
K-Nearest Neighbor Classification on Spatial Data
Streams Using P-Trees1, 2

Maleq Khan, Qin Ding, and William Perrizo

Computer Science Department, North Dakota State University
Fargo, ND 58105, USA

{Md.Khan, Qin.Ding, William.Perrizo}@ndsu.nodak.edu

Abstract. Classification of spatial data streams is crucial, since the training
dataset changes often. Building a new classifier each time can be very costly
with most techniques. In this situation, k-nearest neighbor (KNN) classification
is a very good choice, since no residual classifier needs to be built ahead of
time. KNN is extremely simple to implement and lends itself to a wide variety
of variations. We propose a new method of KNN classification for spatial data
using a new, rich, data-mining-ready structure, the Peano-count-tree (P-tree).
We merely perform some AND/OR operations on P-trees to find the nearest
neighbors of a new sample and assign the class label. We have fast and efficient
algorithms for the AND/OR operations, which reduce the classification time
significantly. Instead of taking exactly the k nearest neighbors we form a
closed-KNN set. Our experimental results show closed-KNN yields higher
classification accuracy as well as significantly higher speed.

1. Introduction

There are various techniques for classification such as Decision Tree Induction,
Bayesian Classification, and Neural Networks [7, 8]. Unlike other common
classifiers, a k-nearest neighbor (KNN) classifier does not build a classifier in
advance. That is what makes it suitable for data streams. When a new sample arrives,
KNN finds the k neighbors nearest to the new sample from the training space based
on some suitable similarity or distance metric. The plurality class among the nearest
neighbors is the class label of the new sample [3, 4, 5, 7]. A common similarity
function is based on the Euclidian distance between two data tuples [7]. For two
tuples, X = <x1, x2, x3, …, xn-1> and Y = <y1, y2, y3, …, yn-1> (excluding the class

labels), the Euclidian similarity function is ()�
−

=
−=

1

1

2
2),(

n

i
ii yxYXd . A

generalization of the Euclidean function is the Minkowski similarity function is

1 Patents are pending on the bSQ and Ptree technology.
2 This work is partially supported by NSF Grant OSR-9553368, DARPA Grant DAAH04-96-1-
0329 and GSA Grant ACT#: K96130308.

q
n

i

q
iiiq yxwYXd �

−

=
−=

1

1
),(. The Euclidean function results by setting q to 2 and

each weight, wi, to 1. The Manhattan distance, �
−

=
−=

1

1
1),(

n

i
ii yxYXd result by setting

q to 1. Setting q to ∞, results in the max function ii

n

i
yxYXd −=

−

=
∞

1

1
max),(.

In this paper, we introduced a new metric called Higher Order Bit (HOB)
similarity metric and evaluated the effect of all of the above distance metrics in
classification time and accuracy. HOB distance provides an efficient way of
computing neighborhoods while keeping the classification accuracy very high.

KNN is a good choice when simplicity and accuracy are the predominant issues.
KNN can be superior when a residual, trained and tested classifiers, such as ID3, has a
short useful lifespan, such as in the case with data streams, where new data arrives
rapidly and the training set is ever changing [1, 2]. For example, in spatial data,
AVHRR images are generated in every one hour and can be viewed as spatial data
streams. The purpose of this paper is to introduce a new KNN-like model, which is
not only simple and accurate but is also fast – fast enough for use in spatial data
stream classification.

In this paper we propose a simple and fast KNN-like classification algorithm for
spatial data using P-trees. P-trees are new, compact, data-mining-ready data
structures, which provide a lossless representation of the original spatial data [6, 9,
10]. In the section 2, we review the structure of P-trees and various P-tree operations.

We consider a space to be represented by a 2-dimensional array of locations.
Associated with each location are various attributes, called bands, such as visible
reflectance intensities (blue, green and red), infrared reflectance intensities (e.g., NIR,
MIR1, MIR2 and TIR) and possibly crop yield quantities, soil attributes and radar
reflectance intensities. We refer to a location as a pixel in this paper.

Using P-trees, we presented two algorithms, one based on the max distance metric
and the other based on our new HOB distance metric. HOB is the similarity of the
most significant bit positions in each band. It differs from pure Euclidean similarity
in that it can be an asymmetric function depending upon the bit arrangement of the
values involved. However, it is very fast, very simple and quite accurate. Instead of
using exactly k nearest neighbor (a KNN set), our algorithms build a closed-KNN set
and perform voting on this closed-KNN set to find the predicting class. Closed-KNN,
a superset of KNN, is formed by including the pixels, which have the same distance
from the target pixel as some of the pixels in KNN set. Based on this similarity
measure, finding nearest neighbors of new samples (pixel to be classified) can be
done easily and very efficiently using P-trees and we found higher classification
accuracy than traditional methods on considered datasets. Detailed definitions of the
similarity and the algorithms to find nearest neighbors are given in the section 3. We
provided experimental results and analyses in section 4. The conclusion is given in
Section 5.

2. P-tree Data Structures

Most spatial data comes in a format called BSQ for Band Sequential (or can be easily
converted to BSQ). BSQ data has a separate file for each band. The ordering of the
data values within a band is raster ordering with respect to the spatial area represented
in the dataset. We divided each BSQ band into several files, one for each bit position
of the data values. We call this format bit Sequential or bSQ [6, 9, 10]. A Landsat
Thematic Mapper satellite image, for example, is in BSQ format with 7 bands,
B1,…,B7, (Landsat-7 has 8) and ~40,000,000 8-bit data values. A typical TIFF image
aerial digital photograph is one file containing ~24,000,000 bits ordered by it-
position, then band and then raster-ordered-pixel-location.

We organize each bSQ bit file, Bij (the file constructed from the jth bits of ith band),
into a tree structure, called a Peano Count Tree (P-tree). A P-tree is a quadrant-based
tree. The root of a P-tree contains the 1-bit count, called root count, of the entire bit-
band. The next level of the tree contains the 1-bit counts of the four quadrants in
raster order. At the next level, each quadrant is partitioned into sub-quadrants and
their 1-bit counts in raster order constitute the children of the quadrant node. This
construction is continued recursively down each tree path until the sub-quadrant is
pure (entirely 1-bits or entirely 0-bits). Recursive raster ordering is called the Peano
or Z-ordering in the literature – therefore, the name Peano Count trees. The P-tree for
a 8-row-8-column bit-band is shown in Fig. 1.

Fig. 1. 8-by-8 image and its P-tree (P-tree and PM-tree)

In this example, root count is 55, and the counts at the next level, 16, 8, 15 and 16,

are the 1-bit counts for the four major quadrants. Since the first and last quadrant is
made up of entirely 1-bits, we do not need sub-trees for these two quadrants.

For each band (assuming 8-bit data values), we get 8 basic P-trees. Pi,j is the P-tree
for the jth bits of the values from the ith band. For efficient implementation, we use
variation of basic P-trees, called Pure Mask tree (PM-tree). In the PM-tree, we use a
3-value logic, in which 11 represents a quadrant of pure 1-bits, pure1 quadrant, 00
represents a quadrant of pure 0-bits, pure0 quadrant, and 01 represents a mixed
quadrant. To simplify the exposition, we use 1 instead of 11 for pure1, 0 for pure0,
and m for mixed. The PM-tree for the previous example is also given in Fig. 1.

P-tree algebra contains operators, AND, OR, NOT and XOR, which are the pixel-
by-pixel logical operations on P-trees. The AND/OR operations on PM-trees are

1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1

 55
 ____________/ / \ _________
 / _____/ \ ___ \
 16 ____8__ _15__ 16
 / / | \ / | \ \
 3 0 4 1 4 4 3 4
 //|\ //|\ //|\
 1110 0010 1101

 m
 _____________/ / \ _________
 / ____/ \ ____ \
 1 ____m__ _m__ 1
 / / | \ / | \ \
 m 0 1 m 1 1 m 1
 //|\ //|\ //|\
 1110 0010 1101

shown in Fig. 2. The AND operation between two PM-trees is performed by ANDing
the corresponding nodes in the two operand PM-trees level-by-level starting from the
root node. A pure0 node ANDed with any node produces a pure0 node. A pure1 node
ANDed with any node, n, produces the node n; we just need to copy the node, n, to
the resultant PM-tree in the corresponding position. ANDing of two mixed nodes
produces a mixed node; the children of the resultant mixed node are obtained by
ANDing children of the operands recursively. The details of P-tree operations can be
found in [10, 11].

Fig. 2. P-tree Algebra

3. The Classification Algorithms

In the original k-nearest neighbor (KNN) classification method, no classifier model is
built in advance. KNN refers back to the raw training data in the classification of each
new sample. Therefore, one can say that the entire training set is the classifier. The
basic idea is that the similar tuples most likely belongs to the same class (a continuity
assumption). Based on some pre-selected distance metric (some commonly used
distance metrics are discussed in introduction), it finds the k most similar or nearest
training samples of the sample to be classified and assign the plurality class of those k
samples to the new sample [4, 7]. The value for k is pre-selected. Using relatively
larger k may include some not so similar pixels and on the other hand, using very
smaller k may exclude some potential candidate pixels. In both cases the classification
accuracy will decrease. The optimal value of k depends on the size and nature of the
data. The typical value for k is 3, 5 or 7. The steps of the classification process are:

1) Determine a suitable distance metric.
2) Find the k nearest neighbors using the selected distance metric.
3) Find the plurality class of the k-nearest neighbors (voting on the class

labels of the NNs).
4) Assign that class to the sample to be classified.

We provided two different algorithms using P-trees, based two different distance
metrics max (Minkowski distance with q = ∞) and our newly defined HOB distance.
Instead of examining individual pixels to find the nearest neighbors, we start our
initial neighborhood (neighborhood is a set of neighbors of the target pixel within a
specified distance based on some distance metric, not the spatial neighbors, neighbors

P-tree-1: m
 ____/ / \ ____
 / / \ \
 / / \ \
 1 m m 1
 / / \ \ / / \ \
 m 0 1 m 1 1 m 1
 //|\ //|\ //|\
 1110 0010 1101

P-tree-2: m
 ____/ / \ ____
 / / \ \
 / / \ \
 1 0 m 0
 / / \ \
 1 1 1 m
 //|\
 0100

AND: m
 ___ / / \ ___
 / ___ / \ \
 / / \ \
 1 0 m 0
 / | \ \
 1 1 m m
 //|\ //|\
 1101 0100

OR: m
 ___ / / \ __
 / __ / \ \
 / / \ \
 1 m 1 1
 / / \ \
 m 0 1 m
 //|\ //|\
 1110 0010

with respect to values) with the target sample and then successively expand the
neighborhood area until there are k pixels in the neighborhood set. The expansion is
done in such a way that the neighborhood always contains the closest or most similar
pixels of the target sample. The different expansion mechanisms implement different
distance functions. In the next section (section 3.1) we described the distance metrics
and expansion mechanisms.

Of course, there may be more boundary neighbors equidistant from the sample than
are necessary to complete the k nearest neighbor set, in which case, one can either use
the larger set or arbitrarily ignore some of them. To find the exact k nearest neighbors
one has to arbitrarily ignore some of them.

Fig. 3. T, the pixel in the center is the target pixels. With k = 3, to find the third nearest
neighbor, we have four pixels (on the boundary line of the neighborhood) which are equidistant
from the target.

 Instead we propose a new approach of building nearest neighbor (NN) set, where
we take the closure of the k-NN set, that is, we include all of the boundary neighbors
and we call it the closed-KNN set. Obviously closed-KNN is a superset of KNN set. In
the above example, with k = 3, KNN includes the two points inside the circle and any
one point on the boundary. The closed-KNN includes the two points in side the circle
and all of the four boundary points. The inductive definition of the closed-KNN set is
given below.

Definition 1. a) If x ∈ KNN, then x ∈ closed-KNN
 b) If x ∈ closed-KNN and d(T,y) ≤ d(T,x), then y ∈ closed-KNN

 where, d(T,x) is the distance of x from target T.
 c) Closed-KNN does not contain any pixel, which cannot be produced

by steps a and b.

Our experimental results show closed-KNN yields higher classification accuracy
than KNN does. The reason is if for some target there are many pixels on the
boundary, they have more influence on the target pixel. While all of them are in the
nearest neighborhood area, inclusion of one or two of them does not provide the
necessary weight in the voting mechanism. One may argue that then why don’t we use
a higher k? For example using k = 5 instead of k = 3. The answer is if there are too
few points (for example only one or two points) on the boundary to make k neighbors
in the neighborhood, we have to expand neighborhood and include some not so
similar points which will decrease the classification accuracy. We construct closed-

T

KNN only by including those pixels, which are in as same distance as some other
pixels in the neighborhood without further expanding the neighborhood. To perform
our experiments, we find the optimal k (by trial and error method) for that particular
dataset and then using the optimal k, we performed both KNN and closed-KNN and
found higher accuracy for P-tree-based closed-KNN method. The experimental results
are given in section 4. In our P-tree implementation, no extra computation is required
to find the closed-KNN. Our expansion mechanism of nearest neighborhood
automatically includes the points on the boundary of the neighborhood.

Also, there may be more than one class in plurality (if there is a tie in voting), in
which case one can arbitrarily chose one of the plurality classes. Without storing the
raw data we create the basic P-trees and store them for future classification purpose.
Avoiding the examination of individual data points and being ready for data mining
these P-trees not only saves classification time but also saves storage space, since data
is stored in compressed form. This compression technique also increases the speed of
ANDing and other operations on P-trees, since operations can be performed on the
pure0 and pure1 quadrants without reference to individual bits, since all of the bits in
those quadrants are the same.

3.1 Expansion of Neighborhood and Distance or Similarity Metrics

We begin searching for nearest neighbors by finding the exact matches. If the number
of exact matches is less than k, we expand the neighborhood. The expansion of the
neighborhood in each dimension are done simultaneously, and continued until the
number pixels in the neighborhood is greater than or equal to k. We develop the
following two different mechanisms, corresponding to max distance and our newly
defined HOB distance, for expanding the neighborhood. They have trade offs between
execution time and classification accuracy.

Higher Order Bit Similarity (HOBS): We propose a new similarity metric where
we consider similarity in the most significant consecutive bit positions starting from
the left most bit, the highest order bit. Consider the following two values, x1 and y1,
represented in binary. The 1st bit is the most significant bit and 8th bit is the least
significant bit.

 Bit position: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 x1: 0 1 1 0 1 0 0 1 x1: 0 1 1 0 1 0 0 1
 y1: 0 1 1 1 1 1 0 1 y2: 0 1 1 0 0 1 0 0
These two values are similar in the three most significant bit positions, 1st, 2nd and

3rd bits (011). After they differ (4th bit), we don’t consider anymore lower order bit
positions though x1 and y1 have identical bits in the 5th, 7th and 8th positions. Since we
are looking for closeness in values, after differing in some higher order bit positions,
similarity in some lower order bit is meaningless with respect to our purpose.
Similarly, x1 and y2 are identical in the 4 most significant bits (0110). Therefore,
according to our definition, x1 is closer or similar to y2 than to y1.

Definition 2. The similarity between two integers A and B is defined by

HOBS(A, B) = max{s | 0 ≤ i ≤ s � ai = bi}

in other words, HOBS(A, B) = s, where for all i ≤ s and 0 ≤ i, ai = bi and as+1 ≠ bs+1.
ai and bi are the ith bits of A and B respectively.

Definition 3. The distance between the values A and B is defined by

dv(A, B) = m - HOBS(A, B)

where m is the number of bits in binary representations of the values. All values must
be represented using the same number of bits.

Definition 4. The distance between two pixels X and Y is defined by

 () (){ } (){ } HOBSmaxmax
1

1

1

1
 ,yxm - ,yxdX,Yd ii

n

i
iiv

n

i
p

−

=

−

=
==

where n is the total number of bands; one of them (the last band) is the class attribute
that we don’t use for measuring similarity.

To find the closed –KNN set, first we look for the pixels, which are identical to the
target pixel in all 8 bits of all bands i.e. the pixels, X, having distance from the target
T, dp(X,T) = 0. If, for instance, x1=105 (01101001b = 105d) is the target pixel, the
initial neighborhood is [105, 105] ([01101001, 01101001]). If the number of matches
is less than k, we look for the pixels, which are identical in the 7 most significant bits,
not caring about the 8th bit, i.e. pixels having dp(X,T) ≤ 1. Therefore our expanded
neighborhood is [104,105] ([01101000, 01101001] or [0110100-, 0110100-] - don’t
care about the 8th bit). Removing one more bit from the right, the neighborhood is
[104, 107] ([011010--, 011010--] - don’t care about the 7th or the 8th bit). Continuing
to remove bits from the right we get intervals, [104, 111], then [96, 111] and so on.

Computationally this method is very cheap. However, the expansion does not occur
evenly on both sides of the target value (note: the center of the neighborhood [104,
111] is (104 + 111) /2 = 107.5 but the target value is 105). Another observation is that
the size of the neighborhood is expanded by powers of 2. These uneven and jump
expansions include some not so similar pixels in the neighborhood keeping the
classification accuracy lower. But P-tree-based closed-KNN method using this HOBS
metric still outperforms KNN methods using any distance metric as well as becomes
the fastest among all of these methods.

Perfect Centering: In this method we expand the neighborhood by 1 on both the left
and right side of the range keeping the target value always precisely in the center of
the neighborhood range. We begin with finding the exact matches as we did in HOBS
method. The initial neighborhood is [a, a], where a is the target band value. If the
number of matches is less than k we expand it to [a-1, a+1], next expansion to [a-2,
a+2], then to [a-3, a+3] and so on.

Perfect centering expands neighborhood based on max distance metric or L∞ metric
(discussed in introduction). In the initial neighborhood d∞(X,T) is 0. In the first
expanded neighborhood [a-1, a+1], d∞(X,T) ≤ 1. In each expansion d∞(X,T) increases
by 1. As distance is the direct difference of the values, increasing distance by one also
increases the difference of values by 1 evenly in both side of the range.

This method is computationally a little more costly because we need to find
matches for each value in the neighborhood range and then accumulate those matches

but it results better nearest neighbor sets and yields better classification accuracy. We
compare these two techniques later in section 4.

3.2 Computing the Nearest Neighbors

For HOBS: Pi,j is the basic P-tree for bit j of band i and P′i,j is the complement of Pi,j.
Let, bi,j = jth bit of the ith band of the target pixel, and define

 Pti,j = Pi,j, if bi,j = 1,
 = P′i,j, otherwise.
We can say that the root count of Pti,j is the number of pixels in the training dataset
having as same value as the jth bit of the ith band of the target pixel. Let,

Pvi,1-j = Pti ,1 & Pti ,2 & Pti,3 & … & Pti,j, and
Pd(j) = Pv1,1-j & Pv2,1- j & Pv3,1- j & … & Pvn-1,1- j

where & is the P-tree AND operator and n is the number of bands. Pvi ,1-j counts the
pixels having as same bit values as the target pixel in the higher order j bits of ith
band. We calculate the initial neighborhood P-tree, Pnn = Pd(8), the exact matching,
considering 8-bit values. Then we calculate Pnn = Pd(7), matching in 7 higher order
bits; then Then Pnn = Pd(6) and so on. We continue as long as root count of Pnn is
less than k. Pnn represents closed-KNN set and the root count of Pnn is the number of
the nearest pixels. A 1 bit in Pnn for a pixel means that pixel is in closed-KNN set.
The algorithm for finding nearest neighbors is given in Fig. 4.

Input: Pi,j for all bit i and band j, the basic P-trees
and bi,j for all i and j, the bits for the target pixels
Output: Pnn, the P-tree representing closed-KNN
// n - # of bands, m - # of bits in each band
FOR i = 1 TO n-1 D

FOR j = 1 TO m DO
IF bi,j = 1 Ptij � Pi,j

 ELSE Pti,j � P′i,j
FOR i = 1 TO n-1 DO

Pvi,1 � Pti,1
FOR j = 2 TO m DO

Pvi,j � Pvi,j-1 & Pti,j
s � m
REPEAT

Pnn � Pv1,s
FOR r = 2 TO n-1 DO

Pnn � Pnn & Pvr,s
 s � s - 1
UNTIL RootCount(Pnn) ≥ k

Fig. 4. Algorithm to find closed-KNN set based on HOB metric

For Perfect Centering: Let vi is the value of the target pixels for band i. The value P-
tree, Pi(vi), represents the pixels having value vi in band i. The algorithm for
computing the value P-trees is given in Fig. 5(b). For finding the initial nearest
neighbors (the exact matches), we calculate

Pnn = P1(v1) & P2(v2) & P3(v3) & … & Pn-1(vn-1)
that represents the pixels having the same values in each band as that of the target
pixel. If the root count of Pnn ≤ k, we expand neighborhood along each dimension.
For each band i, we calculate range P-tree Pri = Pi(vi-1) | Pi(vi) | Pi(vi+1). ‘|’ is the P-
tree OR operator. Pri represents the pixels having any value in the range [vi-1, vi+1] of

band i. The ANDed result of these range P-trees, Pri, for all i, produce the expanded
neighborhood. The algorithm is given in Fig. 5(a).

Fig. 5(a). Algorithm to find closed-KNN set 5(b). Algorithm to compute value P-trees
based on Max metric (Perfect Centering).

3.3 Finding the plurality class among the nearest neighbors

For the classification purpose, we don’t need to consider all bits in the class band.
If the class band is 8 bits long, there are 256 possible classes. Instead, we partition the
class band values into fewer, say 8, groups by truncating the 5 least significant bits.
The 8 classes are 0, 1, 2, …, 7. Using the leftmost 3 bits we construct the value P-trees
Pn(0), Pn(1), …, Pn(7). The P-tree Pnn & Pn(i) represents the pixels having a class
value i and are in the closed-KNN set, Pnn. An i which yields the maximum root
count of Pnn & Pn(i) is the plurality class; that is

predicted class ()(){ }iPPnnRootCount n
i

&maxarg= .

4. Performance Analysis

We performed experiments on two sets of Arial photographs of the Best Management
Plot (BMP) of Oakes Irrigation Test Area (OITA) near Oaks, North Dakota, United
States. The latitude and longitude are 45°49’15”N and 97°42’18”W respectively. The
two images “29NW083097.tiff” and “29NW082598.tiff” have been taken in 1997 and
1998 respectively. Each image contains 3 bands, red, green and blue reflectance
values. Three other separate files contain synchronized soil moisture, nitrate and yield
values. Soil moisture and nitrate are measured using shallow and deep well

Input: Pi,j for all j, basic P-trees of all
the bits of band i and the value vi for
band i.
Output: Pi(vi), the value p-tree for the
value vi
// m is the number of bits in each band
// bi,j is the jth bit of value vi

FOR j = 1 TO m DO
IF bi,j = 1 Ptij � Pi,j
ELSE Pti,j � P′i,j

Pi(v) � Pti,1
FOR j = 2 TO m DO

Pi(v) � Pi(v) & Pti,j

Input: Pi,j for all i and j, basic P-trees and
 vi for all i, band values of target pixel
Output: Pnn, closed-KNN P-tree
// n - # of bands, m- #of bits in each band
FOR i = 1 TO n-1 DO

Pri � Pi(vi)
Pnn � Pr1
FOR i = 2 TO n-1 DO

Pnn � Pnn & Pri //initial neighborhood
d � 1 // distance for the first expansion
WHILE RootCount(Pnn) < k DO

FOR i = 1 to n-1 DO // expansion
Pri � Pri | Pi(vi-d) | Pi(vi+d)

Pnn � Pr1 // ‘|’ - OR operator
FOR i = 2 TO n-1 DO

Pnn � Pnn AND Pri
d � d + 1

lysimeters. Yield values were collected by using a GPS yield monitor on the
harvesting equipments. The datasets are available at http://datasurg.ndsu.edu/.

Yield is the class attribute. Each band is 8 bits long. So we have 8 basic P-trees for
each band and 40 (for the other 5 bands except yield) in total. For the class band, we
considered only the most significant 3 bits. Therefore we have 8 different class labels.
We built 8 value P-trees from the yield values – one for each class label.

The original image size is 1320×1320. For experimental purpose we form 16×16,
32×32, 64×64, 128×128, 256×256 and 512×512 image by choosing pixels uniformly
distributed in the original image. In each case, we formed one test set and one training
set of equal size and tested KNN with Manhattan, Euclidian, Max and HOBS distance
metrics and our two P-tree methods, Perfect Centering and HOBS. The accuracies of
these different implementations are given in the Fig 6.

 a) 1997 dataset b) 1998 dataset
Fig. 6. Accuracy of different implementations for the 1997 and 1998 datasets

We see that both of our P-tree based closed-KNN methods outperform the KNN

methods for both of the datasets. The reasons are discussed in section 3. The perfect
centering methods performs better than HOBS as expected. The HOBS metric is not
suitable for a KNN approach since HOBS does not provide a neighborhood with the
target pixel in the exact center. Increased accuracy of HOBS in P-tree implementation
is the effect of closed-KNN. In a P-tree implementation, the ease of computability for
closed-KNN using HOBS makes it a superior method. The P-tree based HOBS is the
fastest method where as the KNN-HOBS is still the poorest (Fig. 8).

Another observation is that for 1997 data (Fig. 6), in KNN implementations, the
max metric performs better than other three metrics. For the 1998 dataset, max is
competitive with other three metrics. In many cases, as well as for image data, max
metrics can be the best choice. In our P-tree implementations, we also get very high

50

55

60

65

70

75

25
6

10
24

40
96

16
38

4

65
53

6

3E
+0

5

Training Set Size (no. of p ixe ls)

A
cc

ur
ac

y
(%

)

35

40

45

50

55

60

25
6

10
24

40
96

16
38

4

65
53

6

3E
+0

5
Train ing Set Size (no of pixels)

KNN-Manhattan KNN-Euclidian
KNN-Max KNN-HOBS
P-tree: Perfect Cent. (closed-KNN) P-tree: HOBS (closed-KNN)

accuracy with the max distance (perfect centering method). We can understand this by
examining the shape of the neighborhood for different metrics (Fig. 7).

 Max & Euclidian Max & Manhattan

Fig. 7. Considering two dimensions the shape of the neighborhood for Euclidian distance is the
circle, for max it is the square and for Manhattan it is the diamond. T is the target pixel.

Let, A be a point included in the circle, but not in the square and B be a point,

which is included in the square but not in the circle. The point A is very similar to
target T in the x-dimension but very dissimilar in the y-dimension. On the other hand,
the point B is not so dissimilar in any dimension. Relying on high similarity only on
one band while keeping high dissimilarity in the other bands may decrease the
accuracy. Therefore in many cases, inclusion of B in the neighborhood instead of A, is
a better choice. That is what we have found for our image data. For all of the methods
classification accuracy increases with the size of the dataset since inclusion of more
training data, the chance of getting better nearest neighbors increases.

On the average, the perfect centering method is five times faster than the KNN, and
HOBS is 10 times faster (Fig. 8). P-tree implementations are more scalable. Both
perfect centering and HOBS increases the classification time with data size at a lower
rate than the other methods. As dataset size increases, there are more and larger pure-
0 and pure-1 quadrants in the P-trees; that makes the P-tree operations faster.

 a) 1997 dataset b) 1998 dataset

Fig. 8. Classification time per sample of the different implementations for the 1997 and 1998
datasets; both of the size and classification time are plotted in logarithmic scale.

0 .00 00 1

0 .0 0 01

0.0 01

0 .0 1

0.1

1

25
6

10
24

40
96

16
38

4

65
53

6

3E
+0

5

Training Set Size (no. of pixels)

Ti
m

e
(s

ec
/s

am
pl

e)

0.0 00 01

0 .00 01

0.0 01

0 .01

0.1

1

25
6

10
24

40
96

16
38

4

65
53

6

3E
+0

5

Training Set Size (no. of pixels)

KNN-Manhattan KNN-Euclidian
KNN-Max KNN-HOBS
P-tree: Perfect Cent. (closed-KNN) P-tree: HOBS (closed-KNN)

 y y

x T A

B

A T

B
x

5. Conclusion

In this paper we proposed a new approach to k-nearest neighbor classification for
spatial data streams by using a new data structure called the P-tree, which is a lossless
compressed and data-mining-ready representation of the original spatial data. Our new
approach, called closed-KNN, finds the closure of the KNN set, we call the closed-
KNN, instead of considering exactly k nearest neighbors. Closed-KNN includes all of
the points on the boundary even if the size of the nearest neighbor set becomes larger
than k. Instead of examining individual data points to find nearest neighbors, we rely
on the expansion of the neighborhood. The P-tree structure facilitates efficient
computation of the nearest neighbors. Our methods outperform the traditional
implementations of KNN both in terms of accuracy and speed.

We proposed a new distance metric called Higher Order Bit (HOB) distance that
provides an easy and efficient way of computing closed-KNN using P-trees while
preserving the classification accuracy at a high level.

References

1. Domingos, P. and Hulten, G., “Mining high-speed data streams”, Proceedings of ACM
SIGKDD 2000.

2. Domingos, P., & Hulten, G., “Catching Up with the Data: Research Issues in Mining Data
Streams”, DMKD 2001.

3. T. Cover and P. Hart, “Nearest Neighbor pattern classification”, IEEE Trans. Information
Theory, 13:21-27, 1967.

4. Dasarathy, B.V., “Nearest-Neighbor Classification Techniques”. IEEE Computer Society
Press, Los Alomitos, CA, 1991.

5. Morin, R.L. and D.E.Raeside, “A Reappraisal of Distance-Weighted k-Nearest Neighbor
Classification for Pattern Recognition with Missing Data”, IEEE Transactions on Systems,
Man, and Cybernetics, Vol. SMC-11 (3), pp. 241-243, 1981.

6. William Perrizo, "Peano Count Tree Technology", Technical Report NDSU-CSOR-TR-
01-1, 2001.

7. Jiawei Han, Micheline Kamber, “Data Mining: Concepts and Techniques”, Morgan
Kaufmann, 2001.

8. M. James, “Classification Algorithms”, New York: John Wiley & Sons, 1985.
9. William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy, “On Mining Satellite and

Other Remotely Sensed Images”, DMKD 2001, pp. 33-40.
10. William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy, “Deriving High Confidence

Rules from Spatial Data using Peano Count Trees", Springer-Verlag, Lecturer Notes in
Computer Science 2118, July 2001.

11. Qin Ding, Maleq Khan, Amalendu Roy and William Perrizo, “The P-tree Algebra”,
proceedings of the ACM Symposium on Applied Computing (SAC'02), 2002.

