Subgraph Enumeration in Large Social Contact
Networks using Parallel Color Coding and
Streaming

Zhao Zhao, Maleq Khan, V.S. Anil Kumar and Madhav V. Marathe
Network Dynamics and Simulation Science Laboratory
Virginia Tech

Abstract—Identifying motifs (or commonly occurring sub- approaches for subgraph enumeration are back-trackimg alg
graphs/templates) has been found to be useful in a number of rithms, with novel techniques for careful candidate getiena
applications, s_uch as bic_)lo_gical and social net_/vorks; the}n_ave and subgraph isomorphism, e.g., [9; 13]. These approaches
been used to identify building blocks and functional propeties, . : .
as well as to characterize the underlying networks. Enumerting &€ not easy to parallgllzg becausg of the type of |nf0rmat|_0
subgraphs is a challenging computational problem, and all gor ~ that needs to be maintained during the backtracking, with
results have considered networks with a few thousand nodes. the exception of clique enumeration [13], where there has
In this paper, we develop a parallel subgraph enumeration been quite a bit of work on parallel algorithms, that have
algorithm, PARSE, that scales to networks with millions of ¢cially exploited the structure of cliques, and is difficu
nodes. Our algorithm is a randomized approximation scheme,
that estimates the subgraph frequency to any desired levelfo to extend to other_templates. Another class of resu!ts for
accuracy, and allows enumeration of a class of motifs that Subgraph enumeration is based on the powerful technique of
extends those considered in prior work. Our approach is bas# color coding(which also forms the basis of our paper), e.g.,
on parallelization of an approach called color coding, commmed [1: 8], which has been used for approximating the number of
with a stream based partitioning. We also show that RRSE o mpeqdings of templates that are trees or “tree-like” (oremo
scales well with the number of processors, over a large range . . b .

precisely, have a low “tree-width” - see |l for details). Tidea
of color coding is to randomly color the graph usihgolors
(where k denotes the size of the template), and then count

The problem of enumerating or counting the number difie number of embeddings of “colorful” subgraphs - these
embeddings of a given motif/subgraph (referred to as a are embeddings in which all nodes have distinct colors. The
“template” graph in this paper), within a gragh is a fun- power of this technique comes from the fact that the number of
damental question that arises in a number of areas, inguditolorful embeddings can be determined by a natural dynamic
bioinformatics [1; 12], data mining [9; 10] and social netk® programming approach. However, the dynamic programming
[11]. In biological applications, such as gene transasiptind has high memory requirements, and this approach has only
protein-protein networks, small motifs, whose frequensy been used on small graphs with few hundred nodes. Therefore,
significantly different from random networks, have beemidu none of the current techniques for subgraph enumeratida sca
to be very useful in characterizing such graphs (e.g., Milo 8 social networks with millions of nodes, which sometimes
al. [12]); it has been found that graphs which have similato not even fit in memory.
local properties (e.g., degree and centrality distrimg)ocan In this paper, we present a randomized parallel algorithm,
be distinguished by means of relative frequencies of suBARSE (Paallel Subgraph_EBumeration) for enumerating a
subgraphs. Another related notion is thafrefjuent subgraphs class of templatesI” which can be partitioned into sub-
[9], which have been found to have functional significandemplates7; U 7> by a cut-edge (see Section Il for pre-
in such graphs. Lescovec et al. [11] study subgraphs dise definitions); this is broader than most of the templates
Blog networks and recommendation systems, and use thesasidered in prior sequential algorithms, e.g., [1; 8]d an
to develop insights into user behavior. Two variants whigbarallel algorithms [14]. Our algorithm uses color codimg i
have been studied are the enumerationinofucedand non- combination with a stream-based cover decomposition. The
inducedembeddings of the template subgraph (see Sectionstteam-based approach addresses the space complexéy issu
for definitions). of the dynamic programming in the sequential form of color

A significant challenge in subgraph enumeration is its corseding. We test the performance ofAESE on graphs with
putational difficulty, and most of the above results (esplgci up to a few million nodes and hundred million edges and
in the case of non-induced embeddings) have been restricteshplates with up to 10 nodes; our implementation shows
to graphs with a few thousand nodes and templates with good scaling up to 350 processors, and runs in a few hours.
more than ten nodes; most templates which have been studié¢el also derive analytical bounds on the performance, which
are trees and paths. This has motivadggroximatecounting yields explicit bounds on the extent to which the scalinglsol
[1; 6; 8], which is also computationally hard. Many of theAll prior results have been for graphs which are at least two

I. INTRODUCTION

orders of magnitude smaller.

PARSE is a randomize(, ¢)-approximation scheme, which
estimates the number of non-induced occurrences within a
factor of (1 + ¢), with probability at leastl — §, wheree
and¢ are user defined parameters. The algorithm averages the
count over multiple iterations, and the number of iteration
(and hence, the running time) dependseandé. In practice,
we find that the approximation error is very low (less than
0.1%) with high probability (more than 0.95), within a small
number of iterations (less than 20). The algorithm involaes
two-step approach: (i) we split the templafeinto multiple
partsTy,...,T;, and compute the number of “colorful” em-

beddings of the part§; within each partition (see Section])
. L - . Fig. 1. Example showing a grap@® with V' = {a,...,k} and template
Il for precise definitions), and (ii) we use color coding tG" 4, 7 — (1,....5}. H and H» are two subgraphs off that are

exchange information about the counts of the p@t¢éalong isomorphic toT. For H;, the bijection isf(1) = a, f(2) = b, f(3) = ¢,
with the specific colorings) - this corresponds to one ste‘;ﬁ}lzsdam}{z(?) =he,f ?g)shownft(z)the]gotteddfeggr)owsj Hgé,_the b_ijzctior:j

. : . i =g, = h, =17, =kan = 4. Hy is an induce
Of_ the dY”am'C prerammmg approach _Of [1; 8]_' TOgethefccurrence, whileH> is a non-induced occurrence because of the presence
this provides a systematic way to deal with the high memogythe edge(, i).

requirement and irregular graph structure, which are among

the biggest challenges for subgraph enumeration. In aditi)

we also discuss how we can count templates with small rad®d /'(5) = d. Therefore, in order to get a correct count, we
(see Section IV-E) that does not require color coding ardl stiVill have to divide the number of bijections by the number
has less memory requirement. of autpmorphlsms of". _We focus on randpmlz_ed algorithms
Organization. We discuss definitions and the necessary badi¢. estimateemb(T’, &), instead of computing it exactly. We
ground in Section I1. Section I1-A describes the Color-cagli Say that an algorithm4 produces an(c, §)-approximation
approach. Section Il describes our main algorithm andiiesuto emb(T,G), if the estimateZ produced by A satisfies:
on some large social contact networks. Section IV validat€$[|Z — emb(T, G)| > e-emb(T’, G)] < 6; in other words,A
our algorithm from many aspects through experiments. Gecti'S required to produce an estimate that is closertd(T’),

V gives some specifications in implementation of the algdvith high probability.

rithm. Finally, Section VII concludes the paper. We introduce some additional notatioN.(v) denotes the
set of all neighbors of node. We usedy(u,v) to denote
Il. BACKGROUND AND DEFINITIONS the shortest path distance between nodesdv in graphH;

We consider the problem of counting the number of nothen graph# is clear from the context, we simply denote
induced subgraphs of an undirected grapiV, E), which are this by d(u, v). The radius of graptfl, denotedrad(H), is
isomorphic to a given templat&(V7, ET); we let|V| = n defined asrad(H) = min,cy (g maxyey (i) {da (u, v)}-
and the templates we consider are small and have constgnicolor Coding
size. A subgraph/ = (V’, E’) is said to be isomorphic to
the templatel if there is a bijectionf : VT — V'’ such that
if (u,v) € ET then (f(u), f(v)) € E’; such a subgrapl!
is said to be anon-inducedoccurrence ofl" (in contrast to
an inducedoccurrence, in whici{u,v) € ET if and only if , o log 1/6]
(f(u), f(v)) € E'). These concepts are illustrated in Figure 1) Fori =1to N = O(=—=%5-") perform the following

We briefly discuss the main idea of color coding for the
problem of enumeration of paths @; see [1] for additional
details on how to use this for trees and other kinds of
subgraphs. The algorithm involves the following steps:

1, which shows a templat& with V7 = {1,...,5} and steps, wherér = V7| is_the number of nodes in the
graphG with V = {a, ..., k}. Two subgraphgf; and H, templat_e, a_ndi ande are input _parameter_;uch that the
isomorphic toT” are shown; the specific bijections which imply ~ @Pproximation factor isl =+ ¢ with probability at least
isomorphism are also showii/; is an induced occurrence, 1—-46:
while H, is a non-induced occurrence @f. Let emb(T, G) a) (Color coding) Color each node € V(G) uni-
denote the number of non-induced occurrences of temflate formly at random with a color fron{1,..., k}.
in the graphG. b) (Counting) Use a dynamic program to count all
The focus of our paper is to estimate:b(T, G) for givenT the “colorful” embeddings off" in G, where an
andG. An additional issue is that depending on the symmetries embeddingH in G isomorphic toT" is said to be
in the template, there might be more than one bijection colorful (see Figure 2 and the discussion below),
between the template and a subgraph (in other words, an if all the nodes inH have distinct colors. LeX;
automorphism on the template); for instance, in addition to be the number of embeddings in iteration

the bijectionf shown in Figure 1, another bijectiofi is also 2) Output an estimate of the actual number of embeddings
the following: /(1) = a, f'(2) = b, f'(3) = ¢, f'(4) = e using the X;’s in the following manner: partition the

N samples above into = O(log1/6) sets, and lel; and T5, with roots p(Th) = 2 and p(T>) = 3, respectively.
be the average of th¢ set. Output the media® of Let C(v,p(T;),T;,S;) denote the number of colorful
Yy,..., Y. embeddings of subgraph with root p(7;) mapped to node
v € V, and using the colors it%;, where|S;| = |T;|. The
number of colorful embeddings of' with nodes ¢ and
f in G mapped to node2 and 3 of T, respectively,
is equal to > 5 g,_5C(9,2,T1,5)C(f,3, Tz, 52),
where the sum is over all partitions ofS =
{brown, blue, green, black, réd There are two colorful
embeddings of7, with root node 3 mapped to node
f, and using the colorsSy = {brown, blue, green
e, C(f,3,T2,52 = {brown, blue, greep = 2.
Similarly, we haveC(g,2,71,51 = {black,red) = 2,
as shown in the figure. For all other choices 6f,
we have C(g,2,71,51) = 0. Therefore, we have

ZSluSZ:S C(gv 2a Tlv Sl)c(fa 37TQa SQ) =4.

Fig. 2. Example showing the notion of “colorful” embeddingistemplate
T (as in Figure 1) in a coloring of grap¥. The nodes of are colored with
k = 5 colors (red, blue, black, brown and green). As in Figure thhd;

and Ho are occurrences df’, but only H» is a colorful occurrence.

Figure 2 shows the notion of colorful embeddings. ket
V — {1,...,k} be ak-coloring of the nodes ofr. Formally,
we say that a subgrapti = (V’, E’) is a colorful embedding
of templateT” if H is isomorphic tdl"’ and all nodes iV’ have
distinct colors, with respect t(). Alon et al. [1] show that the
above (randomized) algorithm gives an estimate of the actua
number of embeddings @f in G within a multiplicative factor
of (1-+), with probabily at least _ g, wherec and are 182, WSteu of o Wy pogeriats e o e v
arbitrary input parameters. The main ideas of this algmithgraphglgnd%’ with 10052 and3, respectively. We have(g, 9. T1. 51 =
are: (i) the probability that any given embeddifigof 7" with {black, red) = 2 and C(f, 3,72, S> = {brown, blue, greep) = 2.

k nodes is colorful is preciselfki, so that the expected number

of coIorfu_I embeddings igmb(T, G)f—,i, gnd (ii_) because we g patasets
are considering colorful paths, there is a simple recueenc
relationship for the number of colorful paths(v, S) of length

|S], with end pointv, and using the se$ of colors:

Our main focus in this paper is on social contact networks,
in which a link represents physical contact between two
persons. Since realistic data for such networks is diffitwlt
C(v,S) = Z C(u, S\ {color(v)}) obtain, we use the approach of Barrett et al. [3] for construc
wEN (v) ing large scale synthetic social contact networks for urban

. | h o h regions. Specifically, we use the contact networks contstduc
Extension to more general (non-path) templaiiss approac far the cities of New River Valley (NRV), Miami, and Chicago;

has been extended to trees and treewidth bounded gram.éssizes of the these graphs are given in Table I. As disdusse

[1; 8], with faster algorithms for special kinds of subgraphin [3], these networks are very unstructured and differsarnf
[6; 7]. In this paper, we further extend it to a a slightly MOr€rious kinds of random graph models
general class of templatés, which can be partitioned into '

sub-templatesl’; and 7> by the deletion of a cut-edge; a TABLE |
cut-edge in a graph is an edge whose deletion increases the SIZES OF THE GRAPHS USED IN THE EXPERIMENTS
number_ of connected com_pon_ents. Trees certainly satigdy th Graph | Number of Nodes| Average Degree
constraint, but as shown in Figure 3, templdtgthe graph NRV 151,783 1635
at the right hand side), which is not a tree, still satisfigs th Miami 2,092,147 50.4
constraint, since it can be partitioned into sub-templ&tes Chicago 9,038,414 59.5
. Miami1l0 20,921,470 50.4

andT» by removing the cut edgg, 3). GNP50 50,000 >0

Now we illustrate the main idea behind our parallel GNP100 100,000 20

algorithm RRSE using Figure 3. A node adjacent to the cut

edge is called the root of the corresponding sub-templateln order to test our framework with even larger graphs,
and the root of templatd’; is denoted byp(7;). In the we construct an artificial network, Miamil0O, obtained by
figure, templateT is partitioned into two subgraphg; composing 10 copies of the Miami network in the following

manner: we sample an integdrfrom a distributionD for each processog independently works on each partiti@n,
each vertex in the new network. Then we chodseertices assigned to it (our node labeling scheme allows the procgsso
from clones of Miami other than the one containing thito identify the partitions independently), and computes th
vertex uniformly at random, and connect them with this vertecounts C(v, p(73),.S;) for each: and each possible color
We also generate two random graph usifign,p) model, setS;, by invoking the Algorithm ©UNTTEMPLATE from
which contains: vertices and each pair of vertices has equ&ection 11I-C. This corresponds to the step of computing
probability p to be connected by an edge. The two randosmaller sub-problems, as part of the dynamic programming.
graph are named GNP100 and GNP50. The streaming-based workflow avoids loading the original
graph into local memory, which is useful for very large graph
Also, note that by making GUNTTEMPLATE generic, we are
Table Il lists some of the notations commonly used in theble to enumerate more complex templates. Finally, in lines
rest of the paper. 7-10, the remaining step of the dynamic program is run to
compute the aggregate count by sending the sub-problems to
the master node; this is described in detail in Section 1lI-D

C. Notations used in this paper

TABLE I
NOTATIONS IN THE PAPER

Symbol || Definition Algorithm 1 High level description of Algorithm ARSE.
G The main graph - — -
Gy A partition of G 1 Part!t!onG and assign processors
T Template graph 2: Partition templatel” into two parts7; and Ts; let p(73)
p, P Partition ID, number of partitions denote a “root” for the subgrapﬁi
q,Q Processor ID, number of processors . ASSi h d % d lor f 1 L
n,m Number of vertices and edges @, respectively 3: Assign each node < V' a random CO or ron{_ L }
N(v) The set of neighbor of vertex 4: for each processay, and each partitiods, assigned to it
Nr(v) r-Neighbor of vertexv do
k Size (number of vertices) of templaie .
g Color/Label set 5: for each nodev € ‘core(Gp), each setS; C
o, 8 Factors for counting colorful sub-template, and template {1,...,k}, |S;| =T, i=1,2 do
6: ComputeC' (v, p(T3), T, Si)
7: for each edge = (u,v) € E do
I1l. ALGORITHM FOR PARALLEL TEMPLATE COUNTING a: Compute

Now we describe an overview and the basic ideas followed: Cle) =g, 5, Clu, p(T1),T1, 81)C (v, p(T2), Tz, S2)
by the complete description of our algorithnnHSE. As 10 +C (v, p(Ty), Ty, S1)C(u, p(T2), Ta, S2)
discussed earlier, in this paper, we only consider templatel: where the sum is over alf; U Sy = {1,...,k}
T which can be partitioned into sub-templatBsand 7, by 12: X «— >"_C(e)/f
removing a cut-edge. In our dynamic program based paralled: Repeat line 3-12 until the average of reaches the
algorithm for counting all colorful embeddings @fin G, the precision requirement
main idea is to have the color coding cou6t, p(T;), T3, S;)
(as defined in Section 1lI-A) exchanged by the processors

and combine these counts carefully. While the algorithms of Master Node

[1; 8] compute the above count&v, p(T;), T;, S;) as well by izaton. | ek MR enazgton:

dynamic programming (which limits the approach to trees), w fondom vatex ooy v [t

computeC (v, p(T;),T;, S;) locally within a processor, using 7 [counts ofthe template

a back-tracking based approach, and all processors sesel the ?’g%

counts to a designated processor called the master precesso /| ... %;%

or master node, which aggregates them. As a resakSIE ng?ééigé?si{g'l’f{iﬁ%:te %‘%

is able to handle more complex templates than trees, and the %

template can have more than constant treewidth. o Blaciqo 1 send | | Blocking P Sendy) Bocking WA Sendl)

A. Overview of PARSE Ei‘:f"l‘mm"t'&f S“t‘:fbltmm”t'if f"t‘;"ltm””"t“nf
Algorithm 1 gives a high level description ofARSE, and %88) Ogé) '(6_855\)

Fig. 4 shows a schematic diagram; some of the terms used Workr Node || werar wode o vode

here are defined in Section 1lI-B. Processor 0 is designated

as a master processor (also referred as master node), which Fig. 4. A schematic description ofaARSE.

performs the initialization and finalization of the algbrit.

The other processors are called worker nodes. Once the o

system is initialized, each worker noggenerates its assigned3: Cover-based Graph Partitioning

partitions from the original graplG in line 1 - this is Let N,.(v) be the r-neighborhood of nodes, which is
explained in Section 1lI-B. The master node also perforntefined asN,.(v) = {u : d(u,v) < r}, whered(u,v) is the
the random coloring in line 3 of Algorithm 1. In line 4-6,distance betweem andv. For a subgraptG, = (V,, E,)

140 2.5e+0¢

of G, we definecore(G,) as the set of nodes whose =0 —
neighborhood is completely containedd, i.e.,core(G,) = _ |7
{v: N,(v) C V,}, for a parameter. A “cover decomposition”

is a partitioning of the graph into overlapped pats so that
the following properties hold [2]:

Z) U COTe(GP) =V / g : m\am\—smhi\?fw; o

2e+06
100

80 . 1.5e+06

size

60 1e+06

running time (min)

40

0 0
0 100020003000400050006000700080009000L0000 0O 1 2 3 4 5 6 7 8

1<p<P # of partitions hops
i) V , core(Gp,) Ncore(Gp,) =
) p1 # p2 (pl) (pz) ¢ Fig. 5. Running time of partitioningFig. 6. Example showing how the
Algorithm 2 describes ENERATEPARTITION. which par- vs. number of partitions, varing theize of N;-(v) from a single vertex

" . ' " cover sizer. increasing in our social contact graph.
titions the graphG into partsG,. To generate partitions,,
Algorithm 2 first reads vertex sét, the set of core vertices
from the graph file, with sizéW,| = n/P (line 1-2). Then a
subgraphG, = (V,, E,,) is computed which includes the

r = 5, the r-neighborhood of a random node is almost the
; ; entire graph. This is also true in the random graph obtained
neighborhood ofV,, and W, itself, so thatcore(Gy) = Wy. by randomly switching pairs of edges of the Miami graph (de-
The algorithm is implemented in a streaming manner apghteq by Miami-shuffle in Fig. 6), while preserving the node
makesr + 2 passes through the file; it does not load the e”t'Ff'egrees. Therefore, when the radius of the template grows,

graph G into main memory, allowing us to work with Veryis enymeration cannot be done locally within a partitiamd a

large graphs that do not fit in memory. In the first pass (Line JrSE uses color coding to distribute the computation over
2), GENERATEPARTITION reads core noded’,. In the nextr

. . ; - sub-templates.
passes, it determines and includes the nodesieighborhood
of W,. In the last pass, it reads the edges incident on nodes Template Enumeration

N V. Algorithm 3 CoUNTTEMPLATE describes the subroutine
_ _ which determines the local coun€(v, p(T;), S;) (line 6 of

Algorithm 2 Cover-based-partition Algorithm 1); this is done locally withircore(G,) for each
GENERATEPARTITION(G(V, E), p,r, P) part G,. COUNTTEMPLATE uses a BFS based backtracking

0: nCore «— % scheme that invokes M CHSUBGRAPH (Algorithm 4), in

1: Skip nCore x (p — 1) nodes order to compute these quantities.

2: V, «— the set of nextuCore nodes

3 Ey—¢ Algorithm 3 Template enumeration in each partition

4 for i fromltordo COUNTTEMPLATE(T(VT, ET), G, (V,, E,), S)

5. for each edgesv,) in & do 1: Perform a breadth-first search (BFS)7h Let u1, us, . . .

6: If veV, andu ¢ Vp, V, =V, Uf{u} be the nodes iff" in the order of their discovery in BFS.

7. for each edges$v, u) in G do for each nodes € V,, do

8 IfvueV, add(v,u)to Ep for each permutatiors’ of S do

9: return G, (Vy, Ep)

MATCHSUBGRAPH(2, S")

Algorithm GENERATEPARTITION makes r + 2 passes a = number of automorphisms df with root p(7")
through the graph file: Line 1-3 makes 1 pass, Line 4-6 makes return count/«
r passes and Line 7-8 makes 1 pass. The graph file is storedas
an adjacency list and thus the file siz&lén +m) wheren is
the number.vertices and is Fhe number of edges in th_e_ grapi'AI(gorithm 4 MATCHSUBGRAPH(, 5)
Thus, reading the graph file to generate one partition takes —
O((n + m)r) time. Therefore, to generafe partitions byQ MAT_CHSUBGTRAPH(Z’)
processors taked((n + m)rP/Q) time as processor read the ** if i =[V7]+1 then

2:
3:
4: if MATCHVERTEX(u1,v,S") then
5:
6:

graph file independently and simultaneously in paralled. Bi 2 count « count +1
shows running time for generating partitions with=0,1,2 3 _ (;eturn _ . o
on network Miami. It shows for fixed) andr, running time 4 Find M = {f(ur) | k <iA(ui,ur) € BT}, where

f(uy) denotes the node in the main graph that has
been mapped to.

5. ComputeC' =, o5y N(v)

6: for eachv € C do

if MATCHVERTEX(u;, v, S”) then
MATCHSUBGRAPH(i + 1, S")

increases linearly to the number of partitioRs

The hop-sizer needs to be chosen carefully - it should be
large enough to cover each sub-template, i.€x rad(T;),
for each sub-templat&; of T'; rad(7;) denotes the radius
of T;, as defined in Section Il. However, the partition size,7:
N,(v), grows rapidly withr in social networks, as shown 8:
in Fig. 6 for the contact graph for Miami; note that when % "€tum

Algorithm 5 MATCHVERTEX(u, v, S") these estimates in lines 32-34. The graph is first partitidoe

MATCHVERTEX(u, v, S’) P partitions by the processors, in Line 1-2. Processor 0 &cts a
1: if color of v in permutationS’ is as same as color af the master/control node and performs the random coloring in
then lines 5-6. Lines 8-17 are performed by each worker processor
2: return true which repeatedly gets a partitiai, (line 11), and computes
3: return false and sends the counts for the sub-templates for each vertex

v € core(Gp) in lines 12-17. For each sub-templéie and
every possible subsei] of distinct colors for nodes irf;,
Algorithm MATCHSUBGRAPH(:, S’) finds the candidatesthe processor computes(v, p(7;),ST). In order to exploit
C for matching withu;, and for each matching candidatepulk-synchronization, each processor sends one largeagess
it recursively calls itself to match the rest of the nodesorresponding to each node which encodes the counts for
Uit+1,Uit2, - - .. Algorithm 3 enumerates all permutation of theall possible ways of partitioning the sét= ST U S7. This
color set in order to count the number of colorful embedding®rresponds to the lower level steps of the dynamic program
of the template. The matching of the color of vertexin [1]; however, @UNTTEMPLATE directly computes the counts
the template and a candidate is ensured in Algorithm needed in these steps by a backtracking algorithm.
MATCHVERTEX(u, v, S"). The count is divided by a factor The top level steps of the color coding dynamic program
«, which is the number of automorphism of the templatll] are performed in lines 18-31 of Algorithm 6 by the
when the root is fixed. Since the size @fre(G,) is same master processor. For each edge v), the master com-
among all partitiong, the computational cost of enumeratiorputes) g, s, s s,—¢1,. 5} C(w p(11),51)C(v, p(T2), S2)+
on different partitions is roughly constant, as shown in th€(v, p(T1), S1)C(u, p(T>), S2), for all partitionsS; U Sy of
green band in Fig. 8. However, the time to generate parstioS. The count is divided by a factgt to remove the duplicated
from the graph linearly increases according to theplDf the enumeration of the same colorful template. It is the numlber o
partition G, as the red line in Fig. 8 shows. The reason ishe cut-edgéu, v) in T, for which the template is isomorphic
in GENERATEPARTITION, we will first skipnCore x (p—1) to itself. Note that the the quantity; - as - 8 is the automor-
vertices to reach the location in the graph file where=(G,) phism of the templat&, wherea; anda, are the factors used
is located (Line 1 in Algorithm 2). Therefore, the time tocka in Algorithm 3 for the two sub-templates.
the location in the first pass is proportional to the pantitio
ID p. The restr + 1 passes (Line 4-8) take same amount o) ;))
the time among partitions. To balance the computational loa Following [1], Algorithm PARSE is a randomized approx-
among processors, we assign the partitions to the prosesd@iation scheme, that estimates the number of embeddings of
in a round robin fashion. This keeps the total running time dhe templatel’ within any desired level of accuracy, which is
each processor to be roughly the same, as shown in Fig. 7; 8hESer input; this is summarized below.
small slightly lower segment in the figure is due to the fact 1heorem 3.1:For any given parameters d, let N1 =
that the corresponding processors are assigned one guartif?(log 1/6) and Ny = O(Z). Then, the estimated number
less than the others, and this imbalance can be correctedoh@mbeddings of templaté in graphG (denoted byZ) as

. Performance analysis

careful choice ofP and Q. output by Algorithm RRSE, satisfies
Pr[|Z — emb(T,G)| > €-emb(T, G)] < 4,
6000 Lttt B At 240 partitioning time
5000 ey 20 caleuamg tme, whereemb(T, G) denotes the exact count of the number of

200 o5 At

embeddings.

4000

2 £ 180 i . .
2 00 2 10f We now bound the time and space complexity. Peand@
2 00 2 o0 T denote the number of partitions and processors, respbgtive
1000 oL and A be the average degree @ Definek’ = max{k;, k —
o processor running time 80 kl}r n = |V|, andm = |E|
L O AR SR MIInE® Theorem 3.2:The total running time and the sum of the

sizes of all messages in AlgorithmraRSE can be bounded by

Fig. 7. Running time on differentFig. 8. Partition and calculation time e’ log1/5 ((n Ak & I
processors. for each partitionp. 0 = gA" + (n+m)k and O(nk"™), respec-

tively.
o) Proof: Generating partition in Line 2 take3((n +m)r)
D. Complete description of AlgorithiRaRSE time. The loop in Line 1-2 repeaf3/(times for each proces-
Finally, we describe ARSE in detail in Algorithm 6. sor. Therefore, the running time for Line 1-26E{(n—|—m)%).
The algorithm is a randomized approximation scheme, whigtandom coloring to the graph in Line 6 takégn) time.
repeats the basic steps in ILnes 578 N, times, whereV; = In Line 11, the time to read a partition by one processor
O(log1/0) and N; = O(%); each iteration computes thetakesO(n +m) time. Function ©UNTTEMPLATE (Line 14)
number of colorful embeddings of the template for a randomatches the root of templafg& with nodewv only. Any other
coloring of G, and the final result is some form of average afiodew’ of T; can be matched only after one ofs neighbor

Algorithm 6 Algorithm PARSE((VT, ET), G(V, E), ¢, 6)
Lforpe—me—Lip<Pip—p+Q—1do
2: G, — GeneratePartitio{(V, E), p, r, P) {me is the current processor’s D
3: for j from 1 to NV, do
4 for ¢ from 1 to Ny do
5 if me =0 then
6: Color(G(V, E), S) {randomize coloring the original graph
7
8
9

Barrier {synchronizing
if me > 0 then

: LoadTemplate()
10: for p«—me—1;p< P;p—p+@Q —1do
11: LoadPartition(+,,)
12: for each vertex € core(G,) do
13: for eachSTJ S5 = 5,57 NS5 = ¢, m € [1, ()] do
14: c1 < COUNTTEMPLATE(v, 11, ST)
15: co <+ COUNTTEMPLATE(v, T3, ST)
16: val|r] « (c1,¢2)
17: Send(al, 0) {send to processor}0
18: if me =0 then
19: Count «— 0
20: for eachv € G do
21: Recv(al)
22: valMatriz[v] «— v
23: for eachv € G do
24: for eachu € N(v) do
25: if > v then
26: for 7 from 1 to (/* ') do
27: Count «— Count + val M atriz[v][r].c; x val Matrizlu][r].cq
28: Count — Count + val M atriz[v][r].ca X val Matrixz|u)[r].cy
29: Count — Count/3
30: Count «+— Count x IZ—],C
31: X; = Count
32: if me = 0 then
33: Y} — 21 Xl/NQ

34: Output the median ofYy,..., YN, }

w' has been matched with some € V, and«’ can only is O((m + n)k*"). Considering tha%P < k¥, total time for
be matched with a neighbar of w such that color{’) = Line 5-31 is given by:

color(u). Since k colors are randomly assigned, any vertex o . » W

u' € T, can be matched with, on averagd/k nodes in O((A +E)g + (n+m)g+ (n+mk)

V. Therefore the running time of@JNTTEMPLATE (both in 0 (%Ak/ iy m)kk/) .

Line 14 and 15) is bounded kY (()) as|Ty| = k1 < k.
The outermost two loops Line 3-4 combined repéat-

The loop in Line 13-16 repeats” times and thus it takes Ko 1/5 o on e
O((é)k EF) = O(A¥) time Ny = % times. Therefore, the total running time is:
- = .

The Sendstatement in Line 17 take9(k*") time and the 10) (% (ﬂAk’ (n+ m)kk’) (n+m) TQI;)
loop in Line 12-17 repeats/ P times for each partition. Thus) ,

this loop takesO((A* + k*¥')n/P) time. The loop in Line =0 (ng (%Ak + (n+m)k*)) -
10-17 repeatd’/(Q times for each processor. Then this loop

Ny s Finally, for the total message size, observe that one execu-
takesO ((A +E) G+ (n+m)g) time. tion of the Sendstatement (Line 17) send3(k*') data items
Line 19-31 is executed by Processor 0. Line 20-22 takasd it is executed totab times by all processors combined.
O(nk*") time. Loop in Line 26-28 take®)(k*') time. Two Thus total size of messages sentiék*"). [

loops combined in Line 23-24 repeatym + n) times and The bounds in Theorem 3.2 show the limits to which we
takesO((m+n)k*") time. Therefore total time for Line 19-31can expect the current implementation ofRSE to scale -

0.0014 0.3

the communication cost will become the significant botttdne
n k' [A 0.0012 025
when $AY < (n+m)k", i.e., when@ > G)R 0001 .
5 0.0008 5
2 £ 015
V. EXPERIMENTS ® o0oo06 °
.) 0.0004 ol
We now discuss the performance of AlgorithmRSE on 0.0002 005
the datasets discussed in Section Il. Our experiments aeglba 0 0
. 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
on the templates in Fig. 9 with sizes varying from 4 to 10 #of erations # of terations
nodes; each template is divided into two sub-templatesgusi

. . . . rI]:i .10. Error for RRSE, conducted Fig. 11. Error for RRSE, conducted
the cut edge; the radius of each sub-template in Fig. 9jivelat OngGNplooy using templaté; OngGNplooy using templatés

to its root is eitherl or 2.

0.0016
0.0014
0.0012

0.001

error

0.0008
0.0006
0.0004
0.0002

0
0 2 4 6 8 10 12 14 16 18 20
of iterations

Fig. 9. Templates with size varying from 4 to 10.

Fig. 12. Error for RRSE, conducted on NRV, using templdia

We study the following specific aspects: (i) the time, space
and communication costs of various steps aRBE, (ii) the
approximation error, and the number of iterations needed in
practice, (iii) strong and weak scaling oARSE and (iv) exact C. Running Time of various steps in AlgoritfPnRSE

counti_n.g on small templates (such as.cliques),_which fiti_with The overall running time of A/RSE can be roughly split into
a partition, and can be enumerated directly using Algori®imy parts: graph partitioning, initialization (include ghaandom
(COUNTTEMPLATE), without the need for color coding. coloring), local template counting and final aggregatidgufe

Our main observations include: (i) in practice, the numbams and 16 show the running time of these parts on NRV,
of iterations needed for our algorithm to produce @0é) for Ty and T, respectively. We choosa&, = 1, Ny = 5
approximation is much smaller than the theoretical bound ghd P = 1000. We observe that for a given template, the
Theorem 3.1, (i) the algorithm scales quite well up to 35fitialization and the finalization time do not vary much hvit
processors. In contrast, most of the prior results run inva fejifferent number of processors, since these are done only by
hours for graphs which are at least two orders of magnituglgs master node. The partitioning and counting times dserea

smaller. with the number of processors. The partitioning time for
_ . o both 75 and Ty is roughly the same, while the counting
A. Number of iterations and approximation error time changes significantly between Fig. 15 and 16, since

Theorem 3.1 gives an upper boundéf N, — O(ek log 1/6) the running time of subgraph counting is exponential in the
. =0(—5+ _ . LS .
on the number of iterations of the basic color coding Conli@mp_late_sme. In F'g' 1_6’ the cquntmg tlm_e domma'Fes thad to
running time. The finalization time also differs in Fig. 15dan

putation in Algorithm RRSE, in order to get ane,d)- X i
approximation to the actual number of embeddings. In pra%f-s’ because large templates imply more choices of the color

tice, we find that this is a fairly loose bound, and as shown §ift: Making the aggregation in Line 26-28 of Algorithm 6 more
Fig. 10 and 12, choosing eve¥y, = 1 andN, = 3 reduces the EXPENSIVE.

approximation errok to less than 0.1%. In Fig. 11, choosing

N; = 1 and Ny = 4 reduces the erro¢ to 5%. Therefore, 100 e 1400
for the remaining experiments in this section, we use only a _ HF —
small number of iterations.

PARSE ——
1200 HF

1000

60 800

B. Comparison with sequential algorithm 40! £ ™
400

We also compare the running time oA®SE and Huffner's ® 200
algorithm (HF) [8] on GNP50. Giving the edges equal weights, ° o

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160

HF will enumerate all paths with a given length. The resulés a # of processors # of processors

shown in Fig. 13 and]j4’ for templafg and s, r_eSpeCtIVEIy' Fig. 13. Running time of RRSE Fig. 14. Running time of RRSE
It shows that our algorithm almost reaches 10 times faster th vs. sequential algorithm, conducte’S. sequential algorithm, conducted
HF algorithm for7, and 100 times faster foPs. on GNP50, using templatéy on GNP50, using templat&s

running time (sec)
running time (sec)

45 rrmr— 600 T 260 700
Initialization Initialization
40 Partition - Partition - 600
Counting = 5005..... . Counting = 220

B Finalization =

35 Finalization =
30
25
20
15
10}

500
400

400

300
300

running time (min)
running time (min)
runnning time (min)
runnning time (min)

200
200

o P 100 o a a 80 100
5p= e = 60
o P o — 20 200 processors—-— 0
80 100 120 140 160 180 200 220 240 80 100 120 140 160 180 200 220 240 0 10002000300040005000600070008000900 0000 T6 T7 T8 T T10

of processors # of processors # of partitions template size

Fig. 15. Time usage on various stepdg. 16. Time usage on various steps Fig. 19. Running time on MiamiFig. 20. Running time on NRV
with different number of processorsyith different number of processors, scaling with # of partitions. scaling with various template size.
on a single iteration, on NRV. Temen a single iteration, on NRV. Tem-

plate isTg plate isTs

E. Counting Template with Small Radius
D. Scaling of PARSE For a template with small radius, e.g., withd(T') = 1, the

Figures 17 shows the strong scaling of running time Witﬁmplate can be contained completely in a partition without

number of processors ranging from 160 to 400 on Mianifllémcnagn Ift"m;nes;gthcz ﬁ?sz.nwﬁegg cnoor':wr;]qe?\ia(i'cggrt'fnoedlgr? d
for template7;. Note that for small template such &3, : X unt using unicatl :

N : . . . finalization time. Such a template can be counted in each
finalization/aggregating time is a major part of the tota

running time, and it is independent of the number of pr(gJ_amtlons using the algorithms in Section 11I-C, but thdaco

cessors. Thus when we increase the number of processg?és and related permutation procedure are not necessary; two

the running time does not decrease linearly: however, v rticesu andv are matched WIthO.Ut the con(_jmon that the|_r
Q lors need to be the same. The final count is the summation

to 350 processors, it still scales well. For our graph dat th i h i divided bv th b f
showing weak scaling is not an easy task as varying tﬁé € counts on each partiion, divided by the number: o

graph size without affecting its structural propertiesiféalt. automorphism of the template. Fig. 21 shows that even for

: total running time . - graph which contains 20 million vertices, the total time to
Fig. 18, show P/Q varying with the number of cqunt 5-cliques is less than 13 hours. A cliqGe(V., E..)

processors, which is a measure somewhat similar to we 2 complete aranh in which for each pair of the vertices
scaling. Due to the communication and finalization cost, tHhe v Fiheregs gn edae 7oA CF:. e containin
running time on each processor increase with the number'bf’ € Ve ! ge(u,v) € Ee. Iqu ining

. k vertices is called &-clique. The experiments have been
processors. For large template such7gs since finalization . .
L . LT done with 120 processors and 2000 partitions for each graph.
time is not a major part of total running time, we expect th

weak scaling to be better. Fig. 19 shows the total running ti ote that NRV requires approxim.ately the same running time
increases linearly with the number of partitions. Thereforas Chicago, though the graph size is much smaller, for the

given the number of processors, we can obtain the fast gson that it has much Iargi,r average degke¢note that
running by letting? = Q — 1 e time bound has a factah”). Also, the number of 4-

cligue embeddings on NRV is the same order of magnitude as
Chicago and the number of 5-clique embeddings is the largest

90 125

o 12 among all networks, as shown in Fig. 22.
115
E & E 1;;
g g) 800 le+12
s ER]
g g o5 700 8 5-Clue w—
£ 70 £ 9 = 600 £ lel
2 2 8.5 £ =z
5 8 % 500 E
75 %, 400 g 1e+10
60 7 £ 300 g
150 200 250 300 350 400 150 200 250 300 350 400 5 ?
of processors # of processors =200 E le+09
100
Fig. 17. Running time on MiamiFig. 18. Running time of a proces- 0 e e 1e+08 TR ———
. P lami icago lami lami icago ami
(of a single iteration) scaling with #or counting on a single partition of o e
of processors. Miami, scaling with # of processors.

Fig. 21. Running time for counting=ig. 22. Number of 3, 4, and 5-
We also study how running time is scaled with the increas=cliques with 120 processors. cliques in different graphs.

ing of the template size. In Fig. 20, we use templage T+,
T, Tg and Tyy from Fig. 9, and experiment on NRV. The
number of processor employed here8is and the partition
number is1000. We found that for template size up i@, Environment: The experiments were performed on an SGI
our algorithm can still finish the counting withit2 hours in Altix ICE 8200 system. It has 96 nodes and each node has 2
a graph with hundreds of thousands nodes and average ded¢mézsl Quad-Core Xeon E5440 processor, and 16GB memory,
more than a hundred. or 2GB per core.

V. IMPLEMENTATION SPECIFICATIONS

Data structure: Vertices’ IDs are mapped to a continuesespddets Grant CNS-0626964, NSF HSD Grant SES-0729441,
which stores the pointers to the neighbor lists of the vestic NIH MIDAS project 2U01GM070694-7, NSF PetaApps
We avoid any STL datastructure in the graph storage, dueGoant OCI-0904844, DTRA R&D Grant HDTRA1-0901-
its high memory cost. 0017, DTRA CNIMS Grant HDTRA1-07-C-0113, NSF NETS
Communication: We use the defalecv() function in MPI CNS-0831633, NSF CAREER 0845700, DHS 4112-31805,
which is non-blocking and each call to thecv() function DOE DE-SC0003957 and NIH/CDC 1P01CD000284-01.
which is not matched by angend()will generate a message
header. Therefore we need to be cautious to configure the
MPI_MAX environment variable, which set the maximum [1] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and
number of message header allowed. In our case for running S. Cenk Sahinalp. Biomolecular network motif count-
on Miami, processor number below 160 will cause the number ing and discovery by color coding. Bioinformatics

of message headers to exceed the default_IMRIX value. 24(13):241-249, July 2008.

The solution can be either increasing the MAAX value, [2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast
which may also increase the running time due to the overhead hetwork decomposition. IRODC pages 169-177, 1992.
in system level, or passing larger messages, each of whidRl C. Barrett, D. Beckman, M. Khan, V.S. Anil Kumar,

REFERENCES

contain mu|tip|e messages we Currenﬂy use. M. Marathe, P. Stretz, T. Dutta, and B. Lewis. Generation
and analysis of large synthetic social contact networks.
VI. RELATED WORK In Winter Simulation Conferenc@009.

As discussed earlier, there has been a lot of work of¢] C. Bron and J. Kerbosch. Algorithm 457: Finding all
sequential algorithms for determining the counts of specifi ~ cliques of an undirected graplfCommunications of the
subgraphs, as well as finding statistically significant sapl ACM, 1973.
patterns. [1; 5-9; 11]. Many of these approaches are based &l L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
back-tracking, dynamic programming, and using techniques A (sub)graph isomorphism algorithm for matching large
such as color coding. These results typically only scale to 9raphs. IEEE Transactions on Pattern Analysis and
graphs with few thousand nodes. More efficient algorithms Machine Intelligence26(10):1367-1372, October 2004.
have been developed for the problem of finding frequent6] M. Gonen, D. Ron, and Y. Shavitt. Counting stars and
subgraphs, e.g., Kuramochi et al. [9; 10] using adaptations Other small subgraphs in sublinear time. AGM-SIAM
of breadth-first and depth-first based candidate generation Symposium on Discrete Algorithms (SODA(10.
methods to scale to about 120,000 nodes. There has bekfl M. Gonen and Y. Shavitt. Approximating the number of
limited work on parallel algorithms for subgraph enumerati network motifs. InThe 6th Workshop on Algorithms and
One thread of work has been on enumerating maximal cliques. Models for the Web Graph (WAWJ009.

Starting with the parallel algorithm of Bron and Kerbosch[8] F. Huffner, S. Wernicke, and T. Zichner. Algorithm en-
[4], there has a lot of subsequent work, e.g., Schmidt et al. gineering for color-coding with applications to signaling
[13]; these algorithms are based on making the basic back- Pathway detectionAlgorithmica 2007.

tracking procedure more efficient using additional infotiora, ~ [9] M. Kuramochi and G. Karypis. Frequent subgraph
but many of these technique is specific to cliques. This has discovery. InProc. IEEE International Conference Data
been extended to other subgraphs by Wang et al. [14]; their Mining (ICDM), 2001.

approach is also based on local enumeration in a suitabl®] M. Kuramochiand G. Karypis. Finding frequent patterns

partitioning, and is shown to run on biological networkstwit in a large sparse graphData Mining and Knowledge
a few thousand nodes. Discovery 2005.
[11] J. Leskovec, A. Singh, and J. Kleinberg. Patterns of
VII. CONCLUSIONS influence in a recommendation network.Rroc. Pacific-

Algorithm ParSE is a new approach for parallel subgraph ~ Asia Conference on Knowledge Discovery and Data
enumeration, and our results are the first to scale to graphs Mining (PAKDD), 2006.
with 10° — 10° nodes, for templates of size up to 10 (whict12] R. Milo, S. Shen-Orr, S. ltzkovitz, N. Kashtan,
can be partitioned by a cut-edge), within a few hours. This D. Chklovskii, and U. Alon. Network motifs: Simple
basic approach can be extended to larger templates which building blocks of complex networks.Science pages
cannot be partitioned by a cut-edge, by extending the dymami ~ 824-827, 2002.
programming framework, though a new approach is neededs] Matthew C. Schmidt, Nagiza F. Samatova, Kevin
address the space and communication cost. We expect these Thomas, and Byung-Hoon Park. A scalable, parallel
techniques to broaden the scope of the usage of subgraph algorithm for maximal clique enumeration. Gournal
enumeration in social networks and other applications. of Parallel and Distributed Computing?009.
Acknowledgements We thank our external collaborators and14] T. Wang, J. Touchman, W. Zhang, E. Suh, and G. Xue.
members of the Network Dynamics and Simulation Sci- A parallel algorithm for extracting transcriptional regu-
ence Laboratory (NDSSL) for their suggestions and com- latory network motifs. INEEE Symposium on Bioinfor-
ments. This work has been partially supported by NSF matics and Bioengineering005.

