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Abstract—Traditionally, the performance of distributed al- inexpensive devices called as sensors. Sensors have energy
gorithms has been measured in terms of time and messageconstraints due to the limited battery power of the sensor
complexity. Message complexity concerns the number of m&es 34 4es: this severely constrains the amount of computatien t
transmitted over all the edges during the course of the algathm. ' . . .
However, in energy-constrained ad hoc wireless networks (@, nodgs can do and the dlstance to which they can cpmmunlcate.
sensor networks), energy is a critical factor in measuring he A distributed algorithm which consumes a relatively large
efficiency of a distributed algorithm. Transmitting a messaje amount of power may not be suitable in such a resource-
between two nodes has an associated cost (energy) and momov constrained network. The topology of these networks can
this cost can depend on the two nodes (e.g., the distance beem  -hange frequently due to mobility or node failures. Commu-

them among other things). Thus in addition to the time and . fi t and ing ti ial i h
message complexity, it is important to consideenergy complexity nication cost and running time are even more crucial in suc

that accounts for the total energy associated with the mesgas & dynamic setting. A distributed algorithm that runs on such

exchanged among the nodes in a distributed algorithm. devices should have as little communication as possible and
This paper addresses the minimum spanning tree (MST) should run as fast as possible (i.e., requiring a small numbe

problem, a fundamental problem in distributed computing and ¢ communication rounds) and use as little energy as passibl

communication networks. We study energy-efficient distriluted . " . - o
algorithms for the Euclidean MST problem assuming random Hence it becomes critical to design energy-efficient disted

distribution of nodes. We show a non-trivial lower bound of algorithms that operate on these networks.
Q(logn) on the energy complexity of any distributed MST Traditionally, the performance of distributed algorithhes

algorithm. We then give an energy-optimal distributed algaithm  peen measured in terms of running time and message com-
that constructs an optimal MST with energy complexity O(log ) plexity. In fact, in standard distributed computing litene,

on average andO(lognloglogn) with high probability. This .
is an improvement over the previous best known bound on these are the two most widely used measures [23]. Message

the average energy complexity of2(log? n). Our energy-optimal ~ complexity concerns the total number of messages traresnitt
algorithm exploits a novel property of the giant component ¢ over all the edges during the course of the algorithm. Howeve
sparse random geometric graphs. All of the above results as;e  in many settings, we require a more accurate and relevant
that nodes do not know their geometric coordinates. If the ndes  yaagre of performance. A good example is ad hoc wireless
know their own coordinates, then we give an algorithm withO(1) . i
energy complexity (which is the best possible) that gives af(1) _networks, yvhere energy_ls _a very crltlc_al factor for r_neasur-
approximation to the MST. ing the efficiency of a distributed algorithm. Transmittiag
message between two nodes has an associated cost (energy),
and moreover this cost can depend on the two nodes (e.g., the
distance between them among other things). Thus in addition
to the traditional time and message complexity, it is also
relevant to consideenergy complexityhat accounts for the
total energy associated with the messages exchanged among
Emerging technologies such as ad hoc wireless netwotk® nodes in a distributed algorithm.

and sensor networks operate under inherent resource COnfhis paper addresses the minimum spanning tree (MST)
straints. Consider a sensor network, an ad hoc wireless ngloblem, which is an important primitive in many applicaiso
work in a geographic area built up of a large number af wireless networks, e.g., broadcasting, data aggreyatial

_ _ , topology control [24, 27, 5]. Data aggregation paradigms

Manuscript received August 30, 2008; revised January 3@92B1. Khan .

and V.S. Anil Kumar were supported in part by NSF Nets GrantSEN commonly use trees to schedule the transmission of data
0626964, NSF HSD Grant SES-0729441, CDC Center of Excalenublic  from all nodes in the graph at a source [18]; minimum

GMO070694-05, DTRA CNIMS Grant HDTRA1-07-C-0113 and NSF NET

CNS-0831633. G. Pandurangan was supported in part by NSFdAGEF- Process. Various topology control algorithms also use M®Ts
0830476. A short version of this paper appeared in the pdige of the 20th construct well connected subgraphs with provable costivela
ACM Symposium on Parallelism in Algorithms and Architeesir(SPAA), g the optimum [24]_ Motivated by ad hoc wireless and sensor
Munich, Germany, 2008, 188-190. .

Y. Choi and G. Pandurangan are with the Department of Comput@etwqus’.we fOCU§ on the Eu_chdpan MST PrObIem' Our
Science, Purdue University, West Lafayette, IN 47907, USAail: {ywchoi, goal in this paper is to study distributed algorithms for the

gopal @cs.purdue.edu _ o Euclidean MST problem that have low energy complexity. We
M. Khan and V.S.Anil Kumar are with the Network Dynamics anichS

ulation Science Laboratory, Virginia Bioinformatics litste, Virginia Tech, show_en_ergy complexity lower bound_s O_n the perf(_)rma_mce of
Blacksburg, VA 24061, USA. e-maikmaleq,akumgr@vbi.vt.edu. any distributed MST. We also study distributedproximation

0000-0000/00$00.0®) 2009 IEEE

Index Terms—Distributed Algorithm, Minimum Spanning
Tree, Energy-Efficient, Random Geometric Graph, Percolatbn

I. INTRODUCTION



2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,.VOL 27, ®. 6 , SEPTEMBER 2009

algorithms for MST that give better energy complexity at th€®(logn) bits and a node can send one message per time step.
price of some additional information about the coordinates In a one-directional communication, when a nodesends

the nodes and obtain a constant factor approximation to themessage to a distance < r, we assume that any node
MST. Because of space limitations, we have omitted sevewsithin distanced can receive the message. The cost associated

proofs, which are available in the full version [4]. with this message is (proportional td}. This is callediocal
broadcastingand is a feature of radio and wireless networks.
Il. MODEL AND PROBLEM For simplicity, we assume that there are no collisions, éach

Network Model. We assume that the network is modeledthessage is transmitted successfully in one attempt. We leav
as a weighted undirected gragh = (V,E,w) where V the consideration of a realistic physical interference et@s
is the set of the nodes (verticesl), is the set of the (bi- a future work as discussed in Section VIII.
directional) communication links between them, ang) is MST Problem. Formally, the Euclidean MST problem is,
the weight of the edge € E. The weightw(u, v) represents given a networkG = (V, E,w), to find a treel’ spanningV’
the energy associated with transmitting a message betweesuch thatZ(u,v)eT d(u,v) is minimized. In fact, We consider
andv. We assume that the transmission at power I&/el) is a generalized version of the above problem: Find a ffee
received all nodes with w(u,v) < P(u), and the nodes havespanningV’ such that the cost 3_, o d*(u,v) is mini-
capability to set the power level adaptively within somegan mized wherex is a (small) positive number. The motivation
- recent advances in technology, such as cognitive radies h&or this objective function comes from energy requirements
made this fairly easy to achieve with low overhead [1]. in a wireless communication paradigm as mentioned earlier.

The graphG has the following underlying geometry. Thelt can easily be shown (e.g., using Kruskal’s algorithmic
nodes are set dV| = n points distributedandomlyin a unit  construction) that the MST which minimizés ,, ,\cr d(u,v)
square and two nodes are connected if they are within distaréso minimizesy_ ,, < d*(u,v) for anya > 0. In the rest of
r of each other, whereis a transmission range induced by théhe paper, we use the terrnestand quality interchangeably.
maximum power level allowed. The graph thus induced is Although our results can be generalized to anywe focus
random geometric grapfR2]. This is a standard graph modebn « = 1 (the Euclidean MST) and. = 2. (Note that for the
that has been widely used in the literature for modeling ahergy complexity, we assume= 2 always.)
hoc (sensor) networks. Without loss of generality, we agsum Computing an MST by a distributed algorithm is a funda-
thatr is chosen such that is connected (cf. Section V). We mental task, as the following distributed computation can b
assume the Radio Broadcast Model (RBN) for interferencarried over the best backbone of the communication graph.
[23], in which the transmission from a nodeto its neighbor Two important applications of MST are broadcasting and data
v is successful, provided no other neighboe: u, w € N(v) aggregation. In wireless networks, an MST can be used as a
transmits at the same time. Most of our results will extend stbmmunication tree to minimize energy consumption since it
other interference models, e.g. Tx-Rx [2]. minimizes}_, . er d*(u,v). In data aggregation, the idea is

In an ad hoc wireless sensor network, the total energy combine the data coming from different sources enroute to
required in a distributed algorithm typically depends or theliminate redundancy, minimize the number of transmission
time needed, the number of messages exchanged, and dhe thus save energy. Common aggregate functions are min-
radiation energy needed to transmit the messages ovefmaim, maximum, average, etc [18]. One popular paradigm
certain distance [3, 28]. The radiation energfu,v) needed for computing such aggregates is to construct a (directed)
to transmit a message from nodeto nodew is typically tree rooted at the sink where each node forwards its (Iocally
proportional to some power of the distané@:, v) [16, 19]. aggregateddata collected from its subtree to its parent [13].
We assume that(u,v) = a - (d(u,v))* for some constants For such cases, MST is the optimal data aggregation tree
a anda (which is referred to as the path loss exponent) - fg15]. It was shown in [5, 27] that broadcasting based on MST
concreteness, we use= 2 in most of the paper; many of our consumes energy within a constant factor of the optimum.
results can be generalized to other functions that mode&lroth
path loss and fading models. Formally, theergy complexity
of the distributed algorithm is defined Eﬁl w;, wherew; is
the weight of the edge that connects the nodes exchanging théve show tight upper and lower bounds on the energy
1th message, and is the total number of messages exchangedmplexity of distributed MST algorithms. We first show
by the algorithm. that Q(logn) is a lower bound on the energy complexity
Distributed Computing Model. Each node inG hosts a of any distributed MST algorithm. In fact, we show that
processor with limited initial knowledge. Each node hathis is the lower bound for constructing any spanning tree
unique identity numbers. The nodes do not know the weiglits the network. We then give a distributed algorithm that
of its incident edges (or equivalently the distance to itsonstructs an optimal MST witth(logn) energy complexity
neighbors). We assume that the communication is syncheonem average and(logn - loglogn) energy complexity with
and occurs in discrete time steps. The energy associatéd vhitgh probability (whp). (Throughout the paper, “whp” means
a bi-directional communication between neighbarand v  with probability tending to 1 as:s — oo, wheren is the
is ©(w(u,v)), i.e., if uw wants to send a message ¢oand number of nodes in the network.) The previous best known
v replies back tou then the cost associated with this bibound on the average energy complexity for distributed MST
directional communication i8w(u,v). A message is of size in this model was2(log®n) [15]. This bound was obtained

IIl. OUR RESULTS
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in [15] for a natural implementation of the classical alfum spanning tree (or equivalently, leader election) in a catepl
of Gallager, Humblet, and Spira (henceforth called as GH&twork. Thus we have the same assumptions that were made
algorithm) [9]. All the above results assume that nodes dio [17]. Among the assumptions, the second one is crucial.
not know their geometric coordinates. If nodes know thein fact, if all nodes that spontaneously start the algoritma
own coordinates, then we give an algorithm wilit1) energy awakened at the same time, &1{n) upper bound can be
complexity that gives a®(1) approximation to the MST. We shown by using a technique similar to the one in [8]. Thus,
note thatQ(1) is a lower bound on the energy complexityunder this assumption, the Korach et al. lower bound does not
of any distributed MST algorithm (even with nodes knowingpold, and consequently, o€X(log n) energy lower bound will
their coordinates) since any algorithm has to communicateret hold either.
least once using the tree edges of an MST. For an instanc&heorem 4.1:Any distributed algorithm need$)(logn)
specified by the set” of nodes, we denote this lower boundenergy WHP to construct a spanning tree.
asLMST(V) =32, vyemsr(v)(d(u, v)?, whereM ST (V) Proof: Korach et al. lower bound shows th@{(n logn)
denotes the minimum Euclidean spanning treelanlf the differentedges need to be used by any algorithm. This bound
nodes are distributed uniformly at random, it is well-knowsan be shown to apply for Las Vegas type randomized algo-
that 3- ., ,yearstv)(d(u,v))* = Q1) (e.g., see [15]). rithms too.
Related Work. This paper is inspired by the prior work Our model can also be viewed as complete weighted net-
of Khan et al. [15] on distributed construction of spanningiork, where the weight between any two nodesnd v is
trees in wireless and sensor networks. We refer to this wotKu, v) = (d(u,v))?. According to the Korach et al. bound,
and the references therein for more background on energy-leastanlogn different edges need to be used by any
efficient distributed algorithms for wireless sensor neksp distributed MST algorithm for some fixed constanfo obtain
in particular, on the connections to other related work aam lower bound on the energy complexity, we compute the
wireless sensor and ad hoc networks, and on the modeisimum energy needed to send at least one message through
and problems (exact and approximate MST) addressed in thivg n different edges. We need the following lemma.
present paper. It is shown in [15] that although message comiemma 4.1:For every node, WHP, at leask/bn energy
plexity of a distributed algorithm directly influences theeegy is needed if the node wants to communicate with its closest
complexity, algorithms that have optimal message complexik neighbors, for allk > a;logn, wherea; < a is a fixed
are not necessarily energy optimal. The message-optim&l Gplbsitive constant and is a suitably large constant.
algorithm [9] usesO(nlogn + |E|) messages; however, this  Proof: Fix an arbitrary nodev. Let X be the random
algorithm require€2(log® n) energy on average under randomvariable that denotes the total number of nodes within dista
distribution [15]. In contrast, in this paper, we show there /i /bn of v. E[X] = k/b. Using a Chernoff bound [21], for
is an algorithm that take®(log n) energy on the average andsuitably largeb, Pr(X > k) = Pr(X > (1 +b— 1)k/b) <
this is asymptotically optimal. There are distributed aithms  (¢/b)* < (e/b)?11°8™ = o(1/n).
that construct the MST optimally in terms of time complexity That is, WHP, the number of neighborswofvithin distance
(see, e.g., [7, 23]). But these algorithms require much mo(gk /bn is less thark. Hence, if a node wants to communicate
messages than GHS algorithm, and consequently require aWgth its closestk neighbors, it has to send a message to a
more energy. The distributed algorithm of [14, 15] requiregistance of at leas/k/bn WHP. Thus, the energy needed for
only O(logn) energy, but it gives a(log n)-approximation this is k/bn. By the union bound [21], this holds for every
to the MST. The work of [15] raised the question of whethaiode WHP. ]
there exists a distributed algorithm 6f(log n) energy com-  We only focus on those nodes that communicate with more
plexity and this paper answers this in the affirmative. thana, log n of its closest neighbors. Let the set of such nodes
be denoted byr (relevant set). We ignore the energy spent
IV. LOWERBOUND by the rest of the nodes and focus _only on lower bounding
the energy needed by the nodeshnSince, the total number
We show a non-trivial lower bound ofl(logn) on the of edges used should be at leastlogn and sincea; < a,
energy required by any distributed algorithm to construst athe nodes ink need to use at least(nlogn) edges, i.e.,
spanning tree of the network2(1) lower bound is trivial, communicate with at leasf)(nlogn) (closest) neighbors.
as mentioned in Section IIl). This bound holds under theach node inR communicates with at least > a; logn
following assumptions: (1) the model is synchronous (hengighbors and by Lemma 4.1, it has to spend at |lédsh
the lower bound applies to asynchronous model as well); (@hergy WHP. Thus, WHP, the total energy needed is at least:

any non-empty set of processors may start the glgorithmE\UeR k/bn=1/bnY,cpk > Qlogn). u
processor that is not started remains asleep until a message

reaches it and can be awakened spontaneously at any time;

(3) no assumption is made on the size of the messages; this

assumption only strengthens our bound; (4) nodes do not havén this section, we give an energy-optimal distributed MST

any information on their geometric coordinates. algorithm of energy complexit® (log n), matching the lower
Our lower bound is based on a classical lower bound dbeund shown in the previous section.

to Korach et al. [17], which shows thé&t(nlogn) messages We assume that grapfi (cf. Section Il) is connected by

are needed by any distributed algorithm for constructing setting the transmission radius to thevalue given below.

V. AN ENERGY-OPTIMAL ALGORITHM
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those small components will be trapped inside small regions
L each of which contains at moSlog” n) nodes. In the second
N ] step, the small components in each small region are merged
- H _EEE N with each other in the same small region or with the giant
1] [ component, and eventually all nodes will be connected whp.
o S . By controlling the transmission radius in each step, we ldoun
B O EEE the energy complexity as in the following theorem.
Theorem 5.3:0ur algorithm constructs an optimal MST
(@) giant component (b) small regions using O(logn) energy on average an@(logn - loglogn)
Fig. 1. A giant component and small regions energy whp.
The correctness of our algorithm immediately follows from
Theorem 5.1 and the correctness of GHS algorithm. The proof
Theorem 5.1 shows that this guarantees the connectivity affenergy complexity is given in Section V-C.
random geometric graphs.

Theorem 5.1[12, 22] If r = /<1%8" wherec, is a A Modified GHS Algorithm
constant larger thas, then the graph is connected whp. In the modified GHS algorithm, most of steps are the
Our algorithm crucially depends on the following Theosame as those in the original GHS algorithm [9]. We briefly
rem 5.2. It essentially says thatyit= /< (for some constant recall the key details of the algorithm. Initially each nade
c1), then there will be a unique giant component and othepnsidered to be a fragment (or a connected component). As
small components. Refer to Figure 1. In Figure 1(a), thetgiaiie edges are added, the fragments grow by combing smaller
component is shown. A maximal connected cluster of whifeagments. In each “round” of the algorithm, each fragment
cells in Figure 1(a) is called amall region In Figure 1(b), finds its minimum length outgoing edge (MOE) and uses this
these small regions are represented as gray cells. All snegige to combine fragments. Each fragment elects its leader
components are inside such small regions, and moreovesr thghis is known to every node in the fragment) to manage the
are not too many small components in any one small regiotpmbining operation. To find the MOE, the leaders of two
Theorem 5.2:There is a positive constart such that, if nodes, which are adjacent to the edge added immediately
r= \/g there is a unique giant component containéh@) in the previous step, send initiate message (relayed by the
nodes whp. Furthermore, whp, all remaining components istermediate nodes) to the members of the fragment. Upon
nodes are trapped inside small regions each containing sit ni€ceipt of the initiate message, each node tests its adjacen
(log® n nodes, for some positive constaht edges to check if the node at the other end is in same fragment.
The theorem is similar to Theorem 1 in [25], but thdhus, each member node finds its outgoing edge and reports
conditions are different. In our model two nodes are coretectit to the leaders. Upon receipt of reports, the leaders selec
to each other if they are within = /< (for some constant new leader - the node which is adjacent to the MOE for the
c1) of each other, whereas in [25] each node is connected to gi#ire fragment and this begins a new round.
K closest nodes whel¥ is some fixed constant (independent In the modified GHS algorithm, each node additionally
of n). We prove Theorem 5.2 in Section V-B. keeps a list of its neighbors that are in other fragments
Our distributed MST algorithm consists of two steps, eadhith their distance information. In each phase, after two or
of which uses the GHS algorithm with some modifications. Fenore fragments are merged, each node sends a message to
constants:, ¢», and3 (as defined in Theorems 5.1 and 5.2)ts neighbors to announce its new fragment id if the id has
our algorithm works as follows. (The modified GHS algorithnéhanged. Each node updates its list when it receives those

is described in Section V-A.) announcements from its neighbors. This modification ersable
Step 1: each node to find its minimum outgoing edge without any
1. Each node sets its radius {g (i.e., it communicates additional messages — just by looking up its list and picking
with nodes only within this distance). up the one with the minimum distance. . 3
2. Run the modified GHS algorithm. Let us compute the message complexity of this modified
Step 2: GHS algorithm. For each node, the number of messages

eeded to announce its new fragment id is bounded by the
. . fthe size i h 9 . id 6tal number of phases. The number of initiate messages and
grgoi?stz?sz;slz; ?asr:tzi(l)?ngfr?et;:t @tlog™ n, it consid- 4 messages is the same as the original algorithm. Thus

) 9 _ P o — the total message complexity@(n¢) wheren is the number

2. Each node increases its radlus\yoc%. of nodes andp is the number of phases.

3. Run the modified GHS algorithm on the remaining |n the modified GHS algorithm in Step 2, two simple
component. (The giant component does not participatgchniques are used to reduce the expected energy corgplexit
but only accepts connection messages from small cofrstly, the giant fragment does not participate but onlyegts
ponents.) connection messages from small fragments. Secondly, when

The main idea of our algorithm is based on the fact thagmall fragments are merged with the giant fragment, small

after the first step, with high probability, there will be ondragments change their ids. That is, the giant fragment &eep
unigue giant component and other small components, and thatid so that its nodes do not need to announce new ids.

1. Each component computes its size, the number of no
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B. Proof of Theorem 5.2 of nodes inside the cell is greater than or equaf 1o
1) The Giant Componentie prove the first part of The- Lemma 5.2:Let p. be the probability that a cell is good.
orem 5.2. The overall proof is similar to that in [25] TheThenhm‘Hoo pe = 1.

S v P IS siml . ' 2 7.7 Now we establish the theorem about the giant component
basic idea is to reduce our problem to site percolation in a .
. . . . ; by showing that the largest cluster of good cells form a
f|n|t_e ?.0.):‘ In thde o?gmﬁll 5|tehpercolat|ﬁn ptroplem, we go(ljm .tﬁiant component of nodes. Clearly, the giant component also
an Infinite grid ot cells, where each sSie 1S oCCupled Wi \4oq the nodes in any occupied cells that are connegted t
probability p, and we ask the probability at which an |nf|n|tethe largest cluster of good cells

clusbtelra_cl){ s'tej emtergtla)s. I 'ZV\IIe” knr:)_wr?tt:at thireb'_?_taﬁ"tt Lemma 5.3:Let G be the largest component when the trans-
probabilityp (denoted byp,), below which the probability tha mission radius- = /<. For any constantv € (g, 3), there

an infinite cluster exists is asymptotically 0 and above Wwhic Y 12
ymp y is ac s.t. for a positive constant, Pr(|G| < an) < e V",

the probability is asymptotically 1. It is also known that in Proof: Let m ~ 47,1 be the number of cells and be the

Fhe sup_ercrmgal phase (>. Po), With high probgblhty, there Ia{gest cluster of good cells. By Theorem 1.1 in [6], for any
is a unique giant cluster in the box and that its complemen: 1 .
given constant < (0, 5), there is a value of. such that

consists of small regions, each contain®fog? n) sites [11].
To do this reduction, we first replace the uniform distribu- Pr(|C] < (1 = 8)m) < e MV™,
tion of nodes with a Poisson distribution to exploit the styo
independence property of the latter. That is, a distrilbuté
nodes in one region does not affect the distribution of nod
in any other disjoint region. There is an easy way to connect
these two settings (cf. [25]), and we can safely assume that(|g| < an) < Pr(|C| < 2o - 4_”) + Pr({No <n < N;})
we haven nodes that are generated by Poisson processes in ¢
a unit square. Here we repeat the same arguments and lemma < e 1V/in/e +e M L eV

as [25] bec_ause we ne_ed them later. for some positive constant and largen. The first inequality
We consider two Poisson process@sand F;. Process  fo|10s from the fact that we do the reduction only if the

has parametep, := n — en, wheree is a small positive condition Pr({No < n < N,}) holds. -
constant. Proces#; is built on top of P, by adding to it 2) The Small REgioﬁsWe prove the second part of Theo-
a new independent Poisson procesE with parameteRen. rem 52, We assume that we have chosen the consfast

It is well known thatP; is a Poisson process with parametef,at there exists a giant component with high probabiligt L
fix = pio + 2en = n + en. We then define a sequence of;s consider the complement of the largest cluster of godsl.cel
point processe$q; } sandwiched betweeR, and P;. Starting e now show that the maximal connected clusters of cells in
from Qo := By, Qit1 is given by Q; by adding one point the complement of' are small clusters. We call this maximal
chosen uniformly at random if%; — Q;. Our reduction to site connected cluster amall region In Figure 1(b), gray area
percolation will apply simultaneously to all;’s, showing the epresents these small regions. Definitely small compsnent
existence of a unique giant component for eathwith high ¢ odes will be inside this small region. The two lemmas
probability. Each@; generates points uniformly in the boXheiow bound the number of cells and nodes in a small region,
(conditioned on the given number of points). The next lemmagpectively.

shows that, with high probability, one of ti; will generate | amma 5.4:Let |S| be the number of cells in regioA.

exactly n points. As a consequence, if something holds fgf,, any small regior§ and some positive,, Pr(|S| = k) <
all @;'s simultaneously, it also holds for the originainodes ,—vi_

By definition, a good cell contains at legshodes. Thus, it”
contains at leastl — §)m good cells, then its corresponding
mponent contains at least — d)cm /8 nodes.

problem. _ _ Proof: It follows from the result in the supercritical phase
Lemma 5.1: [25] Let Ny and N; be the Poisson variablesfor sjte percolation [11]. m

relative toF; and P, respectively. There is a positive constant | emma 5.5:Let Z; be the random variable representing the

7 such thatPr ({No <n< Nt}) <e number of nodes in cell and S a small region. For large,
We now introduce site percolation problem by subdividinthere is a positivey s.t. Pr(} ;. Z; > h) < e VA,

the unit square into a grid of non-overlapping square cells Proof: Pr(>-, ¢ Z; >

as shown in Figure 1(a). Let = \/g be the transmission _ Z PT(Z Z > h)Pr(|S| = k)

radius wherec is a constant, which will be fixed. Setting

< 2h 1<k
the transmission radiugs = \/g we get an infinite grid Fe -
of cells asn grows. To simplify our analysis, we define the + Z PT(Z Zi > h)Pr(|S| = k)
distance between two nodes= (z1,y1) andv = (z2,y2) as k>2kisk
max(|z1 — 22|, |y1 — yo|) instead of using Euclidean distance. < > Pr(d_Zi>h)+ Y Pr(lS|=k)
This simplification affects our energy complexity bound$yon k<2h i<k k> 2h
up to a constant factor. We set the length of a side of each < Z Pr( Z Zi>h) + Z Pr(|S| = k)

cell to 5 so that any two nodes in the neighboring cells are o Y Z

. . . k<2l i< 2L k> =20
connected. Thus, all nodes in a cluster of occupied cells wil 2;; e ¢
be a connected component. The expected number of nodes in < ety e 2VE < oV,
each cell is7. Let us define a cell to bgoodif the number ¢ k>2h
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nodes inS, that is, Ng = >° _¢N,. As in Lemma 5.5,7;

The second last inequality follows from the large deviatiofepresents the number of nodes in delThus Fs is bounded
principle and Lemma 5.4. m by Zies Z;, which is the total number of nodes ifl. The

: llowing inequalities complete the proof by showing that
The following lemma completes the proof of Theorem 5. 0 :
) ' o . Ng] is bounded by some constant.
Let us consider the eveit with the transmission radius= [NVs] y

\/g, there is a uniqug giant component containing at leasg[Ns] < E[(Z Zi)clog Fs] < CE[(Z Z:) log (Z Z)]
an nodes and all remaining components of nodes are trapped i€s i€s i€s
inside small regions, each of which contains at mokig” n <

¢y hlogh-Pr()_ Zi > h) < .
nodes. h i€s
Lemma 5.6:Whenn is large, for everya € (1,1) and a
positive constant, Pr(€) < n~4.

Proof: By Lemma 5.3, the probability that there is no
component with at leastn nodes is at most—"*V", By
Lemma 5.5 and union bound, the probability that there exi
a small region with more thamlog®n nodes is at most
ne=2VAlogin  — pl-mVB  Thys, Pr(€) < e~ NV 4
nl=72vVB < p~d for some positive constant and largen
by choosingG appropriately. [ ]

The bound onPr (Z Z; > h) follows from Lemma 5.5.

[ |
By Lemma 5.7, it follows that the expected energy required
5[% connect all nodes in one small region(k{lo%). Since
there are at mosb(n) small regions, the required energy for
all nodes in all small regions ©(logn). The energy needed
by all nodes in the giant fragment {3(logn) since there are
at mostO(n) messages for accepting connection requests from
small fragments. Therefore, the total expected energyiredju

is O(logn). This completes the proof of Theorem 5.3.

€S

C. Energy Complexity Analysis

We first give a high probability analysis. In Step 1, the VI. ANO
total number of phases in the modified GHS algorithm is ~
O(logn), and consequently the total number of messages
is O(nlogn). Sending one message requir@%) energy We showed that the lower bound on energy complexity for
since the transmission radius(¥/1/n). Therefore, the total distributed construction of any spanning tree, hence alSd.M
energy required in Step 1 &(log n). At the beginning of Step is 2(log n). However, if some additional information such as
2, each fragment needs to compute its size. This can be déRerdinates of the nodes is given to the nodes, a more energy-
with one broadcast and one Convergecast' which r@m efficient algorithm can be developed. We present a distdbut
messages and consequenlyl) energy in total. algorithm to construct a spanning tree assuming that each

We now compute the energy required by the modified GH®de knows its own coordinates. This spanning tree gives a
algorithm in Step 2. It is shown that the number of nodes FPnstant approximation to MST, and the energy complexity of
a small region is at mosP(log?n) whp. Thus, the number the algorithm is also constant (this is the best possibleggne
of fragments in a small region is at ma8tlog® ), and each complexity — cf. Section IlI).
small fragment just needs to connect only with other small Let the nodes are distributed uniformly at random in a unit
fragments in the same small region or the giant fragmegguare with lower-left corner d0,0) and upper-right corner
Therefore, the total number of phases in the modified GH& (1, 1) (see Figure 2a). Each nodeknows its coordinates
algorithm is at mosO(log logn) whp. Thus the total number (z,y»). We define theranks of the nodes as follows: for
of messages needed in Step 2(%nloglogn) whp. The any two nodes: andwv, ranku) < rankv) iff (z, + yu <

energy needed for each messag@ (§£2) since we increased Zv + ¥v) OF (Zu + yu = Ty + y» @Ndy, < yy). Assuming
that no two nodes have the same coordinates, for any pair of

nodesy andv, either ranku) < rankv) or rankv) < rank(u).
To build the spanning tree, each node, except the node with
the highest rank, is connected to the nearest node of higher

: r nk. It is easy to see that in such a construction, the iegult
O(logn). The expected energy required by the modified GH aph is a single connected component with no cycle, i.e.,

algorithm in Step 1 and the computation of each fragmen Ctree. This tree is calledearest neighbor treéNNT) (cf.

size in Step 2 s clearly)(lo_g n). Thus it sufﬁges to show thgt 15]). In [15], an NNT is constructed using a different ramdg
the expected energy required by the modified GHS algorit hKu) < rankv) iff (za < ) OF (24 — x, andys <
:n Step 2 isO(logn). This can be shown from the following y»), Which also gives us constant approximation and constant
emma. . energy complexity. However, in that ranking, there are few

2 th ted b ¢ ded by all nod Phodes that need to go far away to find the nearest node of
» (N EXpected humber of messages needed by all no eﬁi&her rank. As a result, it is not suitable for the unit disk
any one small region is a constant.

Proof: Let S be a small region containing a node graph model withr = ©(,/'%5™) that we are using in this
at the end of Step 1. Let alsty, be the total number of paper. With our modified ranking scheme, we show that every
messages needed byduring the modified GHS algorithm in node finds the nearest node of higher rank within distance
Step 2. Then,N, is bounded byclog Fs wherec is some Tog 7y e 1o o
constant andFs is the number of fragments il at the end 7 = ©(y/ ==*) with high probability (see Lemma 6.3 below).
of Step 1. LetNg be the number of messages needed by dlb achieve our goal with this modified ranking of the nodes

(1) APPROXIMATION ALGORITHM WITH O(1)
ENERGY COMPLEXITY

the transmission radius 1@(1/10%). Thus, the total energy
required in Step 2 i®(log n-loglogn). Therefore, the overall
energy complexity i€ (logn - loglogn) whp.

Now we show that the expected energy complexity
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requires an entirely different technique to prove the beussl wherex =1 — %auLi- The last inequality follows from the

constant approximation.
Theorem 6.1:The expected sum of the squared edge

Fig. 2. (a), (b), (c): The potential regio®., marked by dark color lengths of the NNTE[ > |€|2} =0(1).

given below. fact that0 < z < 1. [ |
Using the above lemmas, in the following theorem, we show

pO1) 1l D c b P cC that expected sum of the squared edge lengths of the NNT is

‘ LR \\\Lu R“n PHC H constant. Itis We_II-known that the expected sum of t_he_sqdjar

. D\ * Ongl l R edges of MST is©(1) [26] when the nodes are distributed
R, N UNg Lo . . . .
o~ o Q4 in a unit square uniformly at random. Thus NNT gives us a
A00) B(LO) A B A B s Q%u
@ C)

(@) (b) (©)

and the potential distance, for an arbitrary node:. (d): A pie slice eENNT

with area equal to the area of the potential region shown)indg Proof: E| Y |e)?| = E| Y &| = X E[d] =

is the potential angle fot. CENNT wev wev "
nE[d2] < 4, by Lemma 6.1 and 6.2. |

Consider an arbitrary node as shown in Figure 2. The Using a slightly different technique, we can show that
straight linex +vy = z,, +v., which passes throughmaking the expected sum of the edge lengths (i.e., the case of
equal angles with both axes, divides the unit square into tdaiclidean MST, in contrast to the sum of tequarededge
regions. The region in the half plane+ y > x, + y., the lengths) of the NNT.E[> .\t lel] = O(v/n). For MST,
dark region in the figure, is called thotential regionfor u, E[>"_.cvstlel] = ©(yv/n) [26]. Thus, in this case, we also
denoted byR,. Any node inR, has higher rank than, and have constant approximation to MST.

u is connected to the nearest nodefly. The area ofR, is In the following lemma, we show that all nodes find
called thepotential areafor u, denoted byA,,. The distance to the nearest node in their potential regions within distance

the farthest point inz, from v is called thepotential distance g, /1) with high probability. That is, with high proba-
for u, denoted byL,.. Now, as shown in Figure 2(d), considenyjjity, the NNT can be constructed in unit disk graph, where

a pie slice with anglex, (in radian) of the circle with center I . . logn
. . the transmission radius for each nodedig,/ 2").
u and radiusL,, such that the area of the pie slice equals the Ga )

potential area fow, i.e., 2, L2 = A,. that is, a, = 23 Lemma 6.3:Simultaneously for alu € V, d, < cw/l‘)%
Angle «, is called thepotential anglefor w. N with probability at leastl —
Lemma 6.1:For anyu, the potential anglev, > % radian.
Proof: For a node: with =, +y, > 1, i.e.,u is in triangle
BCD at some point) as shown in Figure 2(ci4,, = APSC Ly <, ther_1 Pr{d, <r} = 1. Assume that;?l > . Now,
andL, < PS. Thus,a, = % > % If 20 +yu < 1, i€, Pr{d, < r} is larger or equal to the probability that there is

u is in triangle ABD, A, > ABCD. L. < BD. and thus at least one node i, within distancer from w. Thus,

N S
ne2/8—1"

Proof: Let r = ¢4/ 10%. Consider an arbitrary node If

ay > 5. n Pr{d, <r} > 1-(1-1a,?)"""
Lemma 6.2:If d,, denotes the distance fromto the nearest L (n1) 1
node in the potential regioR,, E[d?] < —2-. > 1—e2™ 1= 5

Proof: Consider Figure 2(d). By construction, the area
the pie slicePQH with angle«, and radiusL,, is equal to
area of the potential regioR,,, which is regionPSC'. Thus,

cI](Jsing the union bound, < r holds simultaneously for all

u € V with probability at leastl — W ]

. In the following theorem, we show that we can devise a
the areas of regionBT H andTQS5C are equal. Now remove distributed algorithm to construct NNT with constant eryerg

the nodes from regiof'@.SC and place them in regioRT H complexity
uniformly at random. In this process, we are only moving SOMe oo 6 2:There is a distributed algorithm to construct

nodes away from:. Thus if d/, denotes the distance from : :
. u NNT with expected energy complexit®)(1) and message
/
to the nearest node in the pie sli¢®)H, we haved, < d,,. complexity O(n).

Now we computeF|[d/?]. ! . : ,
Consider the region in the pie slid@QH within distance Proof: Consider the following algorithm. Assume that

r from u as shown in Figure 2(e). By uniform distribution ch node: knows its potential distancé,, and the number

the probability that a particular node resides in a paréiculof nodesn — nodewu can locally compute exadt,, from its
region is equal to the area of that region since the area of #wordinates and a rough approximation fowill work; the

unit squareABCD is 1. Thus, the probability that there is alyounds on energy and messages hold as long as approximate
least one node, other than within d|§tan<:2ernf_r§)m winthe oe forn is O(n). To find the nearest node in the potential
pie slice, is given by"(r) =1 — (1 B ) . Then, the regionR,,, each node transmits aequestmessage containing

density function _ ) ) =
J its coordinategx.,, y.,) to distancer; = ,/% in rounds: =

fr) = S F@r)=@n- Dowr (1 - 2a,r?)"™? 1,2,...,m = [lgnL2]. Any nodewv within distancer; can
L hear the message and replies backe tib rank(u) < rank(v),
E[d7] < E[d7] = / r?f(r) dr i.e.,vis in R,. If u gets back replies from one or more nodes,
9 0 . 9 it selects the nearest node among them and seodargection
vl Uk AR G Rl LA message to it, and stops exploration; otherwisegntinues to
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e i N o Figure 3(b): Let energy’ = clog’n, that is, logW =
wof T e log c+bloglogn. Thus if we plotlog W vs.log log n, we have
500 g a straight line with slopé, the power ofog. In Figure 3(b), we
- / see the slopes are abaytl, and0 for GHS, EOPT, and Co-
200/ NNT, respectively, which conform with our analytical retsul
b e In our experiments, we also observe that Co-NNT gives a
o e e BB el ¥ %" very close approximation to MST. The sum of the edges of
@) (b) Co-NNT for 1000 and 5000 nodes &2.9 and50.5, and that

of MST are20.8 and46.3, repectively. The sum of the squared

Fig. 3. Energy consumed by three different algorithms: GBS, optimal edges of both Co-NNT and MST are constants (independent

algorithm EOPT and our approximtion Co-NNT. Figures (a) éndshow the . .
plots in normal and logscale, respectively. of n), which are0.68 and0.52, respectively.

Energy
log(Energy)

100

w & 0 o N ® ©

VIII. CONCLUDING REMARKS AND FURTHER WORK

the next phase(i + 1)st phase. Ifz does not find any node in  This work addresses the energy complexity of distributed al
R, within distanceL,, (it happens only to the highest rankedyorithms, a measure that is very relevant to energy-cdnstia
node), it terminates anyway. ad hoc wireless and sensor networks. The main goal of
Nodeu needs the first transmission with probability= 1.  this work is to understand lower and upper bounds on the
Fori > 2, u needs theith transmission only if there is no energy complexity of the minimum spanning tree problem,
node within distance;_; in R,. That is, the probability that a fundamental communication primitive. We showed that,
u needsith transmission is without coordinate information, the lower bound on energy
1 2 \n—1 i—3, \n—1 —gi—4 complexity to construct any spanning tree, hence also MST,
pis(U=gowriy)” < (1-270/n) <e ' is nggn))/. We then prese)rlwt sn alg(?rithm that matches this
The expected number of nodes i, within distancer; is at lower bound. With coordinate information, the best known
most 17r?n = 217, Thus, the expected number of repliesower bound isQ(1) (which is trivial). We then showed a
u receives is at most'~!r. Additionally, u sends at most one constant energy algorithm that gives a constant approidmat
requestmessage and onebnnectionmessage in each phaseto the MST. An important open question is whether there is an
That is, the expected number of messages in phaSg\/;] < energy-optimal algorithm to construct an (exact) MST when
2 + 2t 1. Therefore, the expected number of messages file coordinates are given to the nodes.
all n nodes is at most In this paper, the main focus has been on transmission
m m _ . energy in an abstract model of the energy complexity. How-
aniE[Mi] = n(2+ﬂ)+n2(2+2%177)672 = O0(n). ever, this alone does not fully capture the energy needed, as
i=1 =2 it ignores the energy requirements for receiving and stayin
The expected energy is at most awake, which can be significant. As part of future work, we
m m plan to extend our results by incorporating a more accurate
n Y pBMilr? = 2(2+m)+Y (24277 'm)27e?" = O(1).  energy model (e.g., [20]).
P i—2 In this paper, we assume the unit disk model, and have
m ignored the complexity of wireless interference. This can b
handled in various ways. By combining the contention reso-
VIl. EXPERIMENTAL RESULTS lution prot_occ_)l of [15] alo_ng with the resu_lts of this papee
can get distributed algorithms for spanning tree constnct
With an increase in the running time by @h(nlogn) factor

stand their empirical performance. For comparison, we alggd in the energy usage by a constant factor, in the Radio

§|mulated th_e or.|g|nal GHS algorithm. Qur exp_erlmentalupet Broadcast Model (RBN) of interference. However, it has been
is the following: a) the number of nodes varies from 50 t
o

We performed the simulation of our algorithms to unde

5000, and b) the nodes are uniformly randomly distribut own that the RBN model has several limitations, and the

; . sical Interference model based on SINR constrdiais
in a unit square. We measured the total energy used by e

; ) . n proposed to rectify some of these [10]; our future goal i
algorithm — GHS, our energy-optimal algorithm (EOPT), ana) - o . :
our approximation algorithm (Co-NNT). The input to GHS develop energy efficient distributed algorithms in thewab

model.

and EOPT algorithm must be a connected graph to Obtalnﬁ\‘E'knowledgementWe would like to thank the referees for
MST. Thus, we set the radius tb()‘q/"“T” for GHS and the thejr valuable comments.
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