)B − 1.

Finding processor rank: For a node u ∈ Vi, the rank of
the processor i is given by i =

⌊
u
B

⌋
.

A.2 Linear Consecutive Partitioning (LCP)
In this scheme, consecutive nodes are assigned to the par-

titions, and the number of nodes in the partitions are mod-
eled by arithmetic progression a, a+d, a+2d, . . . , a+(P−1)d.

Partition size: The number of nodes in partition Vi is
given by Bi = a + id, where a and d are partition parame-
ters. At the end of this section, we discuss how a and d are
determined.

Partition range: Partition i has the nodes from
∑i−1
j=0(a+

jd) = i (2a+(i−1)d)
2

to
∑i
j=0(a+ jd)− 1 = (i+ 1) (2a+id)

2
− 1.

Finding processor rank: Given a node u, we need to
find the partition i such that u ∈ Vi. Node u satisfies the
following inequality:

i−1∑
j=0

(a+ jd) ≤ u <
i∑

j=0

(a+ jd)

i (2a+ (i− 1)d)

2
≤ u < (i+ 1) (2a+ id)

2
(11)

Solving Inequality 11, we have

i =

⌊
−(2a− d) +

√
(2a− d)2 + 8du

2d

⌋



Determining partition parameters a and d: The pa-
rameters a and d are determined using the number of nodes
n and the number of processors P . Parameter d is the slope
of the straight line y = a+ dx, where y represent the num-
ber of nodes in the processor with rank x = i. We calcu-
late d by finding two points on this straight line. Putting
i = 0 and i = P − 1 in Eqn. 10, we can compute n1 and
nP−1. Then, the number of nodes in the first processor is
n1 − n0 = n1 and the number of nodes in last processor is
nP − nP−1 = n− 1− nP−1. Hence, we have

d =
n− 1− nP−1 − n1

P
.

Now, we have

P−1∑
j=0

(a+ jd) = n

⇒ P (2a+ (P − 1)d)

2
= n

⇒ a =
n

P
− (P − 1)d

2
(12)

A.3 Round Robin Partitioning
Partition size: As the nodes are distributed in round

robin fashion to the partitions, the number of nodes is almost
equal for all partitions. Similar to UCP scheme, the size of
a partition is either

⌈
n
P

⌉
or
⌈
n
P

⌉
− 1.

Partition range: For round robin partitioning, partition i
has the nodes i, i+ P, i+ 2P, . . . i+ (B − 1)P ≤ n.

Finding processor rank: For a given node u ∈ Vi, parti-
tion i is determined by i = u mod P .

Computation load: The expected number of request mes-
sages received for node k is (Hn−1 −Hk) (see Lemma 3.4).
Other loads for any node is constant. Then the total load
for node k is CL(k) = (Hn−1−Hk)+b, for some constant b.
Thus, the total load for Processor i with partition Vi = {j|j
mod P = i} is PL(i) =

∑
k∈Vi

(Hn−1 −Hk + b).

Notice that for any k1 < k2, CL(k1) > CL(k2). As a
result, we have PL(i1) > PL(i2) for any i1 < i2. Thus the
largest difference between the loads of two processors is

PL(0)− PL(P − 1)

=
∑
k∈V0

(Hn−1 −Hk + b)−
∑

k∈VP−1

(Hn−1 −Hk + b)

≤ (Hn−1 + b)(|V0| − |VP−1|)−
∑
k∈V0

Hk +
∑

k∈VP−1

Hk

If n is a multiple of P , we have

|V0| − |VP−1| = 0,∑
k∈VP−1

Hk <
∑
k∈V0

Hk +Hn,

and thus, PL(0)− PL(P − 1) < Hn = O(logn).

Otherwise,

|V0| − |VP−1| = 1,∑
k∈VP−1

Hk ≤
∑
k∈V0

Hk,

and thus, PL(0)− PL(P − 1) ≤ Hn−1 + b = O(logn).


