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Abstract—Traditionally, the performance of distributed al-
gorithms has been measured in terms of time and message
complexity. Message complexity concerns the number of messages
transmitted over all the edges during the course of the algorithm.
However, in energy-constrained ad hoc wireless networks (e.g.,
sensor networks), energy is a critical factor in measuring the
efficiency of a distributed algorithm. Transmitting a message
between two nodes has an associated cost (energy) and moreover
this cost can depend on the two nodes (e.g., the distance between
them among other things). Thus in addition to the time and
message complexity, it is important to considerenergy complexity
that accounts for the total energy associated with the messages
exchanged among the nodes in a distributed algorithm.

This paper addresses the minimum spanning tree (MST)
problem, a fundamental problem in distributed computing and
communication networks. We study energy-efficient distributed
algorithms for the Euclidean MST problem assuming random
distribution of nodes. We show a non-trivial lower bound of
Ω(log n) on the energy complexity of any distributed MST
algorithm. We then give an energy-optimal distributed algorithm
that constructs an optimal MST with energy complexityO(log n)
on average and O(log n log log n) with high probability. This
is an improvement over the previous best known bound on
the average energy complexity ofΩ(log2 n). Our energy-optimal
algorithm exploits a novel property of the giant component of
sparse random geometric graphs. All of the above results assume
that nodes do not know their geometric coordinates. If the nodes
know their own coordinates, then we give an algorithm withO(1)
energy complexity (which is the best possible) that gives anO(1)
approximation to the MST.

Index Terms—Distributed Algorithm, Minimum Spanning
Tree, Energy-Efficient, Random Geometric Graph, Percolation

I. I NTRODUCTION

Emerging technologies such as ad hoc wireless networks
and sensor networks operate under inherent resource con-
straints. Consider a sensor network, an ad hoc wireless net-
work in a geographic area built up of a large number of
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inexpensive devices called as sensors. Sensors have energy
constraints due to the limited battery power of the sensor
nodes; this severely constrains the amount of computation the
nodes can do and the distance to which they can communicate.
A distributed algorithm which consumes a relatively large
amount of power may not be suitable in such a resource-
constrained network. The topology of these networks can
change frequently due to mobility or node failures. Commu-
nication cost and running time are even more crucial in such
a dynamic setting. A distributed algorithm that runs on such
devices should have as little communication as possible and
should run as fast as possible (i.e., requiring a small number
of communication rounds) and use as little energy as possible.
Hence it becomes critical to design energy-efficient distributed
algorithms that operate on these networks.

Traditionally, the performance of distributed algorithmshas
been measured in terms of running time and message com-
plexity. In fact, in standard distributed computing literature,
these are the two most widely used measures [23]. Message
complexity concerns the total number of messages transmitted
over all the edges during the course of the algorithm. However,
in many settings, we require a more accurate and relevant
measure of performance. A good example is ad hoc wireless
networks, where energy is a very critical factor for measur-
ing the efficiency of a distributed algorithm. Transmittinga
message between two nodes has an associated cost (energy),
and moreover this cost can depend on the two nodes (e.g., the
distance between them among other things). Thus in addition
to the traditional time and message complexity, it is also
relevant to considerenergy complexitythat accounts for the
total energy associated with the messages exchanged among
the nodes in a distributed algorithm.

This paper addresses the minimum spanning tree (MST)
problem, which is an important primitive in many applications
in wireless networks, e.g., broadcasting, data aggregation and
topology control [24, 27, 5]. Data aggregation paradigms
commonly use trees to schedule the transmission of data
from all nodes in the graph at a source [18]; minimum
cost spanning trees help optimize the energy usage in this
process. Various topology control algorithms also use MSTsto
construct well connected subgraphs with provable cost relative
to the optimum [24]. Motivated by ad hoc wireless and sensor
networks, we focus on the Euclidean MST problem. Our
goal in this paper is to study distributed algorithms for the
Euclidean MST problem that have low energy complexity. We
show energy complexity lower bounds on the performance of
any distributed MST. We also study distributedapproximation
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algorithms for MST that give better energy complexity at the
price of some additional information about the coordinatesof
the nodes and obtain a constant factor approximation to the
MST. Because of space limitations, we have omitted several
proofs, which are available in the full version [4].

II. M ODEL AND PROBLEM

Network Model. We assume that the network is modeled
as a weighted undirected graphG = (V, E, w) where V
is the set of the nodes (vertices),E is the set of the (bi-
directional) communication links between them, andw(e) is
the weight of the edgee ∈ E. The weightw(u, v) represents
the energy associated with transmitting a message betweenu
andv. We assume that the transmission at power levelP (u) is
received all nodesv with w(u, v) ≤ P (u), and the nodes have
capability to set the power level adaptively within some range
- recent advances in technology, such as cognitive radios have
made this fairly easy to achieve with low overhead [1].

The graphG has the following underlying geometry. The
nodes are set of|V | = n points distributedrandomlyin a unit
square and two nodes are connected if they are within distance
r of each other, wherer is a transmission range induced by the
maximum power level allowed. The graph thus induced is a
random geometric graph[22]. This is a standard graph model
that has been widely used in the literature for modeling ad
hoc (sensor) networks. Without loss of generality, we assume
that r is chosen such thatG is connected (cf. Section V). We
assume the Radio Broadcast Model (RBN) for interference
[23], in which the transmission from a nodeu to its neighbor
v is successful, provided no other neighborw 6= u, w ∈ N(v)
transmits at the same time. Most of our results will extend to
other interference models, e.g. Tx-Rx [2].

In an ad hoc wireless sensor network, the total energy
required in a distributed algorithm typically depends on the
time needed, the number of messages exchanged, and the
radiation energy needed to transmit the messages over a
certain distance [3, 28]. The radiation energyw(u, v) needed
to transmit a message from nodeu to node v is typically
proportional to some power of the distanced(u, v) [16, 19].
We assume thatw(u, v) = a · (d(u, v))α for some constants
a andα (which is referred to as the path loss exponent) - for
concreteness, we useα = 2 in most of the paper; many of our
results can be generalized to other functions that model other
path loss and fading models. Formally, theenergy complexity
of the distributed algorithm is defined as

∑m
i=1 wi, wherewi is

the weight of the edge that connects the nodes exchanging the
ith message, andm is the total number of messages exchanged
by the algorithm.
Distributed Computing Model. Each node inG hosts a
processor with limited initial knowledge. Each node has
unique identity numbers. The nodes do not know the weights
of its incident edges (or equivalently the distance to its
neighbors). We assume that the communication is synchronous
and occurs in discrete time steps. The energy associated with
a bi-directional communication between neighborsu and v
is Θ(w(u, v)), i.e., if u wants to send a message tov and
v replies back tou then the cost associated with this bi-
directional communication is2w(u, v). A message is of size

O(log n) bits and a node can send one message per time step.
In a one-directional communication, when a nodeu sends
a message to a distanced ≤ r, we assume that any node
within distanced can receive the message. The cost associated
with this message is (proportional to)d2. This is calledlocal
broadcastingand is a feature of radio and wireless networks.
For simplicity, we assume that there are no collisions, i.e., each
message is transmitted successfully in one attempt. We leave
the consideration of a realistic physical interference model as
a future work as discussed in Section VIII.
MST Problem. Formally, the Euclidean MST problem is,
given a networkG = (V, E, w), to find a treeT spanningV
such that

∑

(u,v)∈T d(u, v) is minimized. In fact, We consider
a generalized version of the above problem: Find a treeT
spanningV such that the cost =

∑

(u,v)∈T dα(u, v) is mini-
mized whereα is a (small) positive number. The motivation
for this objective function comes from energy requirements
in a wireless communication paradigm as mentioned earlier.
It can easily be shown (e.g., using Kruskal’s algorithmic
construction) that the MST which minimizes

∑

(u,v)∈T d(u, v)
also minimizes

∑

(u,v)∈T dα(u, v) for anyα > 0. In the rest of
the paper, we use the termscostandquality interchangeably.
Although our results can be generalized to anyα, we focus
on α = 1 (the Euclidean MST) andα = 2. (Note that for the
energy complexity, we assumeα = 2 always.)

Computing an MST by a distributed algorithm is a funda-
mental task, as the following distributed computation can be
carried over the best backbone of the communication graph.
Two important applications of MST are broadcasting and data
aggregation. In wireless networks, an MST can be used as a
communication tree to minimize energy consumption since it
minimizes

∑

(u,v)∈T dα(u, v). In data aggregation, the idea is
to combine the data coming from different sources enroute to
eliminate redundancy, minimize the number of transmissions,
and thus save energy. Common aggregate functions are min-
imum, maximum, average, etc [18]. One popular paradigm
for computing such aggregates is to construct a (directed)
tree rooted at the sink where each node forwards its (locally)
aggregateddata collected from its subtree to its parent [13].
For such cases, MST is the optimal data aggregation tree
[15]. It was shown in [5, 27] that broadcasting based on MST
consumes energy within a constant factor of the optimum.

III. O UR RESULTS

We show tight upper and lower bounds on the energy
complexity of distributed MST algorithms. We first show
that Ω(log n) is a lower bound on the energy complexity
of any distributed MST algorithm. In fact, we show that
this is the lower bound for constructing any spanning tree
in the network. We then give a distributed algorithm that
constructs an optimal MST withO(log n) energy complexity
on average andO(log n · log log n) energy complexity with
high probability (whp). (Throughout the paper, “whp” means
with probability tending to 1 asn → ∞, where n is the
number of nodes in the network.) The previous best known
bound on the average energy complexity for distributed MST
in this model wasΩ(log2 n) [15]. This bound was obtained
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in [15] for a natural implementation of the classical algorithm
of Gallager, Humblet, and Spira (henceforth called as GHS
algorithm) [9]. All the above results assume that nodes do
not know their geometric coordinates. If nodes know their
own coordinates, then we give an algorithm withO(1) energy
complexity that gives anO(1) approximation to the MST. We
note thatΩ(1) is a lower bound on the energy complexity
of any distributed MST algorithm (even with nodes knowing
their coordinates) since any algorithm has to communicate at
least once using the tree edges of an MST. For an instance
specified by the setV of nodes, we denote this lower bound
asLMST (V ) =

∑

(u,v)∈MST (V )(d(u, v))2, whereMST (V )
denotes the minimum Euclidean spanning tree onV . If the
nodes are distributed uniformly at random, it is well-known
that

∑

(u,v)∈MST (V )(d(u, v))2 = Ω(1) (e.g., see [15]).
Related Work. This paper is inspired by the prior work
of Khan et al. [15] on distributed construction of spanning
trees in wireless and sensor networks. We refer to this work
and the references therein for more background on energy-
efficient distributed algorithms for wireless sensor networks,
in particular, on the connections to other related work on
wireless sensor and ad hoc networks, and on the models
and problems (exact and approximate MST) addressed in the
present paper. It is shown in [15] that although message com-
plexity of a distributed algorithm directly influences the energy
complexity, algorithms that have optimal message complexity
are not necessarily energy optimal. The message-optimal GHS
algorithm [9] usesO(n log n + |E|) messages; however, this
algorithm requiresΩ(log2 n) energy on average under random
distribution [15]. In contrast, in this paper, we show that there
is an algorithm that takesO(log n) energy on the average and
this is asymptotically optimal. There are distributed algorithms
that construct the MST optimally in terms of time complexity
(see, e.g., [7, 23]). But these algorithms require much more
messages than GHS algorithm, and consequently require a lot
more energy. The distributed algorithm of [14, 15] requires
only O(log n) energy, but it gives anO(log n)-approximation
to the MST. The work of [15] raised the question of whether
there exists a distributed algorithm ofO(log n) energy com-
plexity and this paper answers this in the affirmative.

IV. L OWER BOUND

We show a non-trivial lower bound ofΩ(log n) on the
energy required by any distributed algorithm to construct any
spanning tree of the network (Ω(1) lower bound is trivial,
as mentioned in Section III). This bound holds under the
following assumptions: (1) the model is synchronous (hence
the lower bound applies to asynchronous model as well); (2)
any non-empty set of processors may start the algorithm; a
processor that is not started remains asleep until a message
reaches it and can be awakened spontaneously at any time;
(3) no assumption is made on the size of the messages; this
assumption only strengthens our bound; (4) nodes do not have
any information on their geometric coordinates.

Our lower bound is based on a classical lower bound due
to Korach et al. [17], which shows thatΩ(n log n) messages
are needed by any distributed algorithm for constructing a

spanning tree (or equivalently, leader election) in a complete
network. Thus we have the same assumptions that were made
in [17]. Among the assumptions, the second one is crucial.
In fact, if all nodes that spontaneously start the algorithmare
awakened at the same time, anO(n) upper bound can be
shown by using a technique similar to the one in [8]. Thus,
under this assumption, the Korach et al. lower bound does not
hold, and consequently, ourΩ(log n) energy lower bound will
not hold either.

Theorem 4.1:Any distributed algorithm needsΩ(log n)
energy WHP to construct a spanning tree.

Proof: Korach et al. lower bound shows thatΩ(n log n)
differentedges need to be used by any algorithm. This bound
can be shown to apply for Las Vegas type randomized algo-
rithms too.

Our model can also be viewed as complete weighted net-
work, where the weight between any two nodesu and v is
w(u, v) = (d(u, v))2. According to the Korach et al. bound,
at least an log n different edges need to be used by any
distributed MST algorithm for some fixed constanta. To obtain
a lower bound on the energy complexity, we compute the
minimum energy needed to send at least one message through
n log n different edges. We need the following lemma.

Lemma 4.1:For every node, WHP, at leastk/bn energy
is needed if the node wants to communicate with its closest
k neighbors, for allk > a1 log n, wherea1 < a is a fixed
positive constant andb is a suitably large constant.

Proof: Fix an arbitrary nodev. Let X be the random
variable that denotes the total number of nodes within distance
√

k/bn of v. E[X ] = k/b. Using a Chernoff bound [21], for
suitably largeb, Pr(X ≥ k) = Pr(X ≥ (1 + b − 1)k/b) ≤
(e/b)k ≤ (e/b)a1 log n = o(1/n).

That is, WHP, the number of neighbors ofv within distance
√

k/bn is less thank. Hence, if a node wants to communicate
with its closestk neighbors, it has to send a message to a
distance of at least

√

k/bn WHP. Thus, the energy needed for
this is k/bn. By the union bound [21], this holds for every
node WHP.

We only focus on those nodes that communicate with more
thana1 log n of its closest neighbors. Let the set of such nodes
be denoted byR (relevant set). We ignore the energy spent
by the rest of the nodes and focus only on lower bounding
the energy needed by the nodes inR. Since, the total number
of edges used should be at leastan log n and sincea1 < a,
the nodes inR need to use at leastΩ(n log n) edges, i.e.,
communicate with at leastΩ(n log n) (closest) neighbors.
Each node inR communicates with at leastk > a1 log n
neighbors and by Lemma 4.1, it has to spend at leastk/bn
energy WHP. Thus, WHP, the total energy needed is at least:
∑

v∈R k/bn = 1/bn
∑

v∈R k ≥ Ω(log n).

V. A N ENERGY-OPTIMAL ALGORITHM

In this section, we give an energy-optimal distributed MST
algorithm of energy complexityO(log n), matching the lower
bound shown in the previous section.

We assume that graphG (cf. Section II) is connected by
setting the transmission radius to ther value given below.
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(a) giant component (b) small regions

Fig. 1. A giant component and small regions

Theorem 5.1 shows that this guarantees the connectivity of
random geometric graphs.

Theorem 5.1:[12, 22] If r =
√

c2 log n
n , where c2 is a

constant larger than4, then the graph is connected whp.
Our algorithm crucially depends on the following Theo-

rem 5.2. It essentially says that, ifr =
√

c1

n (for some constant
c1), then there will be a unique giant component and other
small components. Refer to Figure 1. In Figure 1(a), the giant
component is shown. A maximal connected cluster of white
cells in Figure 1(a) is called asmall region. In Figure 1(b),
these small regions are represented as gray cells. All small
components are inside such small regions, and moreover there
are not too many small components in any one small region.

Theorem 5.2:There is a positive constantc1 such that, if
r =

√

c1

n , there is a unique giant component containingΘ(n)
nodes whp. Furthermore, whp, all remaining components of
nodes are trapped inside small regions each containing at most
β log2 n nodes, for some positive constantβ.

The theorem is similar to Theorem 1 in [25], but the
conditions are different. In our model two nodes are connected
to each other if they are withinr =

√

c1

n (for some constant
c1) of each other, whereas in [25] each node is connected to the
K closest nodes whereK is some fixed constant (independent
of n). We prove Theorem 5.2 in Section V-B.

Our distributed MST algorithm consists of two steps, each
of which uses the GHS algorithm with some modifications. For
constantsc1, c2, andβ (as defined in Theorems 5.1 and 5.2),
our algorithm works as follows. (The modified GHS algorithm
is described in Section V-A.)
Step 1:

1. Each node sets its radius to
√

c1

n (i.e., it communicates
with nodes only within this distance).

2. Run the modified GHS algorithm.
Step 2:

1. Each component computes its size, the number of nodes
it contains. If the size is greater thanβ log2 n, it consid-
ers itself as a giant component.

2. Each node increases its radius to
√

c2 log n
n .

3. Run the modified GHS algorithm on the remaining
component. (The giant component does not participate
but only accepts connection messages from small com-
ponents.)

The main idea of our algorithm is based on the fact that,
after the first step, with high probability, there will be one
unique giant component and other small components, and that

those small components will be trapped inside small regions,
each of which contains at mostO(log2 n) nodes. In the second
step, the small components in each small region are merged
with each other in the same small region or with the giant
component, and eventually all nodes will be connected whp.
By controlling the transmission radius in each step, we bound
the energy complexity as in the following theorem.

Theorem 5.3:Our algorithm constructs an optimal MST
using O(log n) energy on average andO(log n · log log n)
energy whp.

The correctness of our algorithm immediately follows from
Theorem 5.1 and the correctness of GHS algorithm. The proof
of energy complexity is given in Section V-C.

A. Modified GHS Algorithm

In the modified GHS algorithm, most of steps are the
same as those in the original GHS algorithm [9]. We briefly
recall the key details of the algorithm. Initially each nodeis
considered to be a fragment (or a connected component). As
the edges are added, the fragments grow by combing smaller
fragments. In each “round” of the algorithm, each fragment
finds its minimum length outgoing edge (MOE) and uses this
edge to combine fragments. Each fragment elects its leader
(this is known to every node in the fragment) to manage the
combining operation. To find the MOE, the leaders of two
nodes, which are adjacent to the edge added immediately
in the previous step, send initiate message (relayed by the
intermediate nodes) to the members of the fragment. Upon
receipt of the initiate message, each node tests its adjacent
edges to check if the node at the other end is in same fragment.
Thus, each member node finds its outgoing edge and reports
it to the leaders. Upon receipt of reports, the leaders select a
new leader - the node which is adjacent to the MOE for the
entire fragment and this begins a new round.

In the modified GHS algorithm, each node additionally
keeps a list of its neighbors that are in other fragments
with their distance information. In each phase, after two or
more fragments are merged, each node sends a message to
its neighbors to announce its new fragment id if the id has
changed. Each node updates its list when it receives those
announcements from its neighbors. This modification enables
each node to find its minimum outgoing edge without any
additional messages — just by looking up its list and picking
up the one with the minimum distance.

Let us compute the message complexity of this modified
GHS algorithm. For each node, the number of messages
needed to announce its new fragment id is bounded by the
total number of phases. The number of initiate messages and
report messages is the same as the original algorithm. Thus
the total message complexity isO(nφ) wheren is the number
of nodes andφ is the number of phases.

In the modified GHS algorithm in Step 2, two simple
techniques are used to reduce the expected energy complexity.
Firstly, the giant fragment does not participate but only accepts
connection messages from small fragments. Secondly, when
small fragments are merged with the giant fragment, small
fragments change their ids. That is, the giant fragment keeps
its id so that its nodes do not need to announce new ids.
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B. Proof of Theorem 5.2

1) The Giant Component:We prove the first part of The-
orem 5.2. The overall proof is similar to that in [25]. The
basic idea is to reduce our problem to site percolation in a
finite box. In the original site percolation problem, we consider
an infinite grid of cells, where each site is occupied with
probability p, and we ask the probability at which an infinite
cluster of sites emerges. It is well known that there is a critical
probabilityp (denoted bypo), below which the probability that
an infinite cluster exists is asymptotically 0 and above which
the probability is asymptotically 1. It is also known that in
the supercritical phase (p > po), with high probability, there
is a unique giant cluster in the box and that its complement
consists of small regions, each containingO(log2 n) sites [11].

To do this reduction, we first replace the uniform distribu-
tion of nodes with a Poisson distribution to exploit the strong
independence property of the latter. That is, a distribution of
nodes in one region does not affect the distribution of nodes
in any other disjoint region. There is an easy way to connect
these two settings (cf. [25]), and we can safely assume that
we haven nodes that are generated by Poisson processes in
a unit square. Here we repeat the same arguments and lemma
as [25] because we need them later.

We consider two Poisson processesP0 andPt. ProcessP0

has parameterµ0 := n − ǫn, where ǫ is a small positive
constant. ProcessPt is built on top of P0 by adding to it
a new independent Poisson process∆P with parameter2ǫn.
It is well known thatPt is a Poisson process with parameter
µt := µ0 + 2εn = n + εn. We then define a sequence of
point processes{Qi} sandwiched betweenP0 andPt. Starting
from Q0 := P0, Qi+1 is given byQi by adding one point
chosen uniformly at random inPt −Qi. Our reduction to site
percolation will apply simultaneously to allQi’s, showing the
existence of a unique giant component for eachQi with high
probability. EachQi generates points uniformly in the box
(conditioned on the given number of points). The next lemma
shows that, with high probability, one of theQi will generate
exactly n points. As a consequence, if something holds for
all Qi’s simultaneously, it also holds for the originaln-nodes
problem.

Lemma 5.1: [25] Let N0 andNt be the Poisson variables
relative toP0 andPt, respectively. There is a positive constant
γ such thatPr

(

{N0 ≤ n ≤ Nt}
)

≤ e−γn.

We now introduce site percolation problem by subdividing
the unit square into a grid of non-overlapping square cells
as shown in Figure 1(a). Letr =

√

c
n be the transmission

radius wherec is a constant, which will be fixed. Setting
the transmission radiusr =

√

c
n , we get an infinite grid

of cells asn grows. To simplify our analysis, we define the
distance between two nodesu = (x1, y1) andv = (x2, y2) as
max(|x1 −x2|, |y1 − y2|) instead of using Euclidean distance.
This simplification affects our energy complexity bounds only
up to a constant factor. We set the length of a side of each
cell to r

2 so that any two nodes in the neighboring cells are
connected. Thus, all nodes in a cluster of occupied cells will
be a connected component. The expected number of nodes in
each cell isc

4 . Let us define a cell to begood if the number

of nodes inside the cell is greater than or equal toc
8 .

Lemma 5.2:Let pc be the probability that a cell is good.
Then limc→∞ pc → 1.

Now we establish the theorem about the giant component
by showing that the largest cluster of good cells form a
giant component of nodes. Clearly, the giant component also
includes the nodes in any occupied cells that are connected to
the largest cluster of good cells.

Lemma 5.3:Let G be the largest component when the trans-
mission radiusr =

√

c
n . For any constantα ∈ (1

4 , 1
2 ), there

is a c s.t. for a positive constantγ, Pr(|G| ≤ αn) ≤ e−γ
√

n.
Proof: Let m ≃ 4n

c be the number of cells andC be the
largest cluster of good cells. By Theorem 1.1 in [6], for any
given constantδ ∈ (0, 1

2 ), there is a value ofpc such that

Pr(|C| ≤ (1 − δ)m) ≤ e−γ1

√
m.

By definition, a good cell contains at leastc
8 nodes. Thus, ifC

contains at least(1 − δ)m good cells, then its corresponding
component contains at least(1 − δ)cm/8 nodes.

Pr(|G| ≤ αn) ≤ Pr(|C| ≤ 2α · 4n

c
) + Pr({N0 ≤ n ≤ Nt})

≤ e−γ1

√
4n/c + e−γ2n ≤ e−γ

√
n

for some positive constantγ and largen. The first inequality
follows from the fact that we do the reduction only if the
conditionPr({N0 ≤ n ≤ Nt}) holds.

2) The Small Regions:We prove the second part of Theo-
rem 5.2. We assume that we have chosen the constantc1 so
that there exists a giant component with high probability. Let
us consider the complement of the largest cluster of good cells.
We now show that the maximal connected clusters of cells in
the complement ofC are small clusters. We call this maximal
connected cluster asmall region. In Figure 1(b), gray area
represents these small regions. Definitely small components
of nodes will be inside this small region. The two lemmas
below bound the number of cells and nodes in a small region,
respectively.

Lemma 5.4:Let |S| be the number of cells in regionS.
For any small regionS and some positiveγ, Pr(|S| = k) ≤
e−γ

√
k.
Proof: It follows from the result in the supercritical phase

for site percolation [11].
Lemma 5.5:Let Zi be the random variable representing the

number of nodes in celli andS a small region. For largen,
there is a positiveγ s.t. Pr(

∑

i∈S Zi > h) ≤ e−γ
√

h.
Proof: Pr(

∑

i∈S Zi > h)

=
∑

k≤ 2h
c

Pr(
∑

i≤k

Zi > h)Pr(|S| = k)

+
∑

k> 2h
c

Pr(
∑

i≤k

Zi > h)Pr(|S| = k)

≤
∑

k≤ 2h
c

Pr(
∑

i≤k

Zi > h) +
∑

k> 2h
c

Pr(|S| = k)

≤
∑

k≤ 2h
c

Pr(
∑

i≤ 2h
c

Zi > h) +
∑

k> 2h
c

Pr(|S| = k)

≤
2h

c
e
−γ1h +

∑

k> 2h
c

e
−γ2

√
k ≤ e

−γ
√

h
.
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The second last inequality follows from the large deviation
principle and Lemma 5.4.

The following lemma completes the proof of Theorem 5.2.
Let us consider the eventE : with the transmission radiusr =
√

c
n , there is a unique giant component containing at least

αn nodes and all remaining components of nodes are trapped
inside small regions, each of which contains at mostβ log2 n
nodes.

Lemma 5.6:When n is large, for everyα ∈ (1
4 , 1

2 ) and a
positive constantd, Pr(E) ≤ n−d.

Proof: By Lemma 5.3, the probability that there is no
component with at leastαn nodes is at moste−γ1

√
n. By

Lemma 5.5 and union bound, the probability that there exists
a small region with more thanβ log2 n nodes is at most
ne−γ2

√
β log2 n = n1−γ2

√
β . Thus, Pr(E) ≤ e−γ1

√
n +

n1−γ2

√
β ≤ n−d for some positive constantd and largen

by choosingβ appropriately.

C. Energy Complexity Analysis

We first give a high probability analysis. In Step 1, the
total number of phases in the modified GHS algorithm is
O(log n), and consequently the total number of messages
is O(n log n). Sending one message requiresO( 1

n ) energy
since the transmission radius isO(

√

1/n). Therefore, the total
energy required in Step 1 isO(log n). At the beginning of Step
2, each fragment needs to compute its size. This can be done
with one broadcast and one convergecast, which needO(n)
messages and consequentlyO(1) energy in total.

We now compute the energy required by the modified GHS
algorithm in Step 2. It is shown that the number of nodes in
a small region is at mostO(log2 n) whp. Thus, the number
of fragments in a small region is at mostO(log2 n), and each
small fragment just needs to connect only with other small
fragments in the same small region or the giant fragment.
Therefore, the total number of phases in the modified GHS
algorithm is at mostO(log log n) whp. Thus the total number
of messages needed in Step 2 isO(n log log n) whp. The
energy needed for each message isO( log n

n ) since we increased

the transmission radius toO(
√

log n
n ). Thus, the total energy

required in Step 2 isO(log n·log log n). Therefore, the overall
energy complexity isO(log n · log log n) whp.

Now we show that the expected energy complexity is
O(log n). The expected energy required by the modified GHS
algorithm in Step 1 and the computation of each fragment’s
size in Step 2 is clearlyO(log n). Thus it suffices to show that
the expected energy required by the modified GHS algorithm
in Step 2 isO(log n). This can be shown from the following
lemma.

Lemma 5.7:In the modified GHS algorithm used in Step
2, the expected number of messages needed by all nodes in
any one small region is a constant.

Proof: Let S be a small region containing a nodev
at the end of Step 1. Let alsoNv be the total number of
messages needed byv during the modified GHS algorithm in
Step 2. Then,Nv is bounded byc log FS where c is some
constant andFS is the number of fragments inS at the end
of Step 1. LetNS be the number of messages needed by all

nodes inS, that is,NS =
∑

v∈S Nv. As in Lemma 5.5,Zi

represents the number of nodes in celli. ThusFS is bounded
by

∑

i∈S Zi, which is the total number of nodes inS. The
following inequalities complete the proof by showing that
E[NS] is bounded by some constant.

E[NS ] ≤ E[(
∑

i∈S

Zi)c log FS ] ≤ cE[(
∑

i∈S

Zi) log (
∑

i∈S

Zi)]

≤ c
∑

h

h log h · Pr(
∑

i∈S

Zi ≥ h) < ∞.

The bound onPr
(
∑

i∈S Zi ≥ h
)

follows from Lemma 5.5.

By Lemma 5.7, it follows that the expected energy required
to connect all nodes in one small region isO( log n

n ). Since
there are at mostO(n) small regions, the required energy for
all nodes in all small regions isO(log n). The energy needed
by all nodes in the giant fragment isO(log n) since there are
at mostO(n) messages for accepting connection requests from
small fragments. Therefore, the total expected energy required
is O(log n). This completes the proof of Theorem 5.3.

VI. A N O(1) APPROXIMATION ALGORITHM WITH O(1)
ENERGY COMPLEXITY

We showed that the lower bound on energy complexity for
distributed construction of any spanning tree, hence also MST,
is Ω(log n). However, if some additional information such as
coordinates of the nodes is given to the nodes, a more energy-
efficient algorithm can be developed. We present a distributed
algorithm to construct a spanning tree assuming that each
node knows its own coordinates. This spanning tree gives a
constant approximation to MST, and the energy complexity of
the algorithm is also constant (this is the best possible energy
complexity — cf. Section III).

Let the nodes are distributed uniformly at random in a unit
square with lower-left corner at(0, 0) and upper-right corner
at (1, 1) (see Figure 2a). Each nodev knows its coordinates
(xv, yv). We define theranks of the nodes as follows: for
any two nodesu and v, rank(u) < rank(v) iff (xu + yu <
xv + yv) or (xu + yu = xv + yv andyu < yv). Assuming
that no two nodes have the same coordinates, for any pair of
nodesu andv, either rank(u) < rank(v) or rank(v) < rank(u).
To build the spanning tree, each node, except the node with
the highest rank, is connected to the nearest node of higher
rank. It is easy to see that in such a construction, the resulting
graph is a single connected component with no cycle, i.e.,
a tree. This tree is callednearest neighbor tree(NNT) (cf.
[15]). In [15], an NNT is constructed using a different ranking:
rank(u) < rank(v) iff (xu < xv) or (xu = xv andyu <
yv), which also gives us constant approximation and constant
energy complexity. However, in that ranking, there are few
nodes that need to go far away to find the nearest node of
higher rank. As a result, it is not suitable for the unit disk

graph model withr = Θ(
√

log n
n ) that we are using in this

paper. With our modified ranking scheme, we show that every
node finds the nearest node of higher rank within distance

r = Θ(
√

log n
n ) with high probability (see Lemma 6.3 below).

To achieve our goal with this modified ranking of the nodes
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requires an entirely different technique to prove the bounds as
given below.

  Q
u
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Fig. 2. (a), (b), (c): The potential regionRu marked by dark color
and the potential distanceLu for an arbitrary nodeu. (d): A pie slice
with area equal to the area of the potential region shown in (c); αu

is the potential angle foru.

Consider an arbitrary nodeu as shown in Figure 2. The
straight linex+y = xu +yu, which passes throughu making
equal angles with both axes, divides the unit square into two
regions. The region in the half planex + y > xu + yu, the
dark region in the figure, is called thepotential regionfor u,
denoted byRu. Any node inRu has higher rank thanu, and
u is connected to the nearest node inRu. The area ofRu is
called thepotential areafor u, denoted byAu. The distance to
the farthest point inRu from u is called thepotential distance
for u, denoted byLu. Now, as shown in Figure 2(d), consider
a pie slice with angleαu (in radian) of the circle with center
u and radiusLu such that the area of the pie slice equals the
potential area foru, i.e., 1

2αuL2
u = Au. that is,αu = 2Au

L2
u

.
Angle αu is called thepotential anglefor u.

Lemma 6.1:For anyu, the potential angleαu ≥ 1
2 radian.

Proof: For a nodeu with xu+yu ≥ 1, i.e.,u is in triangle
BCD at some pointQ as shown in Figure 2(c):Au = △PSC
and Lu ≤ PS. Thus,αu = 2Au

L2
u

≥ 1
2 . If xu + yu < 1, i.e.,

u is in triangleABD, Au ≥ △BCD, Lu ≤ BD, and thus
αu ≥ 1

2 .
Lemma 6.2:If du denotes the distance fromu to the nearest

node in the potential regionRu, E[d2
u] ≤ 2

nαu
.

Proof: Consider Figure 2(d). By construction, the area of
the pie slicePQH with angleαu and radiusLu is equal to
area of the potential regionRu, which is regionPSC. Thus,
the areas of regionsPTH andTQSC are equal. Now remove
the nodes from regionTQSC and place them in regionPTH
uniformly at random. In this process, we are only moving some
nodes away fromu. Thus if d′u denotes the distance fromu
to the nearest node in the pie slicePQH , we havedu ≤ d′u.
Now we computeE[d′2u ].

Consider the region in the pie slicePQH within distance
r from u as shown in Figure 2(e). By uniform distribution,
the probability that a particular node resides in a particular
region is equal to the area of that region since the area of the
unit squareABCD is 1. Thus, the probability that there is at
least one node, other thanu, within distancer from u in the
pie slice, is given byF (r) = 1−

(

1 − 1
2αur2

)n−1
. Then, the

density function

f(r) =
d

dr
F (r) = (n − 1)αur

(

1 − 1

2
αur

2
)n−2

E[d2

u] ≤ E[d′2
u ] =

∫ Lu

0

r
2
f(r) dr

=
2

nαu

{

1 − nx
n−1 + (n − 1)xn

}

≤
2

nαu

wherex = 1 − 1
2αuL2

u. The last inequality follows from the
fact that0 ≤ x ≤ 1.

Using the above lemmas, in the following theorem, we show
that expected sum of the squared edge lengths of the NNT is
constant. It is well-known that the expected sum of the squared
edges of MST isΘ(1) [26] when the nodes are distributed
in a unit square uniformly at random. Thus NNT gives us a
constant approximation.

Theorem 6.1:The expected sum of the squared edge

lengths of the NNT,E

[

∑

e∈NNT
|e|2

]

= O(1).

Proof: E

[

∑

e∈NNT
|e|2

]

= E

[

∑

u∈V

d2
u

]

=
∑

u∈V

E
[

d2
u

]

=

nE
[

d2
u

]

≤ 4, by Lemma 6.1 and 6.2.
Using a slightly different technique, we can show that

the expected sum of the edge lengths (i.e., the case of
Euclidean MST, in contrast to the sum of thesquarededge
lengths) of the NNT,E

[
∑

e∈NNT |e|
]

= O(
√

n). For MST,
E
[
∑

e∈MST |e|
]

= Θ(
√

n) [26]. Thus, in this case, we also
have constant approximation to MST.

In the following lemma, we show that all nodes find
the nearest node in their potential regions within distance

Θ(
√

log n
n ) with high probability. That is, with high proba-

bility, the NNT can be constructed in unit disk graph, where

the transmission radius for each node isΘ(
√

log n
n ).

Lemma 6.3:Simultaneously for allu ∈ V, du ≤ c
√

log n
n

with probability at least1 − 1
nc2/8−1

.

Proof: Let r = c
√

log n
n . Consider an arbitrary nodeu. If

Lu < r, thenPr{du ≤ r} = 1. Assume thatLu ≥ r. Now,
Pr{du ≤ r} is larger or equal to the probability that there is
at least one node inRu within distancer from u. Thus,

Pr{du ≤ r} ≥ 1 −
(

1 − 1
2αur2

)n−1

≥ 1 − e
1
2αur2(n−1) ≥ 1 − 1

nc2/8
.

Using the union bound,du ≤ r holds simultaneously for all
u ∈ V with probability at least1 − 1

nc2/8−1
.

In the following theorem, we show that we can devise a
distributed algorithm to construct NNT with constant energy
complexity.

Theorem 6.2:There is a distributed algorithm to construct
NNT with expected energy complexityO(1) and message
complexityO(n).

Proof: Consider the following algorithm. Assume that
each nodeu knows its potential distanceLu and the number
of nodesn — nodeu can locally compute exactLu from its
coordinates and a rough approximation forn will work; the
bounds on energy and messages hold as long as approximate
value forn is Θ(n). To find the nearest node in the potential
regionRu, each nodeu transmits arequestmessage containing

its coordinates(xu, yu) to distanceri =
√

2i

n in roundsi =

1, 2, . . . , m = ⌈lg nL2
u⌉. Any nodev within distanceri can

hear the message and replies back tou if rank(u) < rank(v),
i.e.,v is in Ru. If u gets back replies from one or more nodes,
it selects the nearest node among them and sends aconnection
message to it, and stops exploration; otherwise,u continues to
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Fig. 3. Energy consumed by three different algorithms: GHS,our optimal
algorithm EOPT and our approximtion Co-NNT. Figures (a) and(b) show the
plots in normal and logscale, respectively.

the next phase,(i+1)st phase. Ifu does not find any node in
Ru within distanceLu (it happens only to the highest ranked
node), it terminates anyway.

Nodeu needs the first transmission with probabilitypi = 1.
For i ≥ 2, u needs theith transmission only if there is no
node within distanceri−1 in Ru. That is, the probability that
u needsith transmission is

pi ≤
(

1 − 1
2αur2

i−1

)n−1 ≤
(

1 − 2i−3/n
)n−1 ≤ e−2i−4

.

The expected number of nodes inRu within distanceri is at
most 1

2πr2
i n = 2i−1π. Thus, the expected number of replies

u receives is at most2i−1π. Additionally,u sends at most one
requestmessage and oneconnectionmessage in each phase.
That is, the expected number of messages in phasei, E[Mi] ≤
2 + 2i−1π. Therefore, the expected number of messages for
all n nodes is at most

n
m

∑

i=1

piE[Mi] = n(2+π)+n
m

∑

i=2

(2+2i−1π)e−2i−4

= O(n).

The expected energy is at most

n

m
∑

i=1

piE[Mi]r
2
i = 2(2+π)+

m
∑

i=2

(2+2i−1π)2ie−2i−4

= O(1).

VII. E XPERIMENTAL RESULTS

We performed the simulation of our algorithms to under-
stand their empirical performance. For comparison, we also
simulated the original GHS algorithm. Our experimental setup
is the following: a) the number of nodes varies from 50 to
5000, and b) the nodes are uniformly randomly distributed
in a unit square. We measured the total energy used by each
algorithm – GHS, our energy-optimal algorithm (EOPT), and
our approximation algorithm (Co-NNT). The input to GHS
and EOPT algorithm must be a connected graph to obtain an

MST. Thus, we set the radius to1.6
√

ln n
n for GHS and the

increased radius of EOPT. We set the initial radius of EOPT
to 1.4

√

1
n to have a giant component after the first step.

Figure 3(a) shows the energy consumed by each algorithm.
Observe that both EOPT and Co-NNT significantly improve
on the energy usage, relative to GHS. Analytically, we know
that the expected energy complexities for GHS, EOPT, and
Co-NNT are O(log2 n), O(log n), and O(1), respectively.
We can observe these results from our experimental data in

Figure 3(b): Let energyW = c logb n, that is, log W =
log c+b log log n. Thus if we plotlog W vs. log log n, we have
a straight line with slopeb, the power oflog. In Figure 3(b), we
see the slopes are about2, 1, and0 for GHS, EOPT, and Co-
NNT, respectively, which conform with our analytical results.

In our experiments, we also observe that Co-NNT gives a
very close approximation to MST. The sum of the edges of
Co-NNT for 1000 and 5000 nodes are22.9 and50.5, and that
of MST are20.8 and46.3, repectively. The sum of the squared
edges of both Co-NNT and MST are constants (independent
of n), which are0.68 and0.52, respectively.

VIII. C ONCLUDING REMARKS AND FURTHER WORK

This work addresses the energy complexity of distributed al-
gorithms, a measure that is very relevant to energy-constrained
ad hoc wireless and sensor networks. The main goal of
this work is to understand lower and upper bounds on the
energy complexity of the minimum spanning tree problem,
a fundamental communication primitive. We showed that,
without coordinate information, the lower bound on energy
complexity to construct any spanning tree, hence also MST,
is Ω(log n). We then present an algorithm that matches this
lower bound. With coordinate information, the best known
lower bound isΩ(1) (which is trivial). We then showed a
constant energy algorithm that gives a constant approximation
to the MST. An important open question is whether there is an
energy-optimal algorithm to construct an (exact) MST when
the coordinates are given to the nodes.

In this paper, the main focus has been on transmission
energy in an abstract model of the energy complexity. How-
ever, this alone does not fully capture the energy needed, as
it ignores the energy requirements for receiving and staying
awake, which can be significant. As part of future work, we
plan to extend our results by incorporating a more accurate
energy model (e.g., [20]).

In this paper, we assume the unit disk model, and have
ignored the complexity of wireless interference. This can be
handled in various ways. By combining the contention reso-
lution protocol of [15] along with the results of this paper,we
can get distributed algorithms for spanning tree construction,
with an increase in the running time by anO(n log n) factor
and in the energy usage by a constant factor, in the Radio
Broadcast Model (RBN) of interference. However, it has been
shown that the RBN model has several limitations, and the
Physical Interference model based on SINR constraintshas
been proposed to rectify some of these [10]; our future goal is
to develop energy efficient distributed algorithms in the above
model.
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