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Abstract—Identifying motifs (or commonly occurring sub-
graphs/templates) has been found to be useful in a number of
applications, such as biological and social networks; theyhave
been used to identify building blocks and functional properties,
as well as to characterize the underlying networks. Enumerating
subgraphs is a challenging computational problem, and all prior
results have considered networks with a few thousand nodes.
In this paper, we develop a parallel subgraph enumeration
algorithm, PARSE, that scales to networks with millions of
nodes. Our algorithm is a randomized approximation scheme,
that estimates the subgraph frequency to any desired level of
accuracy, and allows enumeration of a class of motifs that
extends those considered in prior work. Our approach is based
on parallelization of an approach called color coding, combined
with a stream based partitioning. We also show that PARSE
scales well with the number of processors, over a large range.

I. I NTRODUCTION

The problem of enumerating or counting the number of
embeddings of a given motif/subgraphT (referred to as a
“template” graph in this paper), within a graphG is a fun-
damental question that arises in a number of areas, including
bioinformatics [1; 12], data mining [9; 10] and social networks
[11]. In biological applications, such as gene transcription and
protein-protein networks, small motifs, whose frequency is
significantly different from random networks, have been found
to be very useful in characterizing such graphs (e.g., Milo et
al. [12]); it has been found that graphs which have similar
local properties (e.g., degree and centrality distributions) can
be distinguished by means of relative frequencies of such
subgraphs. Another related notion is that offrequent subgraphs
[9], which have been found to have functional significance
in such graphs. Lescovec et al. [11] study subgraphs in
Blog networks and recommendation systems, and use these
to develop insights into user behavior. Two variants which
have been studied are the enumeration ofinducedand non-
inducedembeddings of the template subgraph (see Section II
for definitions).

A significant challenge in subgraph enumeration is its com-
putational difficulty, and most of the above results (especially
in the case of non-induced embeddings) have been restricted
to graphs with a few thousand nodes and templates with no
more than ten nodes; most templates which have been studied
are trees and paths. This has motivatedapproximatecounting
[1; 6; 8], which is also computationally hard. Many of the

approaches for subgraph enumeration are back-tracking algo-
rithms, with novel techniques for careful candidate generation
and subgraph isomorphism, e.g., [9; 13]. These approaches
are not easy to parallelize because of the type of information
that needs to be maintained during the backtracking, with
the exception of clique enumeration [13], where there has
been quite a bit of work on parallel algorithms, that have
crucially exploited the structure of cliques, and is difficult
to extend to other templates. Another class of results for
subgraph enumeration is based on the powerful technique of
color coding(which also forms the basis of our paper), e.g.,
[1; 8], which has been used for approximating the number of
embeddings of templates that are trees or “tree-like” (or more
precisely, have a low “tree-width” - see II for details). Theidea
of color coding is to randomly color the graph usingk colors
(where k denotes the size of the template), and then count
the number of embeddings of “colorful” subgraphs - these
are embeddings in which all nodes have distinct colors. The
power of this technique comes from the fact that the number of
colorful embeddings can be determined by a natural dynamic
programming approach. However, the dynamic programming
has high memory requirements, and this approach has only
been used on small graphs with few hundred nodes. Therefore,
none of the current techniques for subgraph enumeration scale
to social networks with millions of nodes, which sometimes
do not even fit in memory.

In this paper, we present a randomized parallel algorithm,
PARSE (Parallel Subgraph Enumeration) for enumerating a
class of templatesT which can be partitioned into sub-
templatesT1 ∪ T2 by a cut-edge (see Section II for pre-
cise definitions); this is broader than most of the templates
considered in prior sequential algorithms, e.g., [1; 8], and
parallel algorithms [14]. Our algorithm uses color coding in
combination with a stream-based cover decomposition. The
stream-based approach addresses the space complexity issues
of the dynamic programming in the sequential form of color
coding. We test the performance of PARSE on graphs with
up to a few million nodes and hundred million edges and
templates with up to 10 nodes; our implementation shows
good scaling up to 350 processors, and runs in a few hours.
We also derive analytical bounds on the performance, which
yields explicit bounds on the extent to which the scaling holds.
All prior results have been for graphs which are at least two



orders of magnitude smaller.
PARSE is a randomized(ǫ, δ)-approximation scheme, which

estimates the number of non-induced occurrences within a
factor of (1 ± ǫ), with probability at least1 − δ, where ǫ
andδ are user defined parameters. The algorithm averages the
count over multiple iterations, and the number of iterations
(and hence, the running time) depends onǫ andδ. In practice,
we find that the approximation error is very low (less than
0.1%) with high probability (more than 0.95), within a small
number of iterations (less than 20). The algorithm involvesa
two-step approach: (i) we split the templateT into multiple
partsT1, . . . , Tj , and compute the number of “colorful” em-
beddings of the partsTi within each partition (see Section
II for precise definitions), and (ii) we use color coding to
exchange information about the counts of the partsTi (along
with the specific colorings) - this corresponds to one step
of the dynamic programming approach of [1; 8]. Together,
this provides a systematic way to deal with the high memory
requirement and irregular graph structure, which are among
the biggest challenges for subgraph enumeration. In addition,
we also discuss how we can count templates with small radius
(see Section IV-E) that does not require color coding and still
has less memory requirement.
Organization. We discuss definitions and the necessary back-
ground in Section II. Section II-A describes the Color-coding
approach. Section III describes our main algorithm and results
on some large social contact networks. Section IV validates
our algorithm from many aspects through experiments. Section
V gives some specifications in implementation of the algo-
rithm. Finally, Section VII concludes the paper.

II. BACKGROUND AND DEFINITIONS

We consider the problem of counting the number of non-
induced subgraphs of an undirected graphG(V, E), which are
isomorphic to a given templateT (V T , ET ); we let |V | = n
and the templates we consider are small and have constant
size. A subgraphH = (V ′, E′) is said to be isomorphic to
the templateT if there is a bijectionf : V T → V ′ such that
if (u, v) ∈ ET then (f(u), f(v)) ∈ E′; such a subgraphH
is said to be anon-inducedoccurrence ofT (in contrast to
an inducedoccurrence, in which(u, v) ∈ ET if and only if
(f(u), f(v)) ∈ E′). These concepts are illustrated in Figure
1, which shows a templateT with V T = {1, . . . , 5} and
graphG with V = {a, . . . , k}. Two subgraphsH1 and H2,
isomorphic toT are shown; the specific bijections which imply
isomorphism are also shown.H1 is an induced occurrence,
while H2 is a non-induced occurrence ofT . Let emb(T, G)
denote the number of non-induced occurrences of templateT
in the graphG.

The focus of our paper is to estimateemb(T, G) for givenT
andG. An additional issue is that depending on the symmetries
in the template, there might be more than one bijection
between the template and a subgraph (in other words, an
automorphism on the template); for instance, in addition to
the bijectionf shown in Figure 1, another bijectionf ′ is also
the following: f ′(1) = a, f ′(2) = b, f ′(3) = c, f ′(4) = e

a bc defgh ij k
1 23 4 5

H 1
H 2

Fig. 1. Example showing a graphG with V = {a, . . . , k} and template
T with V T = {1, . . . , 5}. H1 and H2 are two subgraphs ofG that are
isomorphic toT . For H1, the bijection isf(1) = a, f(2) = b, f(3) = c,
f(4) = d andf(5) = e, as shown by the dotted arrows. ForH2, the bijection
is f(1) = g, f(2) = h, f(3) = j, f(4) = k andf(5) = i. H1 is an induced
occurrence, whileH2 is a non-induced occurrence because of the presence
of the edge(h, i).

andf ′(5) = d. Therefore, in order to get a correct count, we
will have to divide the number of bijections by the number
of automorphisms ofT . We focus on randomized algorithms
to estimateemb(T, G), instead of computing it exactly. We
say that an algorithmA produces an(ǫ, δ)-approximation
to emb(T, G), if the estimateZ produced byA satisfies:
Pr[|Z − emb(T, G)| > ǫ · emb(T, G)] ≤ δ; in other words,A
is required to produce an estimate that is close toemb(T, G),
with high probability.

We introduce some additional notation.N(v) denotes the
set of all neighbors of nodev. We usedH(u, v) to denote
the shortest path distance between nodesu andv in graphH ;
when graphH is clear from the context, we simply denote
this by d(u, v). The radius of graphH , denotedrad(H), is
defined asrad(H) = minu∈V (H) maxv∈V (H){dH(u, v)}.

A. Color Coding

We briefly discuss the main idea of color coding for the
problem of enumeration of paths inG; see [1] for additional
details on how to use this for trees and other kinds of
subgraphs. The algorithm involves the following steps:

1) For i = 1 to N = O( ek log 1/δ
ǫ2 ) perform the following

steps, wherek = |V T | is the number of nodes in the
template, andδ andǫ are input parameter such that the
approximation factor is1 ± ǫ with probability at least
1− δ :

a) (Color coding) Color each nodev ∈ V (G) uni-
formly at random with a color from{1, . . . , k}.

b) (Counting) Use a dynamic program to count all
the “colorful” embeddings ofT in G, where an
embeddingH in G isomorphic toT is said to be
colorful (see Figure 2 and the discussion below),
if all the nodes inH have distinct colors. LetXi

be the number of embeddings in iterationi.
2) Output an estimate of the actual number of embeddings

using theXi’s in the following manner: partition the



N samples above intot = O(log 1/δ) sets, and letYj

be the average of thej set. Output the medianZ of
Y1, . . . , Yt. a bc defgh ij k

H 1H 2
Fig. 2. Example showing the notion of “colorful” embeddingsof template
T (as in Figure 1) in a coloring of graphG. The nodes ofG are colored with
k = 5 colors (red, blue, black, brown and green). As in Figure 1, both H1

andH2 are occurrences ofT , but only H2 is a colorful occurrence.

Figure 2 shows the notion of colorful embeddings. Letφ :
V → {1, . . . , k} be ak-coloring of the nodes ofG. Formally,
we say that a subgraphH = (V ′, E′) is a colorful embedding
of templateT if H is isomorphic toT and all nodes inV ′ have
distinct colors, with respect toφ(). Alon et al. [1] show that the
above (randomized) algorithm gives an estimate of the actual
number of embeddings ofT in G within a multiplicative factor
of (1 ± ǫ), with probability at least1 − δ, whereǫ and δ are
arbitrary input parameters. The main ideas of this algorithm
are: (i) the probability that any given embeddingH of T with
k nodes is colorful is preciselyk!

kk , so that the expected number
of colorful embeddings isemb(T, G) k!

kk , and (ii) because we
are considering colorful paths, there is a simple recurrence
relationship for the number of colorful paths,C(v, S) of length
|S|, with end pointv, and using the setS of colors:

C(v, S) =
∑

u∈N(v)

C(u, S \ {color(v)})

Extension to more general (non-path) templates. This approach
has been extended to trees and treewidth bounded graphs
[1; 8], with faster algorithms for special kinds of subgraphs
[6; 7]. In this paper, we further extend it to a a slightly more
general class of templatesT , which can be partitioned into
sub-templatesT1 and T2 by the deletion of a cut-edge; a
cut-edge in a graph is an edge whose deletion increases the
number of connected components. Trees certainly satisfy this
constraint, but as shown in Figure 3, templateT (the graph
at the right hand side), which is not a tree, still satisfies this
constraint, since it can be partitioned into sub-templatesT1

andT2 by removing the cut edge(2, 3).
Now we illustrate the main idea behind our parallel

algorithm PARSE using Figure 3. A node adjacent to the cut
edge is called the root of the corresponding sub-template,
and the root of templateTi is denoted byρ(Ti). In the
figure, templateT is partitioned into two subgraphsT1

and T2, with roots ρ(T1) = 2 and ρ(T2) = 3, respectively.
Let C(v, ρ(Ti), Ti, Si) denote the number of colorful
embeddings of subgraphTi with root ρ(Ti) mapped to node
v ∈ V , and using the colors inSi, where |Si| = |Ti|. The
number of colorful embeddings ofT with nodes g and
f in G mapped to nodes2 and 3 of T , respectively,
is equal to

∑

S1∪S2=S C(g, 2, T1, S1)C(f, 3, T2, S2),
where the sum is over all partitions ofS =
{brown, blue, green, black, red}. There are two colorful
embeddings ofT2 with root node 3 mapped to node
f , and using the colorsS2 = {brown, blue, green},
i.e., C(f, 3, T2, S2 = {brown, blue, green}) = 2.
Similarly, we haveC(g, 2, T1, S1 = {black, red}) = 2,
as shown in the figure. For all other choices ofS1,
we have C(g, 2, T1, S1) = 0. Therefore, we have
∑

S1∪S2=S C(g, 2, T1, S1)C(f, 3, T2, S2) = 4.a bc defgh ij k
T 1 T 21 23 4 5

Fig. 3. Illustration of the dynamic programming step of color coding using
the examples given in Figures 1 and 2. TemplateT is partitioned into two sub-
graphsT1 andT2, with roots2 and3, respectively. We haveC(g, 2, T1, S1 =
{black, red}) = 2 andC(f, 3, T2, S2 = {brown, blue, green}) = 2.

B. Datasets

Our main focus in this paper is on social contact networks,
in which a link represents physical contact between two
persons. Since realistic data for such networks is difficultto
obtain, we use the approach of Barrett et al. [3] for construct-
ing large scale synthetic social contact networks for urban
regions. Specifically, we use the contact networks constructed
for the cities of New River Valley (NRV), Miami, and Chicago;
the sizes of the these graphs are given in Table I. As discussed
in [3], these networks are very unstructured and different from
various kinds of random graph models.

TABLE I
SIZES OF THE GRAPHS USED IN THE EXPERIMENTS

Graph Number of Nodes Average Degree
NRV 151,783 163.5

Miami 2,092,147 50.4
Chicago 9,038,414 59.5
Miami10 20,921,470 50.4
GNP50 50,000 20
GNP100 100,000 20

In order to test our framework with even larger graphs,
we construct an artificial network, Miami10, obtained by
composing 10 copies of the Miami network in the following



manner: we sample an integerd from a distributionD for
each vertex in the new network. Then we choosed vertices
from clones of Miami other than the one containing this
vertex uniformly at random, and connect them with this vertex.
We also generate two random graph usingG(n, p) model,
which containsn vertices and each pair of vertices has equal
probability p to be connected by an edge. The two random
graph are named GNP100 and GNP50.

C. Notations used in this paper

Table II lists some of the notations commonly used in the
rest of the paper.

TABLE II
NOTATIONS IN THE PAPER

Symbol Definition
G The main graph
Gp A partition of G
T Template graph

p, P Partition ID, number of partitions
q, Q Processor ID, number of processors
n, m Number of vertices and edges inG, respectively
N(v) The set of neighbor of vertexv
Nr(v) r-Neighbor of vertexv

k Size (number of vertices) of templateT
S Color/Label set

α, β Factors for counting colorful sub-template, and template

III. A LGORITHM FOR PARALLEL TEMPLATE COUNTING

Now we describe an overview and the basic ideas followed
by the complete description of our algorithm PARSE. As
discussed earlier, in this paper, we only consider templates
T which can be partitioned into sub-templatesT1 andT2 by
removing a cut-edge. In our dynamic program based parallel
algorithm for counting all colorful embeddings ofT in G, the
main idea is to have the color coding countsC(v, ρ(Ti), Ti, Si)
(as defined in Section II-A) exchanged by the processors
and combine these counts carefully. While the algorithms of
[1; 8] compute the above countsC(v, ρ(Ti), Ti, Si) as well by
dynamic programming (which limits the approach to trees), we
computeC(v, ρ(Ti), Ti, Si) locally within a processor, using
a back-tracking based approach, and all processors send these
counts to a designated processor called the master processor
or master node, which aggregates them. As a result, PARSE
is able to handle more complex templates than trees, and the
template can have more than constant treewidth.

A. Overview ofPARSE

Algorithm 1 gives a high level description of PARSE, and
Fig. 4 shows a schematic diagram; some of the terms used
here are defined in Section III-B. Processor 0 is designated
as a master processor (also referred as master node), which
performs the initialization and finalization of the algorithm.
The other processors are called worker nodes. Once the
system is initialized, each worker nodeq generates its assigned
partitions from the original graphG in line 1 - this is
explained in Section III-B. The master node also performs
the random coloring in line 3 of Algorithm 1. In line 4-6,

each processorq independently works on each partitionGp

assigned to it (our node labeling scheme allows the processors
to identify the partitions independently), and computes the
counts C(v, ρ(Ti), Si) for each i and each possible color
set Si, by invoking the Algorithm COUNTTEMPLATE from
Section III-C. This corresponds to the step of computing
smaller sub-problems, as part of the dynamic programming.
The streaming-based workflow avoids loading the original
graph into local memory, which is useful for very large graphs.
Also, note that by making COUNTTEMPLATE generic, we are
able to enumerate more complex templates. Finally, in lines
7-10, the remaining step of the dynamic program is run to
compute the aggregate count by sending the sub-problems to
the master node; this is described in detail in Section III-D.

Algorithm 1 High level description of Algorithm PARSE.
1: PartitionG and assign processors
2: Partition templateT into two partsT1 and T2; let ρ(Ti)

denote a “root” for the subgraphTi

3: Assign each nodev ∈ V a random color from{1, . . . , k}
4: for each processorq, and each partitionGp assigned to it

do
5: for each nodev ∈ core(Gp), each setSi ⊂

{1, . . . , k}, |Si| = |Ti|, i = 1, 2 do
6: ComputeC(v, ρ(Ti), Ti, Si)
7: for each edgee = (u, v) ∈ E do
8: Compute
9: C(e) =

∑

S1,S2
C(u, ρ(T1), T1, S1)C(v, ρ(T2), T2, S2)

10: +C(v, ρ(T1), T1, S1)C(u, ρ(T2), T2, S2)
11: where the sum is over allS1 ∪ S2 = {1, . . . , k}
12: X ←

∑

e C(e)/β
13: Repeat line 3-12 until the average ofX reaches the

precision requirement

Fig. 4. A schematic description of PARSE.

B. Cover-based Graph Partitioning

Let Nr(v) be the r-neighborhood of nodev, which is
defined asNr(v) = {u : d(u, v) ≤ r}, whered(u, v) is the
distance betweenu and v. For a subgraphGp = (Vp, Ep)



of G, we definecore(Gp) as the set of nodes whoser-
neighborhood is completely contained inGp, i.e.,core(Gp) =
{v : Nr(v) ⊂ Vp}, for a parameterr. A “cover decomposition”
is a partitioning of the graph into overlapped partsGp so that
the following properties hold [2]:

i)
⋃

1≤p≤P

core(Gp) = V

ii) ∀p1 6= p2, core(Gp1
) ∩ core(Gp2

) = φ

Algorithm 2 describes GENERATEPARTITION, which par-
titions the graphG into partsGp. To generate partitionGp,
Algorithm 2 first reads vertex setWp, the set of core vertices
from the graph file, with size|Wp| = n/P (line 1-2). Then a
subgraphGp = (Vp, Ep) is computed which includes ther-
neighborhood ofWp, andWp itself, so thatcore(Gp) = Wp.
The algorithm is implemented in a streaming manner and
makesr+2 passes through the file; it does not load the entire
graphG into main memory, allowing us to work with very
large graphs that do not fit in memory. In the first pass (Line 1-
2), GENERATEPARTITION reads core nodesWp. In the nextr
passes, it determines and includes the nodes inr-neighborhood
of Wp. In the last pass, it reads the edges incident on nodes
in Vp.

Algorithm 2 Cover-based-partition

GENERATEPARTITION(G(V, E), p, r, P )
0: nCore← n

P
1: Skip nCore × (p− 1) nodes
2: Vp ← the set of nextnCore nodes
3: Ep ← φ
4: for i from 1 to r do
5: for each edges(v, u) in G do
6: If v ∈ Vp andu 6∈ Vp, Vp ← Vp ∪ {u}
7: for each edges(v, u) in G do
8: If v, u ∈ Vp, add(v, u) to Ep

9: return Gp(Vp, Ep)

Algorithm GENERATEPARTITION makes r + 2 passes
through the graph file: Line 1-3 makes 1 pass, Line 4-6 makes
r passes and Line 7-8 makes 1 pass. The graph file is stored as
an adjacency list and thus the file size isO(n+m) wheren is
the number vertices andm is the number of edges in the graph.
Thus, reading the graph file to generate one partition takes
O((n + m)r) time. Therefore, to generateP partitions byQ
processors takesO((n+m)rP/Q) time as processor read the
graph file independently and simultaneously in parallel. Fig. 5
shows running time for generating partitions withr = 0, 1, 2
on network Miami. It shows for fixedQ andr, running time
increases linearly to the number of partitionsP .

The hop-sizer needs to be chosen carefully - it should be
large enough to cover each sub-template, i.e.r ≥ rad(Ti),
for each sub-templateTi of T ; rad(Ti) denotes the radius
of Ti, as defined in Section II. However, the partition size,
Nr(v), grows rapidly withr in social networks, as shown
in Fig. 6 for the contact graph for Miami; note that when
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r = 5, the r-neighborhood of a random node is almost the
entire graph. This is also true in the random graph obtained
by randomly switching pairs of edges of the Miami graph (de-
noted by Miami-shuffle in Fig. 6), while preserving the node
degrees. Therefore, when the radius of the template grows,
its enumeration cannot be done locally within a partition, and
PARSE uses color coding to distribute the computation over
sub-templates.

C. Template Enumeration

Algorithm 3 COUNTTEMPLATE describes the subroutine
which determines the local countsC(v, ρ(Ti), Si) (line 6 of
Algorithm 1); this is done locally withincore(Gp) for each
part Gp. COUNTTEMPLATE uses a BFS based backtracking
scheme that invokes MATCHSUBGRAPH (Algorithm 4), in
order to compute these quantities.

Algorithm 3 Template enumeration in each partition

COUNTTEMPLATE(T (V T , ET ), Gp(Vp, Ep), S)
1: Perform a breadth-first search (BFS) inT . Let u1, u2, . . .

be the nodes inT in the order of their discovery in BFS.
2: for each nodev ∈ Vp do
3: for each permutationS′ of S do
4: if MATCHVERTEX(u1, v, S′) then
5: MATCHSUBGRAPH(2, S′)
6: α = number of automorphisms ofT with root ρ(T )
7: return count/α

Algorithm 4 MATCHSUBGRAPH(i, S′)

MATCHSUBGRAPH(i, S′)
1: if i = |V T |+ 1 then
2: count← count + 1
3: return
4: Find M =

{

f(uk) | k < i ∧ (ui, uk) ∈ ET
}

, where
f(uk) denotes the node in the main graph thatuk has
been mapped to.

5: ComputeC =
⋂

v∈M N(v)
6: for eachv ∈ C do
7: if MATCHVERTEX(ui, v, S′) then
8: MATCHSUBGRAPH(i + 1, S′)
9: return



Algorithm 5 MATCHVERTEX(u, v, S′)
MATCHVERTEX(u, v, S′)

1: if color of u in permutationS′ is as same as color ofv
then

2: return true
3: return false

Algorithm MATCHSUBGRAPH(i, S′) finds the candidates
C for matching withui, and for each matching candidate,
it recursively calls itself to match the rest of the nodes
ui+1, ui+2, . . .. Algorithm 3 enumerates all permutation of the
color set in order to count the number of colorful embeddings
of the template. The matching of the color of vertexu in
the template and a candidatev is ensured in Algorithm
MATCHVERTEX(u, v, S′). The count is divided by a factor
α, which is the number of automorphism of the template
when the root is fixed. Since the size ofcore(Gp) is same
among all partitionsp, the computational cost of enumeration
on different partitions is roughly constant, as shown in the
green band in Fig. 8. However, the time to generate partitions
from the graph linearly increases according to the IDp of the
partition Gp, as the red line in Fig. 8 shows. The reason is,
in GENERATEPARTITION, we will first skip nCore× (p− 1)
vertices to reach the location in the graph file wherecore(Gp)
is located (Line 1 in Algorithm 2). Therefore, the time to reach
the location in the first pass is proportional to the partition
ID p. The restr + 1 passes (Line 4-8) take same amount of
the time among partitions. To balance the computational load
among processors, we assign the partitions to the processors
in a round robin fashion. This keeps the total running time on
each processor to be roughly the same, as shown in Fig. 7; the
small slightly lower segment in the figure is due to the fact
that the corresponding processors are assigned one partition
less than the others, and this imbalance can be corrected by
careful choice ofP andQ.
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D. Complete description of AlgorithmPARSE

Finally, we describe PARSE in detail in Algorithm 6.
The algorithm is a randomized approximation scheme, which
repeats the basic steps in lines 5-31N1 ·N2 times, whereN1 =

O(log 1/δ) and N2 = O( ek

ǫ2 ); each iteration computes the
number of colorful embeddings of the template for a random
coloring ofG, and the final result is some form of average of

these estimates in lines 32-34. The graph is first partitioned to
P partitions by the processors, in Line 1-2. Processor 0 acts as
the master/control node and performs the random coloring in
lines 5-6. Lines 8-17 are performed by each worker processor,
which repeatedly gets a partitionGp (line 11), and computes
and sends the counts for the sub-templates for each vertex
v ∈ core(Gp) in lines 12-17. For each sub-templateTi and
every possible subsetSπ

i of distinct colors for nodes inTi,
the processor computesC(v, ρ(Ti), S

π
i ). In order to exploit

bulk-synchronization, each processor sends one large message
corresponding to each nodev, which encodes the counts for
all possible ways of partitioning the setS = Sπ

1 ∪ Sπ
2 . This

corresponds to the lower level steps of the dynamic program
[1]; however, COUNTTEMPLATE directly computes the counts
needed in these steps by a backtracking algorithm.

The top level steps of the color coding dynamic program
[1] are performed in lines 18-31 of Algorithm 6 by the
master processor. For each edge(u, v), the master com-
putes

∑

S1,S2:S1∪S2={1,...,k} C(u, ρ(T1), S1)C(v, ρ(T2), S2)+
C(v, ρ(T1), S1)C(u, ρ(T2), S2), for all partitionsS1 ∪ S2 of
S. The count is divided by a factorβ to remove the duplicated
enumeration of the same colorful template. It is the number of
the cut-edge(u, v) in T , for which the template is isomorphic
to itself. Note that the the quantityα1 ·α2 · β is the automor-
phism of the templateT , whereα1 andα2 are the factors used
in Algorithm 3 for the two sub-templates.

E. Performance analysis

Following [1], Algorithm PARSE is a randomized approx-
imation scheme, that estimates the number of embeddings of
the templateT within any desired level of accuracy, which is
a user input; this is summarized below.

Theorem 3.1:For any given parametersǫ, δ, let N1 =

O(log 1/δ) and N2 = O( ek

ǫ2 ). Then, the estimated number
of embeddings of templateT in graphG (denoted byZ) as
output by Algorithm PARSE, satisfies

Pr[|Z − emb(T, G)| ≥ ǫ · emb(T, G)] ≤ δ,

whereemb(T, G) denotes the exact count of the number of
embeddings.

We now bound the time and space complexity. LetP andQ
denote the number of partitions and processors, respectively,
and∆ be the average degree inG. Definek′ = max{k1, k −
k1}, n = |V |, andm = |E|.

Theorem 3.2:The total running time and the sum of the
sizes of all messages in Algorithm PARSE can be bounded by
O

(

ek log 1/δ
ǫ2

(

n
Q∆k′

+ (n + m)kk′

))

and O(nkk′

), respec-
tively.

Proof: Generating partition in Line 2 takesO((n + m)r)
time. The loop in Line 1-2 repeatsP/Q times for each proces-
sor. Therefore, the running time for Line 1-2 isO((n+m) rP

Q ).
Random coloring to the graph in Line 6 takesO(n) time.
In Line 11, the time to read a partition by one processor
takesO(n + m) time. Function COUNTTEMPLATE (Line 14)
matches the root of templateT1 with nodev only. Any other
nodeu′ of T1 can be matched only after one ofu′s neighbor



Algorithm 6 Algorithm PARSE(T (V T , ET ), G(V, E), ǫ, δ)
1: for p← me− 1; p < P ; p← p + Q− 1 do
2: Gp ← GeneratePartition(G(V, E), p, r, P ) {me is the current processor’s ID}
3: for j from 1 to N1 do
4: for i from 1 to N2 do
5: if me = 0 then
6: Color(G(V, E), S) {randomize coloring the original graph}
7: Barrier {synchronizing}
8: if me > 0 then
9: LoadTemplate(T )

10: for p← me− 1; p < P ; p← p + Q− 1 do
11: LoadPartition(Gp)
12: for each vertexv ∈ core(Gp) do
13: for eachSπ

1

⋃

Sπ
2 = S, Sπ

1

⋂

Sπ
2 = φ, π ∈ [1,

(

k
k1

)

] do
14: c1 ← COUNTTEMPLATE(v, T1, S

π
1 )

15: c2 ← COUNTTEMPLATE(v, T2, S
π
2 )

16: val[π]← (c1, c2)
17: Send(val, 0) {send to processor 0}
18: if me = 0 then
19: Count← 0
20: for eachv ∈ G do
21: Recv(val)
22: valMatrix[v]← v
23: for eachv ∈ G do
24: for eachu ∈ N(v) do
25: if u > v then
26: for π from 1 to

(

k
k1

)

do
27: Count← Count + valMatrix[v][π].c1 × valMatrix[u][π].c2

28: Count← Count + valMatrix[v][π].c2 × valMatrix[u][π].c1

29: Count← Count/β

30: Count← Count× kk

k!
31: Xi = Count
32: if me = 0 then
33: Yj ←

∑

i Xi/N2

34: Output the median of{Y1, . . . , YN1
}

w′ has been matched with somew ∈ V , and u′ can only
be matched with a neighboru of w such that color(u′) =
color(u). Sincek colors are randomly assigned, any vertex
u′ ∈ T1 can be matched with, on average,∆/k nodes in
V . Therefore the running time of COUNTTEMPLATE (both in

Line 14 and 15) is bounded byO
(

(

∆
k

)k′
)

as|T1| = k1 ≤ k′.

The loop in Line 13-16 repeatskk′

times and thus it takes

O(
(

∆
k

)k′

· kk′

) = O(∆k′

) time.

The Sendstatement in Line 17 takesO(kk′

) time and the
loop in Line 12-17 repeatsn/P times for each partition. Thus
this loop takesO((∆k′

+ kk′

)n/P ) time. The loop in Line
10-17 repeatsP/Q times for each processor. Then this loop

takesO
(

(∆k′

+ kk′

) n
Q + (n + m)P

Q

)

time.

Line 19-31 is executed by Processor 0. Line 20-22 takes
O(nkk′

) time. Loop in Line 26-28 takesO(kk′

) time. Two
loops combined in Line 23-24 repeatsO(m + n) times and
takesO((m+n)kk′

) time. Therefore total time for Line 19-31

is O((m + n)kk′

). Considering thatrP
Q < kk′

, total time for
Line 5-31 is given by:

O
(

(∆k′

+ kk′

) n
Q + (n + m)P

Q + (n + m)kk′

)

= O
(

n
Q∆k′

+ (n + m)kk′

)

.

The outermost two loops Line 3-4 combined repeatN1 ·

N2 = ek log 1/δ
ǫ2 times. Therefore, the total running time is:

O
(

ek log 1/δ
ǫ2

(

n
Q∆k′

+ (n + m)kk′

)

+ (n + m) rP
Q

)

= O
(

ek log 1/δ
ǫ2

(

n
Q∆k′

+ (n + m)kk′

))

.

Finally, for the total message size, observe that one execu-
tion of theSendstatement (Line 17) sendsO(kk′

) data items
and it is executed totaln times by all processors combined.
Thus total size of messages sent isO(nkk′

).
The bounds in Theorem 3.2 show the limits to which we

can expect the current implementation of PARSE to scale -



the communication cost will become the significant bottleneck
when n

Q∆k′

< (n + m)kk′

, i.e., whenQ > n∆k
′

(n+m)kk′ .

IV. EXPERIMENTS

We now discuss the performance of Algorithm PARSE on
the datasets discussed in Section II. Our experiments are based
on the templates in Fig. 9 with sizes varying from 4 to 10
nodes; each template is divided into two sub-templates using
the cut edge; the radius of each sub-template in Fig. 9, relative
to its root is either1 or 2.

Fig. 9. Templates with size varying from 4 to 10.

We study the following specific aspects: (i) the time, space
and communication costs of various steps of PARSE, (ii) the
approximation error, and the number of iterations needed in
practice, (iii) strong and weak scaling of PARSE and (iv) exact
counting on small templates (such as cliques), which fit within
a partition, and can be enumerated directly using Algorithm3
(COUNTTEMPLATE), without the need for color coding.

Our main observations include: (i) in practice, the number
of iterations needed for our algorithm to produce an(ǫ, δ)
approximation is much smaller than the theoretical bound of
Theorem 3.1, (ii) the algorithm scales quite well up to 350
processors. In contrast, most of the prior results run in a few
hours for graphs which are at least two orders of magnitude
smaller.

A. Number of iterations and approximation error

Theorem 3.1 gives an upper bound ofN1N2 = O( ek log 1/δ
ǫ2 )

on the number of iterations of the basic color coding com-
putation in Algorithm PARSE, in order to get an(ǫ, δ)-
approximation to the actual number of embeddings. In prac-
tice, we find that this is a fairly loose bound, and as shown in
Fig. 10 and 12, choosing evenN1 = 1 andN2 = 3 reduces the
approximation errorǫ to less than 0.1%. In Fig. 11, choosing
N1 = 1 and N2 = 4 reduces the errorǫ to 5%. Therefore,
for the remaining experiments in this section, we use only a
small number of iterations.

B. Comparison with sequential algorithm

We also compare the running time of PARSE and Huffner’s
algorithm (HF) [8] on GNP50. Giving the edges equal weights,
HF will enumerate all paths with a given length. The results are
shown in Fig. 13 and 14, for templateT4 andP6, respectively.
It shows that our algorithm almost reaches 10 times faster than
HF algorithm forT4 and 100 times faster forP6.
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Fig. 10. Error for PARSE, conducted
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on GNP100, using templateT6
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Fig. 12. Error for PARSE, conducted on NRV, using templateT4

C. Running Time of various steps in AlgorithmPARSE

The overall running time of PARSE can be roughly split into
4 parts: graph partitioning, initialization (include graph random
coloring), local template counting and final aggregation. Figure
15 and 16 show the running time of these parts on NRV,
for T6 and T8, respectively. We chooseN1 = 1, N2 = 5
and P = 1000. We observe that for a given template, the
initialization and the finalization time do not vary much with
different number of processors, since these are done only by
the master node. The partitioning and counting times decrease
with the number of processors. The partitioning time for
both T6 and T8 is roughly the same, while the counting
time changes significantly between Fig. 15 and 16, since
the running time of subgraph counting is exponential in the
template size. In Fig. 16, the counting time dominates the total
running time. The finalization time also differs in Fig. 15 and
16, because large templates imply more choices of the color
set, making the aggregation in Line 26-28 of Algorithm 6 more
expensive.
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Fig. 13. Running time of PARSE
VS. sequential algorithm, conducted
on GNP50, using templateT4
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Fig. 14. Running time of PARSE
VS. sequential algorithm, conducted
on GNP50, using templateP6
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with different number of processors,
on a single iteration, on NRV. Tem-
plate isT6
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Fig. 16. Time usage on various steps
with different number of processors,
on a single iteration, on NRV. Tem-
plate isT8

D. Scaling of PARSE

Figures 17 shows the strong scaling of running time with
number of processors ranging from 160 to 400 on Miami
for templateT6. Note that for small template such asT6,
finalization/aggregating time is a major part of the total
running time, and it is independent of the number of pro-
cessors. Thus when we increase the number of processors,
the running time does not decrease linearly; however, up
to 350 processors, it still scales well. For our graph data,
showing weak scaling is not an easy task as varying the
graph size without affecting its structural properties is difficult.
Fig. 18, showstotal running time

P/Q varying with the number of
processors, which is a measure somewhat similar to weak
scaling. Due to the communication and finalization cost, the
running time on each processor increase with the number of
processors. For large template such asT8, since finalization
time is not a major part of total running time, we expect the
weak scaling to be better. Fig. 19 shows the total running time
increases linearly with the number of partitions. Therefore,
given the number of processors, we can obtain the fastest
running by lettingP = Q− 1.
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sor counting on a single partition of
Miami, scaling with # of processors.

We also study how running time is scaled with the increas-
ing of the template size. In Fig. 20, we use templateT6, T7,
T8, T9 and T10 from Fig. 9, and experiment on NRV. The
number of processor employed here is80, and the partition
number is1000. We found that for template size up to10,
our algorithm can still finish the counting within12 hours in
a graph with hundreds of thousands nodes and average degree
more than a hundred.
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Fig. 19. Running time on Miami
scaling with # of partitions.
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E. Counting Template with Small Radius

For a template with small radius, e.g., withrad(T ) = 1, the
template can be contained completely in a partition without
splitting it. In such a case, we do not need color coding
and can find exact count using less communication time and
finalization time. Such a template can be counted in each
partitions using the algorithms in Section III-C, but the color
setS and related permutation procedure are not necessary; two
verticesu andv are matched without the condition that their
colors need to be the same. The final count is the summation
of the counts on each partition, divided by the number of
automorphism of the template. Fig. 21 shows that even for
graph which contains 20 million vertices, the total time to
count 5-cliques is less than 13 hours. A cliqueGc(Vc, Ec)
is a complete graph in which for each pair of the vertices
u, v ∈ Vc, there is an edgee(u, v) ∈ Ec. A clique containing
k vertices is called ak-clique. The experiments have been
done with 120 processors and 2000 partitions for each graph.
Note that NRV requires approximately the same running time
as Chicago, though the graph size is much smaller, for the
reason that it has much larger average degree∆ (note that
the time bound has a factor∆k′

). Also, the number of 4-
clique embeddings on NRV is the same order of magnitude as
Chicago and the number of 5-clique embeddings is the largest
among all networks, as shown in Fig. 22.
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V. I MPLEMENTATION SPECIFICATIONS

Environment: The experiments were performed on an SGI
Altix ICE 8200 system. It has 96 nodes and each node has 2
Intel Quad-Core Xeon E5440 processor, and 16GB memory,
or 2GB per core.



Data structure: Vertices’ IDs are mapped to a continues space
which stores the pointers to the neighbor lists of the vertices.
We avoid any STL datastructure in the graph storage, due to
its high memory cost.
Communication: We use the defaultRecv() function in MPI
which is non-blocking and each call to theRecv() function
which is not matched by anySend()will generate a message
header. Therefore we need to be cautious to configure the
MPI MAX environment variable, which set the maximum
number of message header allowed. In our case for running
on Miami, processor number below 160 will cause the number
of message headers to exceed the default MPIMAX value.
The solution can be either increasing the MPIMAX value,
which may also increase the running time due to the overhead
in system level, or passing larger messages, each of which
contain multiple messages we currently use.

VI. RELATED WORK

As discussed earlier, there has been a lot of work on
sequential algorithms for determining the counts of specific
subgraphs, as well as finding statistically significant subgraph
patterns. [1; 5–9; 11]. Many of these approaches are based on
back-tracking, dynamic programming, and using techniques
such as color coding. These results typically only scale to
graphs with few thousand nodes. More efficient algorithms
have been developed for the problem of finding frequent
subgraphs, e.g., Kuramochi et al. [9; 10] using adaptations
of breadth-first and depth-first based candidate generation
methods to scale to about 120,000 nodes. There has been
limited work on parallel algorithms for subgraph enumeration.
One thread of work has been on enumerating maximal cliques.
Starting with the parallel algorithm of Bron and Kerbosch
[4], there has a lot of subsequent work, e.g., Schmidt et al.
[13]; these algorithms are based on making the basic back-
tracking procedure more efficient using additional information,
but many of these technique is specific to cliques. This has
been extended to other subgraphs by Wang et al. [14]; their
approach is also based on local enumeration in a suitable
partitioning, and is shown to run on biological networks with
a few thousand nodes.

VII. C ONCLUSIONS

Algorithm PARSE is a new approach for parallel subgraph
enumeration, and our results are the first to scale to graphs
with 105 − 106 nodes, for templates of size up to 10 (which
can be partitioned by a cut-edge), within a few hours. This
basic approach can be extended to larger templates which
cannot be partitioned by a cut-edge, by extending the dynamic
programming framework, though a new approach is needed to
address the space and communication cost. We expect these
techniques to broaden the scope of the usage of subgraph
enumeration in social networks and other applications.
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