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ABSTRACT

An assortative edge switch is an operation on a labeled network, where two edges are randomly selected and
the end vertices are swapped with each other if the labels of the end vertices of the edges remain invariant.
Assortative edge switch has important applications in studying the mixing pattern and dynamic behavior of
social networks, modeling and analyzing dynamic networks, and generating random networks. In this pa-
per, we present an efficient sequential algorithm and a distributed-memory parallel algorithm for assortative
edge switch. To our knowledge, they are the first efficient algorithms for this problem. The dependencies
among successive assortative edge switch operations, the requirement of maintaining the assortative coef-
ficient invariant, keeping the network simple, and balancing the computation loads among the processors
pose significant challenges in designing a parallel algorithm. Our parallel algorithm achieves a speedup of
68−772 with 1024 processors for a wide variety of networks.

Keywords: assortative edge switch, random network generation, network dynamics, parallel algorithms.

1 INTRODUCTION

Networks (or graphs) are simple representations of many complex real-world systems. Analyzing various
structural properties of and dynamics on such networks reveal useful insights about the real-world sys-
tems (Newman 2002). Assortative edge switch is an important problem in the analysis of such networks and
has many real-world applications. An edge switch (or edge swap, edge flip, edge shuffle, edge rewiring) is
an operation on a network where two edges are selected randomly and the end vertices are swapped with
each other. More formally, it selects two edges (a,b) and (c,d) uniformly at random and replaces them with
edges (a,d) and (c,b), respectively. We refer to this operation as the regular edge switch. It is easy to see
that this operation preserves the degree of each vertex. It is repeated either as many times as required or a
specific criterion is satisfied. Edge switch can be used in the generation of random networks with a given
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degree sequence (Cooper et al. 2007), independent realizations of graphs with a prescribed joint degree
distribution using a Markov chain Monte Carlo approach (Ray et al. 2012), modeling and studying various
dynamic networks (Feder et al. 2006) and in many other network analytic problems.

Many variations of the edge switch problem (Cooper et al. 2007, Feder et al. 2006, Ray et al. 2012) have
been studied. In this paper, we present efficient sequential and parallel algorithms for such a variant, referred
to as the assortative edge switch, which is an operation on a labeled network, where each vertex u has an
associated label L(u). Such labels can be discrete characteristics (e.g., language, race, and gender in social
networks) or scalar properties (e.g., age and degree) of the vertices. An assortative edge switch operation
selects two edges (a,b) and (c,d) randomly, and replaces them with edges (a,d) and (c,b), respectively, if
L(a) = L(c) and L(b) = L(d). For each vertex u, the degree, as well as the distribution of the labels of the
adjacent vertices of u, remains invariant under an assortative edge switch process.

An assortative edge switch operation preserves the assortative mixing of a given network, which is a funda-
mental network feature measuring the tendency of the vertices to associate with similar or dissimilar vertices
and is quantified by a metric named the assortative coefficient (Newman 2003). In other words, assortativity
measures the correlation of vertices based on the vertex labels. Newman (2002) showed that assortative
mixing is a pervasive phenomenon found in many real-world networks and has a profound impact on the
structural properties and functionalities of the networks. For instance, social (e.g., co-authorship) networks
exhibit positive assortativity—more association among the similar types of vertices—whereas technologi-
cal (e.g., Internet and WWW) and biological (e.g., food-web) networks show negative assortativity—more
association among the dissimilar types of vertices (Newman 2002). Assortative edge switch can be used to
assess and analyze the sensitivity of mixing patterns and network structural properties on dynamics over a
network, such as disease dynamics over a social contact network (Eubank et al. 2010). Random network
models often do not capture many structural properties (e.g., assortative mixing) of real-world networks; as
a result, to be more realistic, modeling random networks with a prescribed assortative coefficient has gained
popularity in the research community (Milo et al. 2003). Assortative edge switch can be combined with
regular edge switch process to generate random networks with a prescribed assortative coefficient from a
given network (Xulvi-Brunet and Sokolov 2004).

The recent growth of real-world data due to the rapid progression of science and technology poses signif-
icant challenges towards efficient processing of massive networks. Dealing with these huge amounts of
data efficiently and effectively motivates the need for parallel computing. NetworkX (Hagberg et al. 2008)
has a sequential implementation of regular edge switch; however, it does not have an implementation of
assortative edge switch. A parallel algorithm for regular edge switch has been presented in (Bhuiyan et al.
2014). However, no effort was given to design a parallel algorithm for assortative edge switch in a network.
Although the algorithm by Bhuiyan et al. (2014) can be applied to perform assortative edge switch oper-
ations in a network, it can lead to a slow and inefficient algorithm. To perform an edge switch operation
in (Bhuiyan et al. 2014), the edges are selected randomly from the entire network, irrespective of the vertex
labels, which can result in many failed attempts for an assortative edge switch operation due to dissatisfying
the constraint on the vertex labels. As a result, we need a completely new and efficient algorithmic approach.

Our Contributions. In this paper, we first present a sequential algorithm for assortative edge switch; then
we present a parallel algorithm based on our sequential algorithm. The dependencies among successive
assortative edge switch operations and the requirement of keeping the network simple as well as maintaining
the same assortativity during the assortative edge switch process pose significant challenges in designing a
parallel algorithm. Moreover, achieving a good speedup through a well-balanced load distribution among
the processors seems to be a non-trivial challenge for this problem. For various network size and diverse
distribution of the labels, the parallel algorithm provides speedup ranging between 68 and 772 with 1024
processors. To our knowledge, they are the first efficient sequential and parallel algorithms for the problem.
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Organization. The remainder of the paper is organized as follows. The preliminaries and datasets used
in the paper are briefly described in Section 2. The problem of assortative edge switch and the sequential
algorithm are discussed in Section 3. We present the parallel algorithm along with the performance analysis
in Section 4. Finally, we conclude in Section 5.

2 PRELIMINARIES AND DATASETS

Below are the notations, definitions, datasets, and computation model used in this paper.

2.1 Notations and Definitions

We are given a simple, labeled network G= (V,E,L), where V is the set of vertices, E is the set of edges, and
L : V →N0 is the label function. A simple network is an undirected network having no self-loops or parallel
edges. A self-loop is an edge from a vertex to itself. Parallel edges are two or more edges connecting the
same pair of vertices. There are a total n = |V | vertices with vertex ids 0,1,2, . . . ,n−1 and m = |E| edges in
G. Each vertex u ∈V has an associated label L(u). There are a total of ℓ distinct vertex labels with label ids
0,1,2, . . . , ℓ−1, i.e., for each u ∈V , L(u) ∈ [0, ℓ−1]. For an edge (u,v) ∈ E, we say u and v are neighbors
of each other. The adjacency list of a vertex u contains all the neighbors of u and is denoted by N(u), i.e.,
N(u) = {v ∈ V |(u,v) ∈ E}. The degree of u is du = |N(u)|. We use K, M, and B to denote thousands,
millions, and billions, respectively; e.g., 1B stands for one billion. For the parallel algorithm, let there be P
processors with ranks 0,1,2, . . . ,P−1, where Pi denotes the processor with rank i.

Definition 1. An edge switch operation selects two edges e1 = (u1,v1) and e2 = (u2,v2) randomly from E
and replaces them with new edges e3 = (u1,v2) and e4 = (u2,v1), if the resultant network remains simple.

u1

u2 v2

v1 u1 v1

u2 v2

e1

e2

e3

e4

L(u1) = l

L(u2) = l L(v2) = l′

L(v1) = l′

l l′

l l′

Figure 1: An assortative edge switch operation replaces two randomly selected edges e1 = (u1,v1) and
e2 = (u2,v2) by new edges e3 = (u1,v2) and e4 = (u2,v1), if L(u1) = L(u2) and L(v1) = L(v2).

Definition 2. An assortative edge switch operation imposes an extra constraint on the labels of the end
vertices of the two selected edges in addition to the regular edge switch constraints. That is, it randomly
selects two edges e1 = (u1,v1) and e2 = (u2,v2) from E, and replaces them by new edges e3 = (u1,v2) and
e4 = (u2,v1) (see Figure 1), if the following constraints are satisfied.

• Simple network: It does not create self-loops or parallel edges, i.e., u1 ̸= v2, u2 ̸= v1, u1 ̸∈ N(v2),
v2 ̸∈ N(u1), u2 ̸∈ N(v1), and v1 ̸∈ N(u2).

• Vertex labels: The two edges have the same end vertex labels, i.e., L(u1) = L(u2), L(v1) = L(v2).

Definition 3. Some edges of the given network G are changed (or visited) due to assortative edge switch
operations, and some edges do not participate in any such operations and remain unchanged (or unvisited).
We define the visit rate (x) as the fraction of edges of G that have been changed by a sequence of assortative
edge switch operations, i.e., x = m′

m , where m′ is the number of edges changed due to assortative edge
switches. To achieve a given visit rate x, the expected number of assortative edge switch operations τ to be
performed in G is τ = 1

2 m lnm for x = 1, and τ =−1
2 m ln(1− x) for 0 < x < 1 (Bhuiyan et al. 2014).
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Table 1: Datasets used in the experiments. K, M, and B denote thousands, millions, and billions, respec-
tively.

Network Type of Vertices Edges Bins Assort. edge switch

network Deg. assort. Age assort. (Visit rate = 1.0)

New York Social Contact 17.88M 480.1M 85.7K 4186 4.80B
Los Angeles Social Contact 16.23M 459.3M 83.1K 4186 4.58B
Miami Social Contact 2.09M 51.50M 66.1K 4186 457.2M
Sweden Social Contact 9.46M 406.2M 83.2K - 4.03B
Orkut Social 3.07M 117.2M 2.46M - 1.09B
Facebook Social 3.10M 23.67M 378K - 200.9M
LiveJournal Social 4.80M 42.85M 802K - 376.5M
ErdosRenyi Erdős-Rényi 1.00M 500.00M 36.62K - 5.0B
SmallWorld Small World 4.80M 48.00M 161 - 424.5M
PA Pref. Attach. 100.0M 1.00B 1.58M - 10.36B

2.2 Datasets and Computation Model

We use both artificial and real-world networks for the experiments. A summary of the networks is given in
Table 1. New York (NY), Los Angeles (LA), Miami, and Sweden are synthetic, yet realistic social contact
networks (Barrett et al. 2009). Each vertex represents a person in the corresponding city or country and
has an associated label denoting the age of the individual, and each edge represents any ‘physical’ contact
between two persons within a 24 hour time period. Orkut is an online social network, Facebook is an
anonymized Facebook friendship network, and LiveJournal is a social network blogging site (Abdelhamid
et al. 2012). The SmallWorld, ErdosRenyi, and PA networks are random networks generated using the
Watts-Strogatz small world network (Watts and Strogatz 1998), Erdős-Rényi network (Bollobás 1998), and
Preferential Attachment network (Barabási and Albert 1999) models, respectively. For all the networks,
we perform degree-assortative edge switch operations, where the degree of each vertex is considered as its
label. In addition, we perform age-assortative edge switch operations on the social contact networks of
Miami, NY, and LA, where each person’s age is considered as its label. The age information for the other
networks is either inappropriate or unavailable.

We develop algorithms for distributed memory parallel systems, where each processor has its own local
memory. The processors do not have any shared memory and can communicate with each other by ex-
changing messages.

3 A SEQUENTIAL ALGORITHM
We are given a network G = (V,E,L) and the number of assortative edge switch operations τ to be per-
formed. A naïve approach to perform an assortative edge switch operation is selecting two edges (u1,v1)
and (u2,v2) uniformly at random from E and swapping the end vertices of the edges if the constraints are
satisfied. If any of the constraints is not satisfied, the selected pair of edges is discarded and a new pair
is selected. For a large and relatively sparse network, the number of such discarded attempts (or pairs of
edges) due to dissatisfying the constraint of keeping the network simple is almost negligible; however, for
the constraint on the vertex labels, the number of discarded attempts can be very large, as shown in Table 2.
For example, to perform 10K degree-assortative edge switch operations on the LA network, the numbers of
discarded attempts due to the constraints on the simple network and vertex labels are 1 and 179.4M, respec-
tively. Assume that there are ℓ = 100 different labels uniformly distributed among the vertices of a given
network, i.e., for any label i, the number of vertices with label i is n

100 . Then the probability of randomly
selecting two edges (u1,v1) and (u2,v2) satisfying the constraint on the vertex labels is ( 1

100)
2, which is very
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Table 2: Number of discarded attempts (due to dissatisfying the two constraints) to perform 10K age- and
degree-assortative edge switch operations on different networks.

Constraints Miami-Age LA-Deg Facebook LiveJournal ErdosRenyi

Simple network 2 1 148 34 23
Vertex labels 30.3M 179.4M 617.2M 165.2M 125.4M

small. As a result, the number of discarded attempts can be very large, and it can make the algorithm slow.
To deal with this difficulty, we present an efficient sequential algorithm using a new and efficient algorithmic
approach.

3.1 An Efficient Sequential Algorithm

Let us denote a bin Zi j to be the set of all edges having the same end vertex labels (i, j), where 0≤ i, j≤ ℓ−1,
i.e., for an edge (u,v) ∈ E, if L(u) = i and L(v) = j, then (u,v) ∈ Zi j. For an undirected network, Zi j = Z ji,
and we use Zi j such that j ≤ i. Note that the bins are disjoint and

⋃
j≤i Zi j = E. For convenience, we relabel

the bins from two indices (i, j) to a single bin number k. Let bk be the new label of the bin Zi j, where
k = i(i+1)

2 + j. Assume that there are Y such bins and let us denote them as b0,b1, . . . ,bY−1; there can be at
most Y =

(
ℓ
2

)
+ ℓ= O(ℓ2) such bins. The size of a bin bi is the number of edges in bi and is denoted by mi,

i.e., mi = |bi|. Then the number of possible pairs of edges in bi is ai = mi
2. Note that the set of edges in

a bin bi changes dynamically during the course of an assortative edge switch process, although mi remains
invariant throughout the process.

First, the algorithm constructs the bins bi from G. Then an assortative edge switch operation is performed
as follows: (i) a bin bi is chosen randomly, where the probability of selecting bi is qi =

ai

∑
Y−1
j=0 a j

, (ii) a pair of

edges is selected uniformly at random from bi, and (iii) the end vertices of the edges are swapped with each
other. This operation is repeated until τ pairs of edges are switched. Note that this algorithm guarantees that
both of the edges for an assortative edge switch operation are always selected from the same bin irrespective
of how many bins there are, thus overcoming the drawback of the naïve approach. A pseudocode of the
algorithm is given in Figure 2.

1: Partition E into minimum number of disjoint bins b0,b1, . . . ,bY−1, where for any i and for any
pair of edges (u1,v1),(u2,v2) ∈ bi, L(u1) = L(u2) and L(v1) = L(v2).

2: for k = 1 to τ do
3: bi← a random bin in [b0,bY−1] with a probability of qi =

ai
∑

Y−1
j=0 a j

4: (u1,v1),(u2,v2)← two uniform random edges in bi
5: if u1 = v2, u2 = v1, u1 ∈ N(v2), or u2 ∈ N(v1) then
6: continue
7: Replace (u1,v1) and (u2,v2) by (u1,v2) and (u2,v1)

Figure 2: A sequential algorithm for assortative edge switch.

Theorem 1. The time complexity of the sequential algorithm is O(m+Y + τ logdmax).

Proof. Partitioning the set of edges E into the Y bins (line 1 in Figure 2) takes O(m+Y ) time as initializing
the bins takes O(Y ) time and the bins are constructed from E in O(m) time. The adjacency list of a vertex
u can be maintained using a balanced binary tree, and searching (for parallel edges) and updating such
a tree takes O(logdu) time. Hence, an assortative edge switch operation (lines 3− 7) can be performed
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Table 3: Runtime comparison of our sequential algorithm and the naïve approach on various networks.
Experiments performed with a visit rate of 0.01.

Network Runtime (min.) Faster by a

Naïve approach Our algo. factor of

Miami-Age 8.8 0.14 62.86
LA-Deg 929 1.88 494.1
Facebook 69.1 0.08 863.75
LiveJournal 48.87 0.15 325.8
ErdosRenyi 342.5 2.22 154.3

in O(logdmax) time, where dmax = maxu du and τ such operations (lines 2− 7) take O(τ logdmax) time.
Therefore, the time complexity of the algorithm is O(m+Y + τ logdmax). �

Theorem 2. The space complexity of the sequential algorithm is O(m+Y ).

Proof. Storing all the m edges into the Y bins takes O(m+Y ) space. �

3.2 Performance Evaluation of the Sequential Algorithm

Table 3 demonstrates the runtime comparison of our algorithm with the naïve approach. We use current
calendar time as a random seed and a visit rate of 0.01 for the experiments since the naïve approach takes a
large amount of time with a visit rate of 1.0. Our algorithm shows very good overall performance, e.g., for
degree-assortative edge switch on the LA network, our algorithm is 494 times faster than the naïve approach.

4 THE PARALLEL ALGORITHM

A parallel algorithm for regular edge switch is presented in (Bhuiyan et al. 2014); however, this algorithm
can be very slow for assortative edge switch for the same reasons as explained in Section 3. In this section,
we present a novel parallel algorithm for assortative edge switch, which is based on our sequential algorithm,
as shown in Figure 2. Recall that the sequential algorithm selects both of the edges for an assortative edge
switch operation from the same bin. Hence, assortative edge switch operations in a bin are independent
of the other bins. The parallel algorithm exploits this property to perform simultaneous assortative edge
switch operations in parallel in different bins. The bins are distributed among the processors such that
the computation load distribution is well-balanced. If a bin is very large compared to the other bins, the
algorithm might need to partition and distribute the bin among multiple processors, which is discussed later
in Section 4.3. For now, assume that each bin is entirely assigned to a single processor.

4.1 The Parallel Algorithm with Each Bin Assigned to a Single Processor

The parallel algorithm should distribute the bins to processors such that the computation cost is equally
distributed among the processors. Therefore, we need to estimate the computation cost associated with each
bin, which is the number of assortative edge switch operations performed in a bin bi. It raises the question
of how many assortative edge switch operations among the total τ operations are performed in bi? Let us
denote Xi be the number of assortative edge switch operations performed in bi by the sequential algorithm.
Recall that to perform an assortative edge switch operation, the sequential algorithm randomly selects a bin
bi, and then chooses two edges randomly from bi. Hence, a sequential algorithm does not need to know Xi
in advance. However, in the parallel algorithm, all of the processors perform simultaneous assortative edge
switch operations in parallel and different processors may need to work on different bins at the same time.
As a result, for each i, Xi needs to be determined in advance for the parallel algorithm. It is easy to see that
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1: for i = 0 to P−1 do
2: Wi← 0
3: Bi← /0
4: Sort the bins in non-increasing order of X j
5: Assume that X0 ≥ X1 ≥ . . .≥ XY−1
6: for j = 0 to Y −1 do
7: Let Pi be the processor with rank i= argmink Wk
8: Bi← Bi

⋃
{b j}

9: Wi←Wi +X j

Figure 3: A load balancing algorithm assigning the
Y bins to the P processors.

1: for each bin b j ∈ Bi do
2: for k = 1 to X j do
3: (u1,v1),(u2,v2) ← two uniform random

edges in b j
4: if u1 = v2, u2 = v1, u1 ∈N(v2), or u2 ∈N(v1)

then
5: continue
6: Replace (u1,v1) and (u2,v2) by (u1,v2) and

(u2,v1)

Figure 4: A processor Pi performing assortative
edge switch operations in the parallel algorithm.

the random variables Xi are the multinomial random variables generated by a multinomial distribution with
parameters (τ,q0,q1, . . . ,qY−1), that is,

⟨X0,X1, . . . ,XY−1⟩ ∼M(τ,q0,q1, . . . ,qY−1) (1)

where τ is the number of assortative edge switch operations and qi =
ai

∑
Y−1
j=0 a j

is the probability of selecting

a bin bi. The time complexity of the best known sequential algorithm, known as the conditional distributed
method (Davis 1993), for generating multinomial random variables is Θ(τ). To have an efficient parallel
algorithm for assortative edge switch, we need a parallel algorithm for generating multinomial random
variables. We use the algorithm presented in (Bhuiyan et al. 2014), which has a runtime of O

(
τ

P +Y logP
)
.

Each processor independently computes the multinomial distribution of τ

P and then the results are aggregated
by exploiting a property of the multinomial distribution. An overview of the parallel algorithm is as follows:

• Step 1: Generate multinomial random variables Xi in parallel with parameter (τ,q0,q1, . . . ,qY−1) to
estimate the computation cost associated with each bin.

• Step 2: Using the estimated costs Xi, partition the bins b0,b1, . . . ,bY−1 among the P processors such
that the computation load distribution is well-balanced.

• Step 3: Each processor Pi simultaneously performs assortative edge switch operations in parallel in
the bins assigned to it.

Now we describe the last two steps of the algorithm.

Partitioning (Step 2). Let Bi be the set of bins, Yi = |Bi| be the number of bins and Mi = ∑b j∈Bi m j be the
number of edges assigned to a processor Pi. Then the workload (or load) Wi in Pi is the summation of the
computation costs associated with the bins in Bi, i.e., Wi = ∑b j∈Bi X j. Let W be the maximum load among all
of the processors, i.e., W = maxiWi. Now the goal is to distribute the Y bins among the P processors such
that the maximum load W is minimized. Finding an assignment of the bins for the optimum solution is an
NP-hard problem (Kleinberg and Tardos 2006). The best known approximation algorithm for this problem
is presented in (Kleinberg and Tardos 2006), which has an approximation ratio of 1.5. This greedy algorithm
sorts the bins in non-increasing order of the loads. To do so, we use a parallel version of quick sort (Grama
2003). Then the algorithm makes one pass over the sorted bins to assign each bin to a processor having the
minimum load at the time of the assignment, as shown in Figure 3.

Switching Edges (Step 3). Each processor Pi constructs the bins in Bi and then simultaneously performs Wi
assortative edge switch operations in parallel, as shown in Figure 4. The program terminates when all of the
processors complete their assortative edge switch operations.

Theorem 3. The time complexity in each processor Pi is O( τ

P +Y logP+ Y
P logY + log2 P+P+Yi +Mi +

Wi logdmax).
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Figure 5: Strong scaling of the parallel algorithm.

 0
 25
 50
 75

 100

M
iami-Age

NY-Age

LA-Age

M
iami-Deg

NY-Deg

LA-Deg

Sweden

Facebook

LiveJournal

Orkut

ErdosRenyi

SmallW
orld

PA%
 o

f 
to

ta
l t

im
e

Networks

Multinomial
Partition

Assort. edge switch

(a) Time taken by individ-
ual steps of the algorithm

 0
 25
 50
 75

 100

M
iami-Age

NY-Age

LA-Age

M
iami-Deg

NY-Deg

LA-Deg

Sweden

Facebook

LiveJournal

Orkut

ErdosRenyi

SmallW
orld

PA

(A
vg

./m
ax

. t
im

e)
%

Networks

Assort. edge switch

(b) Ratio of the avg. and
max. time in the third step

Figure 6: Time at different steps of the algorithm.
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sors in the third step of the algorithm.
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Figure 8: Distribution of edges among the bins for
the LA network.

Proof. In step 1, multinomial random variables are generated in parallel in O
(

τ

P +Y logP
)

time. In step 2,
the parallel version of quick sort and the assignment of the bins take O

(Y
P logY + log2 P

)
and O(P+Y logP)

time, respectively. In step 3, each processor Pi constructs the Yi bins in O(Yi +Mi) time and then performs
the assortative edge switch operations in O(Wi logdmax) time. �

Theorem 4. The space complexity in each processor Pi is O(Yi +Mi).

Proof. Each processor Pi stores all the Mi edges in Yi bins using O(Yi +Mi) space. �

4.2 Performance Analysis of the Parallel Algorithm with Each Bin Assigned to a Single Processor

In this section, we analyze the performance of the parallel algorithm. Table 1 provides a summary of the
number of bins and assortative edge switch operations performed on the ten networks. We use a HPC cluster
consisting of 64 compute nodes. Each node has a dual-socket Intel Sandy Bridge E5-2670 2.60GHz 8-core
processor (16 cores per node) with 64GB memory. The algorithms are developed with MPICH2 (v1.9),
optimized for Qlogic QDR Infiniband cards.

4.2.1 Strong Scaling
Figure 5a and 5b illustrate the strong scaling performance for degree- and age-assortative edge switch,
respectively, on various networks. The algorithm achieves a speedup between 12 and 772 with 1024 proces-
sors. For some networks, the speedup is poor compared to the other networks. Next, we investigate the load
distribution among the processors to understand the reason for this poor performance.

4.2.2 Load Distribution
First, we measure the time taken by each of the three steps (step 1: multinomial, step 2: partitioning, step 3:
assortative edge switch) of the algorithm with 1024 processors, as shown in Figure 6a. The assortative edge
switch step takes the largest amount of time among the three steps for all the networks, except Facebook,
LiveJournal, and Orkut, in which, the number of bins Y is significantly higher than that of the other networks
(see Table 1). Therefore, generating the multinomial random variables and partitioning the bins take more
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time for these three networks. Unlike the first two steps, where every processor takes almost an equal amount
of time, the execution time of the individual processors in the third step can vary significantly because of a
poor load distribution. Figure 6b demonstrates the ratio of Tavg and Tmax, where Tavg is the average execution
time of the processors in the assortative edge switch step and Tmax is the maximum time among them. The
maximum value of the ratio is 100% for a perfectly-balanced load distribution in the ideal case. A higher
value implies a well-balanced load distribution, whereas a lower value indicates a poor load distribution
among the processors. We observe a well-balanced load distribution for degree-assortative edge switch on
the Miami, NY, LA, Sweden, LiveJournal, Orkut, and ErdosRenyi networks. In contrast, we observe a poor
load distribution for age-assortative edge switch on the Miami, NY and LA networks and degree-assortative
edge switch on the PA and SmallWorld networks. For the PA network, the poor load distribution in the third
step causes the step to take the largest amount of time despite having a large number of bins, which is in
contrast to the scenario for the Facebook, LiveJournal, and Orkut networks. For the Facebook network, a few
processors contain many small-size bins (with a few edges) and the number of discarded attempts in these
bins are very high, yielding a larger execution time in these processors (hence, Tmax is large). As a result, we
observe a low ratio despite each processor performing roughly an equal number of assortative edge switch
operations and the low ratio is not a consequence of load balancing. The observations are further supported
by Figures 7a and 7b, which show the individual execution time of the processors in the third step of the
algorithm. For a better understanding, we analyze the load distribution in detail for the LA network.

Figures 8a and 8b illustrate the distribution of the sizes of the bins for degree- and age-assortative edge
switch, respectively, on the LA network. The distribution for age-assortative edge switch is highly skewed,
having a few very large bins and many small bins, which in turn makes a poor load distribution among the
processors, as shown in Figure 7b. A few processors containing the larger bins are taking significantly more
time than the processors containing the smaller bins, which results in a low speedup. On the other hand,
for degree-assortative edge switch, there is a good number of both larger and smaller bins among the total
83.1K bins and the differences between the larger and smaller bins are substantially smaller than that of the
age-assortative counterpart. The algorithm assigns a few larger bins along with many smaller bins to each
processor and consequently exhibits a well-balanced load distribution, as shown in Figure 7a, thus resulting
in a good speedup. Note that if the number of bins is less than the number of processors, i.e., Y < P, then
some processors remain idle in the third step of the computation; and we observe this phenomenon for
the SmallWorld network. To deal with the poor load distribution, we present a parallel algorithm with an
improved load balancing scheme in the next section.

4.3 The Parallel Algorithm with Improved Load Balancing
As we discussed earlier, some bins can have higher computation costs, i.e., the number of assortative edge
switch operations Xi performed in a bin bi can be significantly larger than τ

P , which can cause a poor load
distribution. For a better load balancing, such a bin may need to be partitioned and distributed among
multiple processors. Let ∆ be some threshold such that ∆ is larger than τ

P . We call a bin large if Xi ≥ ∆, and
small, otherwise. Let Q be the total number of processors assigned for the large bins. First, we explain how
to perform assortative edge switch operations in a single large bin with multiple processors.

Assume that a large bin bi is partitioned among the processors Px,Px+1, . . . ,Py, where x ≤ j,k, l ≤ y. The
bin bi is partitioned such that a subset of vertices, having consecutive vertex ids, along with their incident
edges in bi are assigned to a partition and each such partition contains almost an equal number of edges. A
vertex u’s partial adjacency list in bi, i.e., Ni(u) = {v ∈V |(u,v) ∈ bi}, entirely belongs to a unique partition.
Then each processor Pj performs simultaneous assortative edge switch operations in parallel. Assortative
edge switch in a bin is similar to the regular edge switch because the end vertices of the edges in a bin have
the same labels. A parallel algorithm for regular edge switch has been presented in (Bhuiyan et al. 2014).
We use this algorithm to switch the edges in a large bin. A summary of an assortative edge switch operation
performed by a processor Pj is as follows. Pj selects an edge (u1,v1) randomly from its own partition. The
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other edge (u2,v2) is chosen in two steps: (i) Pj selects a processor Pk with a probability proportional to
the number of edges belonging to Pk, and (ii) Pj requests Pk to select (u2,v2) randomly from its partition.
Then Pj and Pk work together to check whether switching the edges (u1,v1) and (u2,v2) creates any loop or
parallel edge. If it creates any loop or parallel edge, the selected pair of edges is discarded, and a new pair
is chosen by Pj. Otherwise, Pj and Pk work together to update (u1,v1) and (u2,v2) by (u1,v2) and (u2,v1),
respectively. In fact, Pj and Pk may require updating an edge in another processor Pl (Pj ̸= Pl ̸= Pk). The
details can be found in (Bhuiyan et al. 2014).

Now, we discuss how to determine ∆ and Q. Apparently, it seems that any bin bi with Xi >
τ

P needs to be
partitioned and distributed among multiple processors. However, partitioning a bin incurs communication
and synchronization overhead due to the need for exchanging messages among multiple processors even
for a single edge switch operation. Thus, we partition a bin among multiple processors only when Xi is
significantly larger than τ

P , i.e., when the gain achieved by partitioning a bin is larger than the communi-
cation and synchronization cost incurred by partitioning the bin. We assume ∆ = α × τ

P for some constant
α > 1. Similarly, to perform Xi assortative edge switch operations in a large bin bi, we should ideally assign
⌈ Xi

τ/P⌉ processors for bi. However, due to communication overhead, we need to assign a larger number of
processors. Hence, we assign Qi = ⌈β ×Xi× P

τ
⌉ processors for a large bin bi for some constant β > 1. Then

Q = ∑i Qi and the number of processors assigned for the small bins is S = P−Q. The performance of the
algorithm greatly depends on ∆ and Q, thusly on α and β . We experimented with many different types of
networks and find that for α ∈ [2.4,2.75] and β ∈ [12,15], the algorithm exhibits good performance, which
is very close to the optimal performance, as shown in the next section.

4.4 Performance Analysis of the Parallel Algorithm with Improved Load Balancing
Figure 9 shows the strong scaling performance of the parallel algorithm and Figure 10 demonstrates a
comparison of the speedup improvement. The algorithm achieves a speedup of 277 for age-assortative edge
switch on the Miami network with 1024 processors, which is a four-fold improvement achieved by a well-
balanced load distribution among the processors, as shown in Figure 11. Next, we analyze the effect of α

and β (thus ∆ and Q) on the speedup.

Figure 12 shows how the speedup varies with different values of α and β for age-assortative edge switch
on the Miami network with 1024 processors. For a fixed value of β (say β = 14) and with the increase of
α , more large-size bins are getting partitioned among the same number of processors, yielding a speedup
increase up to some value of α , referred to as optimal α (optimal α = 2.5 for β = 14), beyond which the
speedup starts decreasing because of the increase of communication and synchronization overhead incurred
by the increasing number of bins partitioned. We observe a similar pattern for a fixed value of α and with
the increase of β as well. For lower values of β , less number of processors are working on the large bins.
As a result, the execution times of the Q processors are higher than that of the S processors working on
the small bins. This is further illustrated in Figure 13, which shows the execution time of the individual
processors with varying β and a fixed α = 2.5. We observe a pattern of many horizontal flat segments,
where each horizontal segment is the time taken by the processors working on the same large bin. With
the increase of β , thusly Q, the amount of work for each of the Q processors decreases, whereas the times
taken by the S processors increase as fewer processors are dealing with the small bins. The highest speedup
is achieved when the maximum execution time among the Q processors is somewhat balanced with that of
the S processors. We observe similar phenomena for the other networks as well and recommend using a
α ∈ [2.4,2.75] and β ∈ [12,15], for which the algorithm achieves a good speedup.

In principle, the parallel algorithm is designed such that it stochastically produces the same effect (by using
the multinomial distribution) on a network as the sequential algorithm would do. We also experimentally
verify this by showing that the average clustering coefficient and the average shortest path distance of a
network change similarly with assortative edge switches by the sequential and parallel algorithms (see Fig-
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ure 14 and 15). We use the NY, Orkut, and Facebook networks and vary the visit rate from 0.025 to 1. For
both properties, the changes by the sequential and parallel algorithms are very similar; in fact, they overlap
with each other, and it is difficult to distinguish them in the figures. We also demonstrate how assortative
edge switch can be used to generate random networks by keeping one assortative coefficient A1 invariant and
varying another assortative coefficient A2 to a desired level through a parameter p (0≤ p≤ 1). Xulvi-Brunet
and Sokolov (2004) proposed one such algorithm, where with probability p, an edge switch operation con-
nects the two higher degree vertices with an edge and the two lower degree vertices with another edge. With
probability (1− p), the edges are switched randomly. Figure 16 shows how the degree assortative coefficient
changes for different value of p with the age-assortative edge switch process on the Miami network.

5 CONCLUSION
We have developed efficient sequential and parallel algorithms for assortative edge switch in massive net-
works. They can be used to study the sensitivity of network topology on the dynamics over a network as
well as to generate network perturbations of a given network by maintaining the same degree sequence and
assortative coefficient.
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