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Abstract—Random graphs (or networks) have gained a signif-
icant increase of interest due to its popularity in modeling and
simulating many complex real-world systems. Degree sequence
is one of the most important aspects of these systems. Random
graphs with a given degree sequence can capture many character-
istics like dependent edges and non-binomial degree distribution
that are absent in many classical random graph models such as
the Erdős-Rényi graph model. In addition, they have important
applications in uniform sampling of random graphs, counting the
number of graphs having the same degree sequence, as well as
in string theory, random matrix theory, and matching theory. In
this paper, we present an OpenMP-based shared-memory parallel
algorithm for generating a random graph with a prescribed
degree sequence, which achieves a speedup of 20.5 with 32
cores. We also present a comparative study of several structural
properties of the random graphs generated by our algorithm with
that of the real-world graphs and random graphs generated by
other popular methods. One of the steps in our parallel algorithm
requires checking the Erdős-Gallai characterization, i.e., whether
there exists a graph obeying the given degree sequence, in
parallel. This paper presents a non-trivial parallel algorithm
for checking the Erdős-Gallai characterization, which achieves
a speedup of 23 with 32 cores.

Index Terms—graph theory, random graph generation, degree
sequence, Erdős-Gallai characterization, parallel algorithms

I. INTRODUCTION

Random graphs are widely used for modeling many com-

plex real-world systems such as the Internet [1], biological [2],

social [3], and infrastructure [4] networks to understand how

the systems work through obtaining rigorous mathematical and

simulation results. Many random graph models such as the

Erd˝os-R´enyi [5], the Preferential Attachment [6], the small-

world [7], and the Chung-Lu [8] models have been proposed to

capture various characteristics of real-world systems. Degree

sequence is one of the most important aspects of these systems

and has been extensively studied in graph theory [9–11]. It

has significant applications in a wide range of areas including

structural reliability and communication networks because

of the strong ties between the degrees of vertices and the

structural properties of and dynamics over a network [12].

Random graphs with given degree sequences are widely

used in uniform sampling of random graphs as well as

in counting the number of graphs having the same degree

sequence [13–16]. For example, in an epidemiology study of

sexually transmitted diseases [17], anonymous surveys collect

data about the number of sexual partners of an individual

within a given period of time, and then the problem reduces to

generating a network obeying the degree sequence collected

from the survey, and studying the disease dynamics over the

network. Other examples include determining the total number

of structural isomers of chemical compounds such as alkanes,

where the valence of an atom is the degree. Moreover, the

random graphs with given degree sequences can capture many

characteristics such as dependent edges and non-binomial

degree distribution that are absent in many classical models

such as the Erd˝os-R´enyi [5] graph model. They also have

important applications in string theory, random matrix theory,

and matching theory [10].

The problem of generating a random graph with a given

degree sequence becomes considerably easier if self-loops

and parallel edges are allowed. Throughout this paper,

we consider simple graphs with no self-loops or parallel

edges. Most prior work on generating random graphs in-

volves sequential algorithms, and they can be broadly cat-

egorized in two classes: (i) edge swapping and (ii) stub-

matching. Edge swapping [18–20] uses the Markov chain

Monte Carlo (MCMC) scheme on a given graph having the

degree sequence. An edge swap operation replaces two edges

e
1

= (a, b) and e
2

= (c, d), selected uniformly at random

from the graph, by new edges e
3

= (a, d) and e
4

= (c, b),
i.e., the end vertices of the selected edges are swapped with

each other. This operation is repeated either a given number

of times or until a specified criterion is satisfied. It is easy to

see that the degree of each vertex remains invariant under an

edge swap process. Unfortunately, very little theoretical results

have been rigorously shown about the mixing time [18, 22] of

the edge swap process and they are ill-controlled. Moreover,

most of the results are heuristic-based.

On the other hand, among the swap-free stub-matching

methods, the configuration or pairing method [23] is very

popular and uses a direct graph construction method. For each

vertex, it creates as many stubs or “dangling half-edges” as

of its degree. Then edges are created by choosing pairs of



vertices randomly and connecting them. This approach creates

parallel edges, which are dealt with by restarting the process.

Unfortunately, the probability of restarting the process ap-

proaches 1 for larger degree sequences. Many variants [24–26]

of the configuration models have been studied to avoid parallel

edges for the regular graphs. By using the Havel-Hakimi

method [27], a deterministic graph can be generated following

a given degree sequence. Bayati et al. [15] presented an

algorithm for counting and generating random simple graphs

with given degree sequences. However, this algorithm does

not guarantee to always generate a graph, and it is shown

that the probability of not generating a graph is small for a

certain bound on the maximum degree, which restricts many

degree sequences. Genio et al. [16] presented an algorithm to

generate a random graph from a given degree sequence, which

can be used in sampling graphs from the graphical realizations

of a degree sequence. Blitzstein et al. [14] also proposed

a sequential importance sampling [28] algorithm to generate

random graphs with an exact given degree sequence, which can

generate every possible graph with the given degree sequence

with a non-zero probability. Moreover, the distribution of the

generated graphs can be estimated, which is a much-desired

result used in sampling random graphs.

A deterministic parallel algorithm for generating a simple

graph with a given degree sequence has been presented

by Arikati et al. [29], which runs in O (log n) time us-

ing O (n+m) CRCW PRAM [30] processors, where n and

m denote the number of vertices and edges in the graph,

respectively. From a given degree sequence, the algorithm

first computes an appropriate bipartite sequence (degree se-

quence of a bipartite graph), generates a deterministic bipartite

graph obeying the bipartite sequence, applies some edge swap

techniques to generate a symmetric bipartite graph, and then

reduces the symmetric bipartite graph to a simple graph

having the given degree sequence. Another parallel algorithm,

with a time complexity of O �
log

4 n
�

using O �
n10

�
EREW

PRAM processors, has been presented in [31], where the

maximum degree is bounded by the square-root of the sum

of the degrees, which restricts many degree sequences. A

parallel algorithm for generating a random graph with a

given expected degree sequence has been presented in [32].

However, there is no existing parallel algorithm for generating

random graphs following an exact degree sequence, which

can provably generate each possible graph, having the given

degree sequence, with a positive probability. In this paper, we

present an efficient parallel algorithm for generating a random

graph with an exact given degree sequence. We choose to

parallelize the sequential algorithm by Blitzstein et al. [14]

because of its rigorous mathematical and theoretical results,

and the algorithm supports all of the important and much-

desired properties below, whereas the other algorithms are

either heuristic-based or lack some of the following properties:

• It can construct a random simple graph with a prescribed

degree sequence.

• It can provably generate each possible graph, obeying the

given degree sequence, with a positive probability.

• It can be used in importance sampling by explicitly

measuring the weights associated with the generated

graphs.

• It is guaranteed to terminate with a graph having the

prescribed degree sequence.

• Given a degree sequence of a tree, a small tweak while

assigning the edges allows the same algorithm to generate

trees uniformly at random.

• It can be used in estimating the number of possible graphs

with the given degree sequence.

Our Contributions. In this paper, we present an effi-

cient shared-memory parallel algorithm for generating random

graphs with exact given degree sequences. The dependencies

among assigning edges to vertices in a particular order to

ensure the algorithm always successfully terminates with a

graph, the requirement of keeping the graph simple, main-

taining an exact stochastic process as that of the sequential

algorithm, and concurrent writing by multiple cores in the

global address space lead to significant challenges in designing

a parallel algorithm. Dealing with these requires complex

synchronization among the processing cores. Our parallel

algorithm achieves a maximum speedup of 20.5 with 32 cores.

We also present a comparative study of various structural prop-

erties of the random graphs generated by the parallel algorithm

with that of the real-world graphs. One of the steps in our

parallel algorithm requires checking the graphicality of a given

degree sequence, i.e., whether there exists a graph with the

degree sequence, using the Erd˝os-Gallai characterization [33]

in parallel. We present here a novel parallel algorithm for

checking the Erd˝os-Gallai characterization, which achieves a

speedup of 23 using 32 cores.

Organization. The rest of the paper is organized as follows.

Section II describes the preliminaries and notations used in

the paper. Our main parallel algorithm for generating random

graphs along with the experimental results are presented in

Section III. We present a parallel algorithm for checking

the Erd˝os-Gallai characterization of a given degree sequence

accompanied by the performance evaluation of the algorithm

in Section IV. Finally, we conclude in Section V.

II. PRELIMINARIES

Below are the notations, definitions, and computation model

used in this paper.

Notations. We use G = (V,E) to denote a simple graph,

where V is the set of vertices and E is the set of edges. A self-
loop is an edge from a vertex to itself. Parallel edges are two

or more edges connecting the same pair of vertices. A simple
graph is an undirected graph with no self-loops or parallel

edges. We are given a degree sequence D = (d
1

, d
2

, . . . , dn).
There are a total of n = |V| vertices labeled as 1, 2, . . . , n,
and di is the degree of vertex i, where 0  di  n � 1.

For a degree sequence D and distinct u, v 2 {1, 2, . . . , n}, we

define  D
u,v to be the degree sequence obtained from D by



TABLE I: Notations used frequently in the paper.

Symbol Description Symbol Description

D Degree sequence d
i

Degree of vertex i

V Set of vertices n Number of vertices

E Set of edges m Number of edges

P Number of cores P
k

Core with rank k

C Candidate set C Corrected Durfee number

G Graph K Thousands

M Millions B Billions

subtracting 1 from each of du and dv . Let d0j be the degree

of vertex j in the degree sequence  D
u,v , then

d0j =

(
dj � 1 if j 2 {u, v},

dj otherwise.

(1)

If there is a simple graph G having the degree sequence D,

then there are m = |E| edges in G, where 2m =

P
i di. The

terms graph and network are used interchangeably throughout

the paper. We use K, M, and B to denote thousands, millions,

and billions, respectively; e.g., 1M stands for one million. For

the parallel algorithms, let P be the number of processing

cores, and Pk the core with rank k, where 0  k < P . A

summary of the frequently used notations (some of them are

introduced later for convenience) is provided in Table I.

Residual Degree. During the course of a graph generation

process, the residual degree of a vertex u is the remaining

number of edges incident on u, which have not been created

yet. From hereon, we refer to the degree du of a vertex u as

the residual degree of u at any given time, unless otherwise

specified.

Graphical Sequence. A degree sequence D of non-negative

integers is called graphical if there exists a labeled simple

graph with vertex set {1, 2, . . . , n}, where vertex i has de-

gree di. Such a graph is called a realization of the degree

sequence D. Note that there can be several graphs having

the same degree sequence. Eight equivalent necessary and

sufficient conditions for testing the graphicality of a degree

sequence are listed in [34]. Among them, the Erd˝os-Gallai

characterization [33] is the most famous and frequently used

criterion. Another popular recursive test for checking a graph-

ical sequence is the Havel-Hakimi method [27].

Erdős-Gallai Characterization [33]. Assuming a given

degree sequence D is sorted in non-increasing order, i.e.,

d
1

� d
2

� . . . � dn, the sequence D is graphical if and

only if

Pn
i=1

di is even and

for each k 2 {1, 2, . . . , n},
kX

i=1

di  k(k�1)+
nX

i=k+1

min(k, di).

(2)

For example, D
1

= (3, 3, 2, 2, 2) is a graphical sequence and

there is a realization of D
1

as it satisfies the Erd˝os-Gallai

characterization, whereas D
2

= (4, 3, 2, 1) is not a graphical

sequence and there is no simple graph realizing D
2

, as shown

in Figs. 1 and 2.

3 3 2 2 2di

i 1 2 3 4 5

LHS

RHS

3

3 6 8 10 12

4 8 10 14 20

4 3 2 1

1 2 3 4

4 7 9 10

3 5 7 12

Degree seq. D1 Degree seq. D2

Fig. 1: Graphicality check for the de-

gree sequences D
1

= (3, 3, 2, 2, 2) and

D
2

= (4, 3, 2, 1) using the Erd˝os-Gallai

characterization, where LHS and RHS

denote the left hand side and right hand

side values of Eq. (2), respectively.

v1

v2

v4

v3

v5

Fig. 2: A sim-

ple graph real-

izing the degree

sequence D
1

=

(3, 3, 2, 2, 2).

Computation Model. We develop algorithms for shared-

memory parallel systems. All the cores can read from and

write to the global address space. In addition, each core can

have its own local variables and data structures.

III. GENERATING RANDOM GRAPHS WITH PRESCRIBED

DEGREE SEQUENCES

We briefly discuss the sequential algorithm in Section III-A.

Then we present our parallel algorithm in Section III-B and

the experimental results in Section III-C.

A. Sequential Algorithm
Blitzstein et al. [14] presented a sequential importance

sampling [28] algorithm for generating random graphs with

exact prescribed degree sequences. This approach first creates

all edges incident on the vertex having the minimum degree

in the sequence, then moves to the next vertex having the

minimum degree to create its incident edges and so on. To

create an edge incident on a vertex u, a candidate list C is

computed using the Erd˝os-Gallai characterization such that,

after adding an edge by connecting u to any candidate vertex v
from the list C, the residual degree sequence remains graphical

and the graph remains simple. Then an edge (u, v) is assigned

by choosing v from the candidate list C with a probability

proportional to the degree of v. This process is repeated until

all edges incident on vertex u are assigned.

For example, for a given degree sequence D = (3, 3, 2, 2, 2),
the algorithm starts by assigning edges incident on vertex v

3

.

It computes the candidate list C = {v
1

, v
2

, v
4

, v
5

}. Say it

chooses the vertex v
5

from C and assigns the edge (v
3

, v
5

).

Then the new degree sequence is D = (3, 3, 1, 2, 1), and the

new candidate list for assigning the remaining edge incident

on vertex v
3

is C = {v
1

, v
2

}. Say the algorithm selects v
1

from C and assigns the edge (v
3

, v
1

). Now the new degree

sequence is D = (2, 3, 0, 2, 1), and the algorithm will proceed

to assign edges incident on vertex v
5

and so on. One possible

sequence of degree sequences is

(3, 3, 2, 2, 2)! (3, 3, 1, 2, 1)! (2, 3, 0, 2, 1)! (2, 2, 0, 2, 0)

! (1, 2, 0, 1, 0)! (0, 1, 0, 1, 0)! (0, 0, 0, 0, 0),

with the corresponding edge set

E = {(v
3

, v
5

), (v
3

, v
1

), (v
5

, v
2

), (v
1

, v
4

), (v
1

, v
2

), (v
2

, v
4

)}.



1: E ; . initially empty set of edges

2: while D 6= 0 do
3: Select the least u such that d

u

is a minimal positive

degree in D
4: while d

u

6= 0 do
5: C {v 6= u : (u, v) /2 E

V
 D

u,v

is graphical}
6: v  a random candidate in C where probability of

selecting v is proportional to d
v

7: E E [ {(u, v)}
8: D  D

u,v

9: Output E

Fig. 3: A sequential algorithm [14] for generating a random

graph with a given degree sequence.

The corresponding graph is shown in Fig. 2. Note that during

the assignment of incident edges on a vertex u, a candidate

at a later stage is also a candidate at an earlier stage. The

pseudocode of the algorithm is shown in Fig. 3. Since a total

of m edges are generated for the graph G and computing the

candidate list (Line 5) for each edge takes O �
n2

�
time, the

time complexity of the algorithm is O �
mn2

�
.

Unlike many other graph generation algorithms, this method

never gets stuck, i.e., it always terminates with a graph

realizing the given degree sequence (proof provided in The-

orem 3 in [14]) or creates loops or parallel edges through

the computation of the candidate list using the Erd˝os-Gallai

characterization. The algorithm can generate every possible

graph with a positive probability (proof given in Corollary 1

in [14]). For additional details about the importance sampling

and estimating the number of graphs for a given degree

sequence, see Sections 8 and 9 in [14]; and we omit the details

in this paper due to space constraints.

B. Parallel Algorithm
To design an exact parallel version by maintaining the same

stochastic process (in order to retain the same theoretical and

mathematical results) as that of the sequential algorithm, the

vertices are considered (to assign their incident edges) in the

same order in the parallel algorithm, i.e., in ascending order

of their degrees. Hence, we emphasize parallelizing the com-

putation of the candidate list C, i.e., Line 5 of the sequential

algorithm in Fig. 3. For computing the candidate list to assign

edges incident on a vertex u, we need to consider all other

vertices v with non-zero degrees dv as potential candidates;

and we parallelize this step. While considering a particular

vertex v as a candidate, we need to check whether  D
u,v is

a graphical sequence using the Erd˝os-Gallai characterization.

If  D
u,v is graphical, then v is added to the candidate list C.

The time complexity of the best known sequential algorithm

for testing the Erd˝os-Gallai characterization is O (n) [14, 35].

Thus to have an efficient parallel algorithm for generating

random graphs, we need to use an efficient parallel algorithm

for checking the Erd˝os-Gallai characterization. In Section IV,

we present an efficient parallel algorithm for checking the

Erd˝os-Gallai characterization that runs in O �
n
P + logP�

time.

The parallel algorithm for the Erd˝os-Gallai characterization

returns TRUE if the given degree sequence is graphical and

FALSE otherwise.

1: E ; . initially empty set of edges

. Assign the edges until the degree of

each vertex reduces to 0

2: while D 6= 0 do
3: Select the least u such that d

u

is a minimal positive

degree in D
4: C ; . candidate list

. Assign all d
u

edges incident on u
5: while d

u

6= 0 do
6: if C = ; then
7: F {v 6= u : (u, v) /2 E

V
d
v

> 0}
8: else
9: F C

10: C ;

. Compute the candidate list

11: for each v 2 F in parallel do
12: flag  PARALLEL-ERD

˝

OS-GALLAI

�
 D

u,v

�

13: if flag = TRUE then
14: C C [ {v} . v is a candidate

15: if d
u

= |C| then
16: for each v 2 C in parallel do
17: E E [ {(u, v)}
18: D  D

u,v

19: break

. Assign an edge (u, v) from C
20: v  a random candidate in C where probability of

selecting v is proportional to d
v

21: E E [ {(u, v)}
22: D  D

u,v

23: C C� {v}

24: Output E . final set of edges

Fig. 4: A parallel algorithm for generating a random graph

with a prescribed degree sequence.

Once the candidate list is computed, if the degree of u is

equal to the cardinality |C| of the candidate list, then new

edges are assigned between u and all candidate vertices v in

the candidate list C in parallel. Otherwise, like the sequential

algorithm, a candidate vertex v is chosen randomly from C, a

new edge (u, v) is assigned, the degree sequence D is updated

by reducing the degrees of each of u and v by 1, and the

process is repeated until du is reduced to 0. After assigning

all edges incident on vertex u, the algorithm proceeds with as-

signing edges incident on the next vertex having the minimum

positive degree in D and so on. We present the pseudocode of

our parallel algorithm for generating random graphs in Fig. 4.

Theorem 1. The parallel algorithm for generating random
graphs maintains an exact stochastic process as that of the
sequential algorithm and preserves all mathematical and
theoretical results of the sequential algorithm.

Proof. The parallel algorithm always selects the vertex u with

the minimum degree in the sequence (Line 3), assigns du
edges incident on u (Lines 5-23), and then proceeds with the

next vertex in the sequence as the sequential algorithm would

do. While assigning the first edge incident on a vertex u,

all vertices in the sequence that do not create self-loops
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Fig. 6: Runtime of our parallel algorithm for generating

random graphs on different data sets.

or parallel edges are considered as potential candidates F
(Line 7), whereas for assigning the subsequent edges incident

on u, the candidates C in an earlier stage are considered as the

potential candidates F (Line 9) in a later stage. The candidate

list is then computed in parallel by checking whether an edge

can be assigned between u and a potential candidate v in F
by checking whether the residual degree sequence  D

u,v , if

an edge (u, v) is assigned, is a graphical sequence by using

the parallel algorithm for the Erd˝os-Gallai characterization

(Lines 11-14). If the cardinality of the candidate list is equal to

the degree du of vertex u, then edges are assigned between u
and all vertices v in the candidate list C in parallel (Lines 15-

19). Although this step is not explicitly mentioned in the

sequential algorithm, this is obvious since the sequential

algorithm would assign all du edges incident on u and there

are no additional candidates other than the du candidates in C.

We parallelize this step to improve the performance of the

algorithm. If the candidate list C has more than du candidates,

then a vertex v is selected randomly from C with probability

proportional to dv , and an edge (u, v) is assigned, as the

sequential algorithm would do. Hence, the parallel algorithm

maintains an exact stochastic process as that of the sequential

algorithm. As a consequence, all mathematical and theoretical

results (except the time complexity) of the sequential algorithm

are applicable to our parallel algorithm as well. ⌅
Theorem 2. The time complexity of each of the core Pk

in the parallel algorithm for generating random graphs is
O �

mn
�
n
P + logP��

.

Proof. The parallel algorithm assigns m edges one by one.

To assign an edge incident on a vertex u, it computes the

candidate list in parallel (Line 11). Whether a vertex v is a

candidate is computed using the parallel algorithm for the

Erd˝os-Gallai characterization (Line 12), which has a time

complexity of O �
n
P + logP�

. Hence, the time complexity

of the parallel algorithm for generating random graphs is

O �
mn

�
n
P + logP��

. ⌅

TABLE II: Data sets used in the experiments, where n, m,

and

2m
n denote the no. of vertices, no. of edges, and average

degree of the networks, respectively. K denotes thousands.

Network Type n m 2m
n

Facebook [36] Social contact 6.6K 250K 75.50

GooglePlus [36] Social contact 23.6K 39.2K 3.32

USPowerGrid [37] Power grid 4.94K 6.6K 2.67

Java-CD [37] Dependency 6.12K 50.3K 16.43

CM-Collab [39] Collaboration 16.3K 47.6K 5.85

Theorem 3. The space complexity of the parallel algorithm
for generating random graphs is O (m+ n).

Proof. Storing the degree sequence and the edges take O (n)
and O (m) space, respectively, making a space requirement of

O (m+ n). ⌅

C. Experimental Results

In this section, we present the data sets used in the ex-

periments and the strong scaling and runtime of our parallel

algorithm for generating random graphs.

Experimental Setup. We use a 32-core Haswell-EP E5-

2698 v3 2.30GHz (3.60GHz Turbo) dual processor node with

128GB of memory, 1TB internal hard drive, and QLogic QDR

InfiniBand adapter. We use OpenMP version 3.1 and GCC

version 4.7.2 for implementation.

Data Sets. We use degree sequences of five real-world

networks for the experiments. A summary of the networks is

given in Table II. Facebook [36] is an anonymized Facebook

friendship network of the students of CMU. GooglePlus [36]

is an online social contact network of GooglePlus. The US-

PowerGrid [37] network represents a high-voltage power grid

in the western states of the USA. Java-CD [37] is a Java class

dependency network of JUNG 2.0.1 [38]. CM-Collab [39] is a

scientific collaboration network on the condensed matter topic.



TABLE III: A comparison of some structural properties of the random networks generated (from the degree sequences of

the real-world networks) by our parallel algorithm with that of the real-world networks and random networks generated by

swapping 100% edges of the real-world networks. We use average values of 20 experiments.

Network structural properties

Average vertex value

Network Network Triangles Cliques Connected Avg. shortest Diameter Betweenness Closeness Clustering
model component path length centr. (x10�4) centrality coefficient

Facebook

Real-world 2.31M 1.24M 1 2.74 8 2.63 0.37 0.28

Our algo. 0.57M 0.40M 1 2.50 6 2.27 0.40 0.04

Edge swap 0.54M 0.39M 1 2.49 5 2.26 0.41 0.04

GooglePlus

Real-world 18.22K 31.09K 4 4.03 8 1.28 0.25 0.17

Our algo. 163.7K 21.96K 1.6K 3.20 5 0.69 0.24 0.22

Edge swap 99.95K 1.27M 637 3.13 9 0.81 0.29 0.19

USPowerGrid

Real-world 651 5.69K 1 18.99 46 36.42 0.05 0.08

Our algo. 8 6.58K 74 8.48 20 14.07 0.11 0.0008

Edge swap 2 6.59K 88 8.49 22 13.91 0.11 0.0003

Java-CD

Real-world 0.18M 31.89K 1 2.11 7 1.82 0.48 0.68

Our algo. 0.29M 21.34K 1 2.10 5 1.80 0.48 0.66

Edge swap 0.19M 55.79K 1 2.00 4 1.64 0.50 0.69

CM-Collab

Real-world 68K 10.49K 726 6.63 18 2.51 0.11 0.64

Our algo. 272 47.09K 25 4.91 12 2.39 0.20 0.0012

Edge swap 264 47.09K 31 4.91 14 2.39 0.20 0.0010
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Fig. 7: A comparison of clustering coefficient distribution

of the real-world Facebook network and random networks

generated by our parallel algorithm and by swapping edges of

the real-world graph. The distributions of the random networks

almost completely overlap with each other.

Strong Scaling. The strong scaling and runtime of the

parallel algorithm are shown in Figs. 5 and 6, respectively.

The speedups increase almost linearly with the increase in the

number of cores, and we achieve a maximum speedup of 20.5
with 32 cores on the Facebook network.

Structural Properties of the Generated Graphs. A com-

parison of the structural properties of the random graphs

generated by our parallel algorithm with that of the real-

world graphs and random graphs generated by swapping

edges is given in Table III. To generate random graphs by

swapping edges, 100% edges of the real-world graphs are

swapped (see [21] for details). We use average values of

20 experiments. We study the number of triangles, cliques,

connected components, average shortest path length, diameter,

average betweenness centrality, average closeness centrality,

and average local clustering coefficient of the networks. We

observe that in many cases the properties of the random graphs

are far away than that of the real-world graphs. The structural

properties of the random graphs generated by our algorithm

and by swapping edges are very close to each other in most of

the cases. For example, the clustering coefficient distribution,

as shown in Fig. 7, of the random graphs generated by these

two methods almost completely overlap with each other, and

it is difficult to distinguish them in the figure, whereas both

of them lie far away than that of the real-world graph.

IV. PARALLEL ALGORITHM FOR CHECKING THE

ERD

˝

OS-GALLAI CHARACTERIZATION

Many variants of the Erd˝os-Gallai characterization have

been developed and proofs have been given (see [14] and [34]

for a good discussion). Such a useful result has been presented

in Theorem 3.4.1 in [34], which defines the corrected Durfee
number C of the degree sequence D = (d

1

, d
2

, . . . , dn) (sorted

in non-increasing order) as

C = |{j : dj � j � 1}| (3)

and showed that D is graphical if and only if it satisfies the

first C inequalities of the Erd˝os-Gallai test. The corrected
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degree dj

Fig. 8: For the degree sequence D = (3, 2, 2, 2, 1), the

corrected Durfee number C = 3.

Durfee number C is often significantly smaller than the

number of vertices n. For example, for the degree sequence

D = (3, 2, 2, 2, 1), the corrected Durfee number C is 3, as

shown in Fig. 8; hence, it is sufficient to check only the

first three Erd˝os-Gallai inequalities instead of checking all five

inequalities of Eq. (2).

The sequential algorithm for checking the Erd˝os-Gallai

characterization is quite straightforward and has a time com-

plexity of O (n) [35]. A parallel algorithm for the problem

has been presented in [31], which has a runtime of O (log n)

using O
⇣

n
logn

⌘
EREW PRAM processors. In addition to gen-

erating random graphs, the Erd˝os-Gallai characterization has

important applications in many other graph theory problems

as well. For example, Iv´anyi et al. [40] applied the sequential

algorithm for checking the Erd˝os-Gallai characterization to

enumerate the distinct degree sequences of simple graphs in

parallel. In this section, we present a shared-memory parallel

algorithm for checking the Erd˝os-Gallai characterization of a

. Compute the corrected Durfee number

1: i 1
2: while i <= n and d

i

� i� 1 do
3: C  i // corrected Durfee number

4: i i+ 1

. Compute the prefix sum of the degrees

5: H0  0
6: for i = 1 to n do
7: H

i

 H
i�1 + d

i

. Check the parity

8: if H
n

is odd then
9: return FALSE // not a graphical sequence

. Compute the weights

10: d0  n� 1
11: for i = 1 to n do
12: if d

i

< d
i�1 then

13: for j = d
i�1 downto d

i

+ 1 do
14: w

j

 i� 1
15: w

di  i
16: for j = d

n

downto 1 do
17: w

j

 n

. Check the Erd˝os-Gallai inequalities

18: for i = 1 to C do
19: if i  w

i

then
20: if H

i

> i(i� 1) + i(w
i

� i) +H
n

�H
wi then

21: return FALSE
22: else if H

i

> i(i� 1) +H
n

�H
i

then
23: return FALSE

24: return TRUE // a graphical sequence

Fig. 9: A sequential algorithm [35] for checking the Erd˝os-

Gallai characterization.

given degree sequence with a time complexity

of O �
n
P + logP�

using P processing cores. First we briefly

review the current state-of-the-art sequential algorithm.

A. Sequential Algorithm
The sequential algorithm [35] is quite simple and consists

of the following steps: (i) compute the corrected Durfee num-

ber C, (ii) compute the prefix sum of the degrees, (iii) check

the parity, i.e., whether the sum of the degrees is even or odd,

(iv) compute the weights, which are useful in computing the

right hand side of Eq. (2) in linear time, and (v) check the

first C Erd˝os-Gallai inequalities. If the sum of the degrees

is even and all the inequalities are satisfied, then the degree

sequence D is graphical; otherwise, D is not graphical. The

pseudocode of the sequential algorithm is given in Fig. 9.

B. Parallel Algorithm
Based on the sequential algorithm presented in Fig. 9, we

present a parallel algorithm for checking the Erd˝os-Gallai

characterization. Below we describe the methodology to par-

allelize the steps of the sequential algorithm.

• Step 1: Compute the Corrected Durfee Number. The

corrected Durfee number can be computed in parallel in a

round robin fashion, as shown in Fig. 10. Each core Pk

computes its local corrected Durfee number Ck. Then all the

cores synchronize and the maximum value of all Ck is reduced

as the corrected Durfee number C.

• Step 2: Compute the Prefix Sum of the Degrees. We

use a parallel version [41] of computing the prefix sum, as

shown in Fig. 11. Each core Pk works on a chunk of size⌃
n
P
⌥

of the degree sequence. First, the sum sk of the degrees

in the chunk is computed (Line 4) and then a prefix sum Sk

1: k  core id

. Each core P
k

executes the following in

parallel:

2: i k + 1
3: C

k

 0
4: while i <= n and d

i

� i� 1 do
5: C

k

 i // local corrected Durfee number

6: i i+ P

. Reduce the corrected Durfee number

7: C  REDUCE-MAX

k

C
k

Fig. 10: Compute the corrected Durfee number in parallel.

1: k  core id

. Each core P
k

executes the following in

parallel:

2: x k
⌃

n

P
⌥
+ 1

3: y  min
�
(k + 1)

⌃
n

P
⌥
, n
 

4: s
k

 
P

y

i=x

d
i

5: In Parallel: S
k

 
P

k�1
j=0 s

j

6: Q S
k

// note that S0 = 0
7: for i = x to y do
8: H

i

 Q+ d
i

9: Q H
i

Fig. 11: Compute the prefix sum of the degrees in parallel.



of the sj (0  j  k � 1) is computed in parallel (Line 5).

Finally, each core gives a pass to the chunk and uses the value

of Sk to compute the final prefix sum (Lines 6-9).

• Step 3: Check the Parity. The master core checks whether

the sum of the degrees is even. If the sum is odd, then the

degree sequence is not graphical. Otherwise, the algorithm

proceeds to the next step.

• Step 4: Compute the Weights. The pseudocode of

computing the weights in parallel is shown in Fig. 14. We

first initialize (Lines 2-3) the weight array w in parallel.

Then the actual weights are computed inside a for loop

(Lines 4-10) in parallel. Due to the simultaneous nature of

the parallel algorithm, there is a possibility that the same

weight wj may be updated by multiple cores in an order

different than that of the sequential algorithm. To deal with

this difficulty, we add two additional if conditions (Lines 7

and 9) as the values of wj are only updated with larger values

in the sequential algorithm. These two conditions ensure the

correctness of the weight values as well as allow simultaneous

parallel computation of them. Finally, the larger weights are

computed in parallel in the last for loop (Lines 11-12).

• Step 5: Check the Erdős-Gallai Inequalities. The Erd˝os-

Gallai inequalities can be checked in parallel in a round

robin fashion. We have to check only the first C inequalities

instead of checking all the n inequalities. This significantly

improves the performance of the algorithm since C << n in

many degree sequences, as shown later in Table IV. If any

of the inequalities is dissatisfied, then the degree sequence

is not graphical; otherwise, it is a graphical sequence. The

pseudocode of the algorithm is presented in Fig. 15.

Theorem 4. The time complexity of each of the core Pk in
the parallel algorithm for checking the Erdős-Gallai charac-
terization is O �

n
P + logP�

.

Proof. The while loop in Lines 4-6 in Fig. 10 takes O � C
P
�

time, where C is the corrected Durfee number and P is the

number of cores. The reduction in Line 7 takes O (logP)

time. Hence, the corrected Durfee number in Step 1 can be

computed in O � C
P + logP�

time. Lines 4, 5, and 7-9 in

Fig. 11 take O �
n
P
�
, O (logP), and O �

n
P
�

time, respectively,

where n is the number of vertices. So, the prefix sum of

the degrees in Step 2 can be computed in O �
n
P + logP�

time [41]. Checking the parity in Step 3 can be done in O(1)

time. Each of the three for loops (Lines 2-3, 4-10, and 11-12)

in Fig. 14 takes O �
n
P
�

time. Although the two for loops

in Lines 4 and 6 are nested, the total number of weights

updated are O (n). Thus computing the weights in Step 4

takes O �
n
P
�

time. The while loop (Lines 4-10) in Fig. 15

takes O � C
P
�

time. Therefore, the Erd˝os-Gallai inequalities in

Step 5 are tested in O � C
P
�

time. Thus, the time complexity

of the algorithm is O �
n
P +

C
P + logP�

= O �
n
P + logP�

. ⌅
Theorem 5. The space complexity of the parallel algorithm
for checking the Erdős-Gallai characterization is O (n).

Proof. Storing the degree sequence and the prefix sum of the

degrees take O (n) space. ⌅

1: d0  n� 1

. Initialize the weight array

2: for i = 1 to n in parallel do
3: w

i

 0

. Compute the weight values

4: for i = 1 to n in parallel do
5: if d

i

< d
i�1 then

6: for j = d
i�1 downto d

i

+ 1 in parallel do
7: if i� 1 > w

j

then
8: w

j

 i� 1
9: if i > w

di then
10: w

di  i

. Compute the larger weight values

11: for j = d
n

downto 1 in parallel do
12: w

j

 n

Fig. 14: Compute the weights in parallel.

1: k  core id

2: flag  TRUE // shared variable

. Each core P
k

executes the following in

parallel:

3: i k + 1
4: while i <= C and flag = TRUE do
5: if i  w

i

then
6: if H

i

> i(i� 1) + i(w
i

� i) +H
n

�H
wi then

7: flag  FALSE
8: else if H

i

> i(i� 1) +H
n

�H
i

then
9: flag  FALSE

10: i i+ P

11: OMP-BARRIER
12: return flag

Fig. 15: Check the Erd˝os-Gallai inequalities in parallel.

C. Performance Evaluation
In this section, we present the data sets used in the ex-

periments and the strong scaling and runtime of our parallel

algorithm for checking the Erd˝os-Gallai characterization. We

use the same experimental setup as described before in Sec-

tion III-C.

Data Sets. We use degree sequences of both artificial and

real-world networks for the experiments. A summary of the

TABLE IV: Data sets used in the experiments, where n,

m,

2m
n , and C denote the number of vertices, number of

edges, average degree, and the corrected Durfee number of the

networks, respectively. M and B denote millions and billions,

respectively.

Network Type n m 2m
n

C

Friendster [42] Social 65.6M 1.8B 55.06 2959

Twitter [42] Social 40.56M 667.7M 32.93 6842

Los Angeles (LA) [43] Contact 16.23M 459.3M 56.59 380

New York (NY) [43] Contact 17.88M 480.1M 53.70 387

LiveJournal (LJ) [42] Social 4.80M 42.85M 17.68 990

SmallWorld (SW) [7] Random 4.80M 48.00M 20.00 31
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Fig. 12: Strong scaling of the parallel algorithm for checking

the Erd˝os-Gallai characterization.
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Fig. 13: Runtime of the parallel algorithm for checking the

Erd˝os-Gallai characterization.

networks is given in Table IV. Friendster, Twitter, and Live-

Journal (LJ) are real-world online social networks [42]. New

York (NY) and Los Angeles (LA) are synthetic, yet realistic

social contact networks [43]. The SmallWorld random network

follows the Watts-Strogatz small world network model [7].

Table IV also shows that the corrected Durfee number C is

significantly smaller than the number of vertices n for all six

networks.

Strong Scaling. The strong scaling and runtime of the par-

allel algorithm are illustrated in Figs. 12 and 13, respectively.

The speedup increases almost linearly with the increase in the

number of cores. We observe better speedups for the degree

sequences of larger graphs and achieve a maximum speedup

of 23 with 32 cores on the Friendster graph.

V. CONCLUSION

We presented an efficient parallel algorithm for generating

random graphs with prescribed degree sequences. It can be

used in studying various structural properties of and dynam-

ics over a network, sampling graphs uniformly at random

from the graphical realizations of a given degree sequence

and estimating the number of possible graphs with a given

degree sequence. The algorithm never gets stuck, can generate

every possible graph with a positive probability, and exhibits

good speedup. We also compared several important structural

properties of the random graphs generated by our parallel

algorithm with that of the real-world graphs and random

graphs generated by the edge swapping method. In addition,

we developed an efficient parallel algorithm for checking the

Erd˝os-Gallai characterization of a given degree sequence. This

algorithm can be of independent interest and prove useful in

parallelizing many other graph theory problems. We believe

the parallel algorithms will contribute significantly in analyz-

ing and mining emerging complex systems and understanding

interesting characteristics of such networks.
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