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Abstract

We present a uniform approach to design efficient distributed approximation algorithms for various
fundamental network optimization problems. Our approach is randomized and based on a probabilistic
tree embedding due to Fakcharoenphol, Rao, and Talwar [16] (FRT embedding). We show how to effi-
ciently compute an (implicit) FRT embedding in a decentralized manner and how to use the embedding
to obtain efficient expected O(log n)-approximate distributed algorithms for various problems, in partic-
ular the generalized Steiner forest problem (including the minimum Steiner tree problem), the minimum
routing cost spanning tree problem, and the k-source shortest paths problem.

The distributed construction of the FRT embedding is based on the computation of least elements
(LE) lists, a distributed data structure that is of independent interest. Assuming a global order on the
nodes of a network, the LE-list of a node stores the smallest node (w.r.t. the given order) within every
distance d (cf. Cohen [8], Cohen and Kaplan [9]). Assuming a random order on the nodes, we give a dis-
tributed algorithm for computing LE-lists on a weighted graph with time complexity O(S log n), where S
is a graph parameter called the shortest path diameter which can be considered the weighted counterpart
of the diameter D of the graph. For unweighted graphs, our LE-lists computation has asymptotically
optimal time complexity of O(D). As a byproduct, we get an improved synchronous leader election
algorithm for general networks that is both time-optimal and almost message-optimal with high proba-
bility.
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1 Introduction and Overview

Distributed approximation algorithms trade-off optimality of the solution for the amount of resources (mes-
sages, time etc.) consumed by the distributed algorithm. Besides a fundamental theoretical interest in un-
derstanding the algorithmic complexity of distributed approximation, there also is a practical motivation in
studying distributed approximation algorithms. Emerging networking technologies such as ad hoc wireless
sensor networks and peer-to-peer (P2P) networks operate under inherent resource constraints, e.g., energy
(in sensor networks), bandwidth (in P2P networks) etc. A distributed algorithm which exchanges a large
number of messages and takes a lot of time can consume a relatively large amount of resources, and is not
very suitable in a resource-constrained network. Further the topology of these networks can change dynam-
ically, e.g., due to the mobility of the nodes in wireless sensor networks, or the arrivals/departures of nodes
in P2P networks. Communication cost and running time are especially crucial in such a dynamic setting.

The above motivations makes it critical to design efficient distributed algorithms for various network
optimization problems that have low communication (message) and time complexity even if this comes at
the cost of a reduced quality of the solution. (For example, there is not much point in having an optimal
algorithm if it takes too much time, since the topology could have changed by that time.) For this reason, in
the distributed context, such algorithms are motivated even for network optimization problems that are not
NP-hard, e.g., minimum spanning tree, shortest paths etc. There is a large body of work on distributed ap-
proximation algorithms for classical graph optimization problems such as minimum spanning tree, shortest
path, minimum edge-coloring, minimum dominating set, minimum vertex cover, maximum matching, and
positive linear programs [15, 19, 21, 22, 25, 27, 29, 32, 42, 12, 34, 5, 26]. We refer to the surveys by Elkin
[13] and Dubhashi et al. [11] that summarize many results regarding efficient distributed approximation
algorithms and the hardness of distributed approximation for various classical optimization problems.

This paper is concerned with design and analysis of efficient distributed approximation algorithms for
some important network optimization problems including the minimum Steiner tree problem, the shortest
paths problem and their generalizations. These are fundamental problems in distributed computing and are
widely used primitives in distributed communication networks. We present a uniform approach based on
probabilistic tree embeddings to design efficient distributed approximation algorithms for the generalized
Steiner forest problem (a generalization of the minimum Steiner tree problem), the shortest paths problem,
and the optimum communication spanning tree problem. These problems are formally defined and described
in detail in Section 3.

Developing uniform approaches to distributed approximation algorithm design is an important goal and
leads to powerful tools for designing algorithms for various problems. Such approaches have been developed
in the theory of approximation algorithms — LP-based approaches (primal-dual, randomized rounding) and
metric embeddings — that yield (centralized) approximation algorithms for many problems [41]. In general,
it is not clear how such paradigms can be used efficiently in a distributed setting. While LP-based techniques
have been successfully used to design distributed approximation algorithms for minimum dominating set,
minimum vertex cover, maximum matching (e.g., see [13, 11]), no such results are known for the problems
that are addressed here.

When dealing with a certain class of metric optimization problems, such as those addressed here, a
standard approach to obtain approximation algorithms is to use low-distortion metric embeddings. First,
the given metric space is embedded into a host space with a simpler structure (e.g., an ℓp-metric or a tree
metric). By solving the optimization problem on the host metric, approximately or exactly, one gets an
approximation algorithm for the problem on the original metric. The approximation ratio suffers from the
distortion of the embedding. While using embeddings to obtain approximation algorithms is a standard
approach in a non-distributed context, to the best of our knowledge, the technique has not been used in
distributed approximation.

In our approach we use a probabilistic tree embedding due to Fakcharoenphol, Rao, and Talwar [16]
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(referred to as FRT embedding), where a given metric is approximately embedded over a distribution of
tree metrics. We show that the FRT embedding can be used to design fast distributed (expected) O(log n)-
approximation algorithms for a variety of problems. Probabilistic tree embeddings were introduced by
Bartal [3], who showed that any metric can be approximated by a distribution over dominating tree metrics
with distortion O(log2 n); that is, for any two points in the metric space, the expected distance between
the two points in the tree is at most O(log2 n) times their distance in the original metric. The bound on
distortion was improved to O(log n log log n) in [4, 7] and to O(log n) in the FRT embedding. Using the
FRT embedding, it is possible to obtain centralized polylogarithmic approximation algorithms for many
optimization problems such as generalized Steiner forest problem, metric labeling, buy-at-bulk network
design, minimum cost communication network problem, group Steiner tree problem, etc. (see [16] and
references therein for a detailed list). The stretch bound of the FRT embedding is existentially tight: there
are metric spaces for which any probabilistic tree embedding has distortion Ω(log n).

The FRT embedding algorithm of [16] is centralized. We show how to efficiently compute an (implicit)
FRT embedding in a distributed manner and how to use the embedding to obtain distributed algorithms
for the generalized Steiner forest problem, the minimum routing cost spanning tree problem, and the k-
source shortest paths problem with expected approximation ratio O(log n). Our algorithms are the first
known distributed approximation algorithms for the generalized Steiner forest and the minimum routing
cost spanning tree problems. Our algorithm for k-source shortest paths is significantly more efficient than
previous algorithms at the cost of giving a logarithmic approximation.

At the heart of our approach is the construction of a distributed data structure called least elements (LE)
lists that was first described by Cohen in [8] in the context of designing Monte-Carlo algorithms for transitive
closure and reachability. It turns out that LE-lists exactly capture FRT embedding in an implicit fashion
and our approach exploits this somewhat surprising connection between LE-lists and FRT embedding to
design a fast distributed algorithm to compute an FRT embedding. For arbitrary weighted graphs, we give
a distributed algorithm for computing LE-lists, assuming a random order on the nodes. Since LE-lists are
useful in various contexts [8, 9], this result can have other applications as well.

The rest of the paper is organized as follows. Distributed computing model, notations and definitions
are given in Section 2. In Section 3, we provide formal problem statements and our results. The distributed
constructions of LE-list and FRT tree embedding are given in Section 4 and 5, respectively. Using the
distributed FRT tree embedding, we present distributed approximation algorithms for the generalized Steiner
forest problem, the minimum routing cost spanning tree problem, and the k-source shortest paths problem
in Section 6. We conclude in Section 7.

2 Preliminaries

2.1 Distributed Computing Model

The network is modeled as a connected undirected weighted graph G = (V, E,w); V is the set of the n
nodes (vertices), E is the set of m communication links (edges), and w(e) is the weight of edge e ∈ E;
the edge weights are assumed to be non-negative real numbers. The weight of an edge can also denote
some cost associated with the edge. Each node hosts a processor. The nodes communicate with each other
by exchanging messages. We assume that each node has a unique identity number. At the beginning of
computation, each node knows its own identity number and the weights of its adjacent edges. Thus, a
node initially has only local knowledge limited to itself and its neighbors. At the end of the distributed
computation, each node knows the set of the adjacent edges that belong to the solution. For example, in the
MST problem, on termination, each node must know which of its incident edges belong to the MST.

We assume that the communication is synchronous and occurs in discrete time steps (also known as
“rounds”). We use the widely-used CONGEST (log n) model [37, 33] for communication, where a node v
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can send an arbitrary message of size at most O(log n) through an edge in each time step. (Notice that if
unbounded-size messages are allowed through an edge in one time step, then the problems considered here
can be trivially solved in O(D) time by collecting information to one node v from all other nodes, solving
the problem locally by v, and then broadcasting the results to the other nodes [37].) The weight of an edge
is assumed to be bounded by a polynomial of n so that the weight of a single edge can be communicated
in one time step. As is standard, we also assume that local computation within a node is free as long as
computation time is polynomial in n. Our focus is on the time complexity (total number of rounds) and the
message complexity (the total number of messages exchanged).

2.2 General Notations and Definitions

Throughout the paper, we use the following definitions and notations concerning an undirected weighted
graph G = (V, E,w) with |V | = n nodes, |E| = m edges, and non-negative edge-weights w(e) for all edges
e ∈ E. In the rest of the paper, we use the terms “hop-length”, “unweighted length” or simply “length”
interchangeably to denote the number of edges in a path and “weighted distance” or simply “distance” to
denote the sum of the weights of the edges in a path.
Q(u, v) — is a path from node u to node v.
|Q(u, v)| or simply |Q|— is the number of edges in path Q(u, v). We call |Q| the length of the path Q.
w(Q(u, v)) or w(Q) — the weight of the path Q, is the sum of the edge weights in Q, i.e., w(Q) =

∑
(u,v)∈Q w(u, v).

P(u, v) — is a shortest path from u to v, a path with minimum weight.
d(u, v) — is the (weighted) distance between u and v, defined by d(u, v) = w(P(u, v)).
l(u, v) — is the number of edges in the minimum-length shortest path from u to v. If there are more than one
shortest path from u to v, l(u, v) is the number of edges in the shortest path having the least number of edges,
i.e, l(u, v) = min{|P(u, v)| | P(u, v) is a shortest path from u to v}.
D — denotes the diameter of G; that is D = maxu,v minQ |Q(u, v)|.
∆— denotes the weighted diameter; that is ∆ = maxu,v w(P(u, v)).
Γρ(v) — the ρ-neighborhood of a node v — the set of the nodes that are within weighted distance ρ from v,
i.e., Γρ(v) = {u | d(u, v) ≤ ρ}.

Definition 2.1 Shortest Path Diameter (SPD) [22]. The SPD is denoted by S (G,w) (or S for short) and
defined as S = maxu,v∈V l(u, v).

Shortest path diameter plays an important role in the performance measure of our algorithms. Note that
1 ≤ D ≤ S ≤ n for every connected graph and S = D for unweighted graphs. Informally, S can be thought
of as the weighted counterpart of the diameter D.

Definition 2.2 Embedding.

Definition 2.3 Tree Embedding.

We use the term “with high probability” (WHP) to mean with probability at least 1 − 1/nΩ(1).

3 Our Results and Related Work

3.1 Problems Addressed and Results

In this section, we formally define the problems we addressed in this paper and discuss the results we
obtained. Table 1 summarizes the number of rounds, the number of messages and the approximation ratio
for each of the problems.
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Table 1: Summary of the results

Problem Approx. Weighted Graph Unweighted Graph
Rounds Messages Rounds Messages

LE-list – O(S log n) O(S |E| log n) O(D) O(|E|min(D, log n))
Leader election – O(D) O(|E|min(D, log n)) O(D) O(|E|min(D, log n))

FRT tree O(log n) O(S log n) O(S |E| log n) O(D) O(|E|min(D, log n))
Gen. Steiner forest O(log n) O(S k log2 n) O(S |E| log n) O(kD log2 n) O(D|E| log n)
Min. rt. cost tree O(log n) O(S log2 n) O(S |E| log n) O(D log2 n) O(D|E| log n)

k-source SP O(log n) O(S k log n) O((S |E| + kn) log n) O(kD log n) O((|E| + kn) log n)

Distributed Computation of LE-Lists:
The first part of the paper gives an efficient distributed algorithm for computing least element (LE) lists of
all nodes, a key procedure of our unified approach. Assuming a global order on the nodes of a network,
the LE-list of a node stores the smallest node (with respect to the given order) within every distance d [8].
Assume that each v is assigned a unique rank R(v). The least element in Γρ(v), denoted by Lρ(v), is a node
u ∈ Γρ(v) such that for all u′ ∈ Γρ(v) and u′ , u, R(u) < R(u′). For every node v ∈ V , we want to compute
the least element in Γρ(v) for every distance ρ ∈ [0,∆]. These least elements are maintained as a list of
ordered pairs, called the least-element list (LE-list). The LE-list of v is the set of all nodes u so that u has
the lowest rank among nodes within distance d(v, u) from v, as defined below.

Definition 3.1 LE-list. The LE-list of a node v ∈ V, L(v) = {⟨u, ρ⟩ | ρ = d(v, u) and u = Lρ(v)}.

Several properties follow from the definition of LE-lists. Let ⟨ui, ρi⟩ be the ith element in the sorted order
of the elements of L(v) in increasing order of ρ, i.e., ρi < ρi+1 for 1 ≤ i < |L(v)|. We have (a) Lρ(v) = ui

for any ρ ∈ [ρi, ρi+1), for 1 ≤ i ≤ |L(v)| assuming ρ|L(v)|+1 = ∆ + ϵ with any ϵ > 0, (b) R(ui) > R(ui+1) for
1 ≤ i < |L(v)|, and (c) u|L(v)| is the least element in V . Note that L(v) might contain ⟨v, 0⟩ only (if v has the
lowest rank among all nodes).

Choosing the ranks of the nodes according to a uniform random order, we give a distributed algo-
rithm, called LE-Dist algorithm, for computing LE-lists. In weighted graphs, our algorithm terminates in
O(S log n) rounds with a message complexity O(S |E| log n) where S is the shortest path diameter. It is
easy to see that it can take up to Ω(S ) time in some graphs (e.g., unweighted graphs, where S = D) and
hence the above running time is existentially optimal up to a polylogarithmic factor. In unweighted graphs,
our algorithm terminates in O(D) rounds and uses O(|E|min(D, log n)) messages WHP. A consequence of
our distributed LE-lists algorithm is an improved leader election algorithm in arbitrary (synchronous) net-
works which improves over the previous best known result due to Peleg [36]. Peleg’s algorithm (which
is a deterministic algorithm) takes O(D) time and O(D|E|) messages, while our algorithm takes O(D) time
(deterministically) and O(|E|min(D, log n)) messages WHP. Peleg [36] raised an important open question
of whether there exists an algorithm that achieves both optimal message complexity Ω(|E| + n log n) and
optimal time complexity O(D) and our result makes progress toward this direction.

Distributed Approximation Algorithms:
Using the distributed LE-lists, we construct distributed FRT tree embedding with expected stretch O(log n).
The construction of distributed FRT tree embedding takes (S log n) rounds and (|E|S log n) messages. Using
this tree embedding, we obtain distributed approximation algorithms for the following problems.
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1. Generalized Steiner forest (GSF) problem: The GSF problem is a generalization of the minimum Steiner
tree problem and is an important problem in the theory of approximation algorithms [41]. Given a weighted
graph G = (V, E,w), and a collection of k disjoint subsets (groups) of V: V1,V2, . . . ,Vk, the GSF problem is
to find a minimum weight subgraph in which each pair of nodes belonging to the same group V j is connected.
We present a distributed algorithm that takes O(S k log2 n) time and O(S |E| log n) messages and computes
an (expected) O(log n)-approximate Steiner subgraph.

The parameter S can be shown to capture the hardness of distributed approximation quite precisely.
Using the hardness results of Elkin [15], one can show that there exists a family of n-node graphs where
Ω(S ) time is needed by any distributed approximation algorithm to approximate the MST within an H-
factor, for any H ∈ [1,O(log n)] [22]. Since the MST problem is a special case of the GSF problem, the
above bound also applies to the GSF problem. Thus for a small k, with k = O(logc n) for some constant
c, our algorithm is existentially time-optimal up to a polylogarithmic factor. The existential optimality of
our algorithm is with respect to S instead of n as in the case of Awerbuch’s distributed MST algorithm[2],
for example. S can be much smaller than

√
n; e.g., in networks where edge weights are chosen uniformly

and independently from an arbitrary distribution, S = O(D + log n) WHP [22]. Note that Ω̃(
√

n) is a lower
bound on the time needed to compute exact MST or Steiner tree [38, 22].
2. Minimum routing cost spanning tree: The minimum routing cost spanning tree problem is a special case
of the optimum cost communication tree problem. Given a weighted graph G and a collection of R of pairs
of nodes, the optimum cost communication tree problem is to find a tree T in G so that the sum of the
distances in T of the pairs in R is minimized. When R consists of all pairs of the nodes, this problem is the
minimum routing cost spanning tree problem; in which case, T is a spanning tree in G. Finding a spanning
tree with minimum routing cost is NP-hard for general weighted graphs [44, 43]. We present a distributed
(expected) O(log n)-approximation algorithm that takes O(S log2 n) time and O(S |E| log n) messages.
3. k-source shortest paths problem: Given a weighted graph G = (V, E,w) and a subset K ⊆ V of k nodes,
the goal is to compute shortest paths between all pairs of nodes in V × K. In the distributed context, the
problem is to construct routing tables in the nodes such that any node can route to any source node or vice
versa. We give a distributed algorithm that computes (expected) O(log n)-approximate k-source shortest
paths in O(kD log n) time using O(|E|(min[D, log n]) + kn log n) messages in an unweighted graph and in
O(kS log n) time using O(|E|S log n + kn log n) messages in a weighted graph.

3.2 Related Work and Comparison

The problems studied here have a rich history and we confine ourselves to work most relevant to this paper.

LE-Lists: LE-lists were studied by Cohen [8] in the context of designing fast Monte-Carlo algorithms for
neighborhood size estimation and have since been shown to be useful in other applications as well (e.g.,
[9]). Cohen [8] presented a centralized strategy for computing LE-lists that incurs O(|E| log n) memory
operations. The strategy in [8] requires nodes to spread their rank values sequentially in ascending order.
This is not trivial to emulate in a distributed setting. Cohen and Kaplan [9] compute LE-list in a distributed
setting. However, their protocol still assumes sequential spreading of rank values, and only their order is
determined in a distributed manner.

GSF: The GSF problem is a generalization of the minimum Steiner tree problem which in turn is a gen-
eralization of the minimum spanning tree (MST) problem, both of which are fundamental problems in
distributed computing and communication networks. There is a long line of research on time-efficient dis-
tributed algorithms for the (exact) MST problem (see e.g. [17, 2, 30, 14]). The best known algorithms take
O(D +

√
n log∗ n) time [30, 14]. In [22], Khan and Pandurangan presented a fast distributed approximation

algorithm that constructs an O(log n)-approximate minimum spanning tree. The algorithm of [22] can be
easily modified to yield an O(log n) approximation to the minimum Steiner tree problem with the same time
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bound. When applied to the GSF problem, the technique however only yields an O(k log n)-approximation,
where k is the number of disjoint sets. The question of getting an efficient distributed O(log n)-approximation
was left open, which is a motivation for the new approach in this paper.

For the minimum Steiner tree problem (k = 1), there is a well-known centralized 2-approximation
algorithm based on computing the MST on the node set V1 [41]. Using this fact, an O(n log n)-time 2-
approximate distributed algorithm was designed in [6] based on the classical distributed MST algorithm
due to Gallager et al [17]. This algorithm is not time optimal, and the approach cannot be generalized to
the GSF problem. The work of [31] gives distributed approximation algorithms based on the primal-dual
method for some problems including the GSF problem. This algorithm is a distributed implementation of the
corresponding centralized 2-approximation primal dual algorithm and takes O(nD) rounds and O(n2D log D)
messages. These bounds are not directly comparable to our bounds for the GSF problem for two reasons.
Firstly, our bounds are with respect to S , k, and |E| and not n and is better when S and k are small compared
to n. Secondly and more importantly, the algorithm of [31] makes an assumption (Assumption 1 in [31])
regarding certain global information being pre-known at the beginning of the distributed algorithm and thus
is different from the standard model assumed in this paper (i.e., nodes start with only local information).

Shortest paths: The single-source shortest paths (k = 1) and all-pairs shortest paths (k = n) are special
cases of the k-source shortest path problem that have been very well studied (e.g., see [12] and the refer-
ences therein). Distributed exact algorithms for shortest paths include the classical Bellman-Ford algorithm
and Dijkstra algorithm [37, 33]. The distributed complexity of the 1-source problem is well-understood.
In unweighted graphs, this problem is equivalent to computing the breadth-first tree (BFT) rooted at the
source, and the best-possible time and communication complexities (in the synchronous setting) are O(D)
and O(|E|), respectively, which are achievable [37]. Note that any protocol for the 1-source case can be
converted into a protocol for the k-source problem with time complexity O(kD) and message complexity
O(k|E|). For weighted graphs, the time and communication complexities for the 1-source case are O(S )
and (S |E|), respectively, using the Bellman-Ford algorithm [33]. For all-pairs shortest paths, there are many
algorithms proposed in the literature [40], which essentially take O(S n) time and O(S n|E|) messages for
weighted graphs. For unweighted graphs, there is an algorithm with O(n2 log n) message complexity but its
time complexity can be as high as O(n2D log n) [1].

For the general k-source case, Elkin [12] gave a distributed algorithm that computes a path that is (1+ ϵ)
times the shortest path plus an additive constant. On unweighted graphs, the algorithm runs in O(kD+n1+δ/2)
time and uses O(|E|nρ + kn1+δ) messages (in the synchronous model) where ϵ, ρ, and δ are arbitrarily
small positive constants (note that this algorithm improves message complexity over BFT-based algorithm
mentioned above). On weighted graphs, the algorithm runs in O(wmaxn1+δ/2+kD) time using O(|E|nρ+kn1+δ)
messages and the additive error depends on wmax, the ratio between the largest and smallest weight in the
network. Since the algorithm’s time complexity depends on the edge weights, its running time can be
quite large. Our algorithm improves on both the time and messages complexities of Elkin’s algorithm
for unweighted graphs. For weighted graphs, our result has a substantially better time complexity, with a
somewhat weaker message complexity. This improvement however comes at the cost of an O(log n)-factor in
the quality of the solution. Our algorithm also substantially improves over the communication complexity of
exact algorithms. For the all-pairs shortest paths problem, the classical distributed Bellman-Ford algorithm,
which computes an exact solution, takes O(nS ) time and O(nS |E|) messages while our algorithm takes
O(nS log n) time and O(|E|S log n + n2 log n) messages — the message complexity is better by a factor of
O(n), while the time complexity is larger by only a logarithmic factor.

Related lower bounds: The recent work of [10] gives non-trivial lower bounds on the time complexity of
distributed approximation for several problems including MST, GSF, minimum routing cost spanning tree,
shortest paths, SPT, minimum cut etc. It shows that Ω(

√
n/ log n) time is required for approximating the

above problems for any given approximation factor. In other words the above lower bound holds seamlessly
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for exact algorithms also as well as for any H-approximation algorithm (where H is the approximation
ratio). This is done by showing that there exists a graph where any distributed algorithm (randomized or
deterministic) will take this amount of time. Our O(log n)-approximation algorithm does not violate this
lower bound, as the running time is in terms of S . In particular, for the graph used to prove the lower bound
of [10], S = Ω(

√
n/ log n).

4 LE-Dist: Distributed Algorithm to Compute the LE-Lists

We present a distributed algorithm called LE-Dist for computing the LE-lists of all nodes. The nodes choose
their ranks randomly. The basic strategy is to let each node flood its rank to the network. A node v needs to
forward a rank message origniated by w to its neighbors only if w is the lowest ranking node within distance
d(v,w) from v. All nodes execute the algorithm simultaneously in phases, where a phase consists of several
communication rounds. Initially, each node only knows its own rank and distance (0). In each phase, a node
exchanges rank information with its neighbors. At the end of each phase, the node updates its knowledge
of ranks in the network based on the messages it receives from neighbors. These changes are forwarded to
neighbors in the next phase. It is easy to see that after phase k, a node has rank information regarding all
nodes within hop-count k. Thus, after S phases (S is the shortest path diameter), every node has full rank
information and can compute L(v). Note that, in a weighted graph, at the time when node v gets w’s rank, v
may not have information about all the nodes within distance d(v,w). Therefore w’s rank message may get
forwarded by v, and later, v may receive a rank message originated by a lower ranking node within distance
d(v,w). This may result in having extraneous messages being forwarded, and also in extra delays, since
only one message may be sent over each link per time step. The challenge is to keep the communication and
completion time bounded. Subsequent sections address the analysis of time and message complexity.

More specifically, a node v locally maintains a data structure lev which stores v’s current view of L(v).
Initially, it contains the LE-list of {v}, the node itself. At the beginning of round k, it stores the LE-list for v
of all nodes at hop-distance k − 1 from v. For convenience, each entry in lev contains, in addition to the pair
⟨u,R(u)⟩, the following information:

• ρ, the minimal distance that u’s rank message traveled to reach v;

• u′, the last node, a neighbor of v, on the minimal-distance path from u to v;

• a new/old flag.

The details for the LE-Dist algorithm are given by Algorithm 1. In an initialization step, each node v
chooses its ranks p(v) uniformly at random from {1, . . . , nc} so that all nodes v choose different p(v) WHP.
Initially, lev contains the single entry ⟨v,R(v), 0, v, new⟩. The algorithm works correctly for any arbitrary
ranking of the nodes; for example, each node can use its ID as its rank. However, as we will see later, by
choosing uniform random ranking, we can have improved time and message complexity WHP. After the
initialization, the algorithm runs in phases. In phase k, node v exchanges all items marked new in its list
with its neighbors, and incorporates their rank messages into lev. At the end of a phase, a node v proceeds
to the next phase as long as it has not received a control message notifying it of termination. The control
messages needed for termination are omitted from the pseudo-code of the algorithm. We discuss termination
detection in the following section.

4.1 Detecting Termination

As we already argued above, after phase S , every node v has rank information from the entire network, and
lev does not change any more. Therefore, no more rank messages are generated after phase S ends. Since
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Algorithm 1 LE-Dist Algorithm (at node v)

Initialization:
1: choose p(v) uniformly at random from {1, . . . , nc}
2: rank R(v) := (p(v), ID(v)) // use lexicographical order when comparing ranks
3: insert ⟨v,R(v), 0, v, new⟩ into lev

Phases: // execute phase code until termination message received
4: for phase k := 1, 2, . . . do
5: for each new item ⟨u,R(u), ρ, u′, new⟩ in lev do
6: send rank message ⟨u,R(u), ρ⟩ to all neighbors except u′

7: send end-of-phase control message to all neighbors
8: mark the new items in lev as old
9: wait until end-of-phase message received from all neighbors

10: for all neighbors u′ do
11: for all rank message ⟨u,R(u), ρ⟩ received from neighbor u′ do
12: ρ′ := ρ + w(u′, v)
13: if there is a ⟨ui,R(ui), ρi, u′i , ∗⟩ ∈ lev with ρi ≤ ρ′ and R(ui) ≤ R(u) then
14: // here “∗” stands for “any value” of the corresponding field
15: delete (ignore) rank message ⟨u,R(u), ρ⟩
16: else
17: for all ⟨ui,R(ui), ρi, u′i , ∗⟩ ∈ lev do
18: if ρi ≥ ρ′ and R(ui) ≥ R(u) then
19: delete ⟨ui,R(ui), ρi, u′i , ∗⟩ ∈ lev from lev

20: insert ⟨u,R(u), ρ′, u′, new⟩ into lev

S is not known to the nodes initially, relying on the rank messages only, a node cannot determine whether
there are any outstanding rank messages in the network and does not know when to terminate.

To detect termination, we introduce an additional mechanism. If v ignores a rank message it receives
from u′, it echoes it back. Otherwise, it waits for echoes from all neighbors other than u′, and then echoes it
back. Note that, if u′ is v’s only neighbor, then the waiting vacuously completes immediately, and v echoes
back the message. Every rank message is eventually echoed back, either when it cannot travel farther or
when it is ignored. At the latest, after the end of Phase S , any remaining rank message is echoed. It may
take up to S additional phases for echoes to reach their origins. After the end of Phase 2S , every node has
received echoes for its own rank message from all of its neighbors. Still, nodes do not know when all of
their peers have received their echoes.

Consider a node v whose rank is not the lowest. Its rank message is ignored at least by one other node
(the lowest ranking). A node that ignores v’s rank message forwards at the next phase information about
a lower rank. That lower rank, or an even lower rank message that collides with it, reaches v at the latest
one phase after the echo message reaches v. Therefore, a node w that receives its own echoes from all of its
neighbors at phase r, and does not receive any lower rank message at phase r + 1, knows that it is the lowest
ranking node in the network. Node w then floods the network with a leader message. A node that receives
a leader message stores the last (parent) hop, and forwards the leader message to all other neighbors. This
builds a BFS tree rooted at the lowest ranking node w.

After having collected echo message for its rank message from all of its neighbors, a leader message,
and done messages from every child neighbor, a node sends a done message to the parent neighbor. The
leader waits for done messages from all of its children, and then floods the network with a termination signal.
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More precisely, in a phase, after having exchanged rank messages as described above, a node v exchanges
messages with neighbors as follows.

Echo:

a) When v ignores a rank message ⟨u,R(u), ρ⟩ received from a neighbor u′ (see Algorithm 1, Line 14),
it sends an echo message, for this rank message, back to u′.

b) If v forwards the rank message ⟨u,R(u), ρ⟩ (Algorithm 1, Line 5-6, 19), it waits until it receives the
echo messages for this rank message from its neighbors (except u′, whom v did not forward the rank
message to). Once v receives these echo messages, v sends an echo message to u′ if it did not do so
already. If v does not have any neighbor other than u′, i.e., there is no neighbor to forward ⟨u,R(u), ρ⟩
to, v sends the echo immediately to u′.

c) If an item ⟨ui,R(ui), ρi, u′i , ∗⟩ gets deleted from lev (Algorithm 1, Line 18), and if v did not send the
echo to u′i for this rank message yet, v sends the echo to u′i . (Here “∗” stands for “any value” of the
corresponding field.)

One full phase after having received echo messages for its own rank message from all of its neighbors,
a node v starts the following termination protocol.

Termination:

a) If there are no lower rank items in lev, then v knows it is the leader and sends leader message to all its
neighbors. It waits for done messages back from them, and then sends a termination signal to all of
them.

b) If v receives a leader message from u, and parentv is empty, then v sets parentv to u and forwards the
leader message to every neighbor except u.

c) After v receives done messages from its children (vacuously holds if parentv is the only neighbor), it
sends a done message to parentv.

4.2 Correctness

By applying the following lemma recursively, one can show that using the LE-lists as “routing tables”, a
node v can trace back a path (which is the weighted shortest path) to the lowest ranked node in Γρ(v) for any
ρ.

Lemma 4.1 At the end of the LE-Dist algorithm (Algorithm 1), if ⟨u,R(u), ρ, u′, ∗⟩ ∈ lev, then ⟨u,R(u), ρ −
w(u′, v), u′′, ∗⟩ ∈ leu′ for some u′′ such that u′′ , v and (u′, u′′) ∈ E.

Proof: ⟨u,R(u), ρ, u′, ∗⟩ can be inserted in lev only after v receives rank message ⟨u,R(u), ρ−w(u′, v)⟩ from
neighbor u′, and at that time ⟨u,R(u), ρ−w(u′, v), u′′, ∗⟩ is in leu′ . Clearly u′′ , v, because if u′ receives this
message from v, u′ would not forward it to v. Later ⟨u,R(u), ρ−w(u′, v), u′′, ∗⟩ can be deleted from le′u only
if u′ receives another message ⟨u1,R(u1), ρ1⟩ from u′1 with R(u1) ≤ R(u) and ρ1 + w(u′, u′1) ≤ ρ − w(u′, v).
If u′1 , v, u′ would forward this message to v leading to the deletion of ⟨u,R(u), ρ, u′, ∗⟩ from lev, and if
u′1 = v, v would delete it before forwarding the message to u′. �

Lemma 4.2 By the time a node u receives the echoes of the rank message originated by itself from all of its
neighbors, the rank message ⟨u,R(u), ρ⟩ has reached every node v for which ⟨u,R(u), ρ, ∗, ∗⟩ is supposed to
be in lev.
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Proof: The echo for a rank message is generated only when the rank messages is not forwarded, and if it
is forwarded (by v), v waits until the echo messages comes back from the neighbors to which v forwarded
the message to. Thus, clearly, the rank messages (originated by u) complete their journey before u receives
the echoes back. In only other case, v sends an echo early if an item ⟨u,R(u), ρ, ∗, ∗⟩ is deleted from lev.
Consider any node v′ such that the rank message ⟨u,R(u), ∗⟩ travels from u to v′ via v. Since ⟨u,R(u), ρ, ∗, ∗⟩
is deleted from lev, following Lemma 4.1, the item ⟨u,R(u), ρ, ∗, ∗⟩ corresponding to the rank message
⟨u,R(u), ρ⟩ cannot be in the “final” LE-list of v′. Thus, the lemma follows. �

Lemma 4.3 If a node u receives the echoes of its own rank message from all of its neighbors by the end of
phase k, then by the end of phase k + 1 it has a lower ranked entry in lev if there exists a lower ranked node
in the network.

Proof: Consider a node v whose rank is not the lowest. Let M be the rank message generated by v, and
define rank of M, R(M) = R(v). Message M is ignored at least by one other node (the lowest ranked node).
A node that ignores M must forwards, in the next phase, another rank message M′ s.t. R(M′) < R(M). Then
either M′ reaches v by the end of phase k + 1, or M′ is ignored (on its way to v) caused by another rank
message M′′, with R(M′′) < R(M′), which in turn reaches v by the end of phase k + 1 or is ignored due to
another even lower ranked message, and so on. �

Lemma 4.4 At the end of Algorithm 1, ⟨u,R(u), ρ, u′, ∗⟩ ∈ lev if and only if ρ = d(v, u) and u = Lρ(v).

Proof: When the algorithm terminates, every node v will have received echoes for its own rank message
from all its neighbors. Therefore, by Lemma 4.2, for every node u, such that u in lev, u’s rank message has
arrived at v. It remains to show that lev is computed correctly from all such messages. This follows from
lines 16–27 of the algorithm. Notice that a rank message, originated by u = Lρ(v), that follows the shortest
path P(u, v), meaning ρ = d(v, u), cannot be ignored or deleted by an intermediate node in path P(u, v) or by
v itself. On the other hand, if it does not follow P(u, v) (i.e., ρ > d(v, u)), its deletion is caused, if it is not
deleted yet, by another rank message originated by u that follows P(u, v). If ρ = d(v, u) but u , Lρ(v), i.e.,
there exist u1 ∈ Γρ(v) with R(u1) < R(u), the deletion is caused by the rank message originated by u1 that
follows P(u1, v). �

Theorem 4.5 The LE-Dist algorithm correctly computes the LE-list of each node.

4.3 Analysis for Weighted Graphs

In this section, we provide an analysis of the number of rounds and messages needed for completion. We
will make use of the following notation in our proofs: lev(k) denotes the LE-list lev at the end of phase k.

Lemma 4.6 E [|lev(k)|] ≤ log n, and simultaneously for all v ∈ V and all phases k, |lev(k)| ≤ O(log n) WHP.

Proof: Let node set Hk(v) = {u | ∃Q(v, u) s.t. |Q| ≤ k}, and edge set Ek(v) = {e | ∃Q(v, u) s.t. |Q| ≤ k ∧ e ∈
Q}. The graph G restricted to the nodes in Hk(v) and edges in Ek(v) is denoted Gk(v). Let Mk(v) be a set of
ordered pairs defined as Mk(v) = {⟨u, ρ⟩ | u ∈ Hk(v)∧ρ = min|Q|≤k w(Q(v, u))}.We have |Mk(v)| = |Hk(v)| ≤ n.
Now, consider a sorted order of the elements in Mk(v) in non-decreasing order of ρ, and let ⟨ui, ρi⟩ be the ith

element in this sorted order, where 1 ≤ i ≤ |Mk(v)|. It is easy to see that the LE-list of v on the restricted
graph Gk(v) is equal to the set Lk(v) = {⟨ui, ρi⟩ | ∀ j<i

[
R(u j) > R(ui)

]
}. The list constructed by the algorithm

at the end of phase k at node v is the LE-list of v on Gk(v). Hence, lev(k) is Lk(v).
Let ξi be the event that ⟨ui, ρi⟩ ∈ Lk(v). Event ξi occurs if and only if R(ui) is the lowest among

R(u1),R(u2), . . . ,R(ui). Since the ranks are chosen by the nodes independently at random, we have Pr{ξi} =
1
i , and thus,

E[|Lk(v)|] =
|Mk(v)|∑

i=1

1
i
≤ log |Mk(v)| ≤ log n.
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Figure 1: The graph used in the proof of Theorem 4.9.

Notice that the events ξis, 1 ≤ i ≤ |Mk(v)|, are independent. By using the Chernoff bound, we can show that
for a particular v, |Lk(v)| < 5 log n with probability at least 1 − 1

n3 . Since k < n, by using the union bound,

we have |Lk(v)| < 5 log n for all v and k simultaneously with probability at least 1 − n2

n3 ≥ 1 − 1
n . �

Lemma 4.7 In every phase k, a node v exchanges O(log n) messages with each of its neighbors WHP.

Proof: Nodes exchange three types of messages during a phase: rank, echo, and termination-related
(leader, done, termination). By Lemma 4.6, each node sends its neighbors O(log n) rank messages, and
likewise, receives O(log n) rank messages from each neighbor.

We now bound the number of echo messages. During phase k, a node v echoes back to a neighbor u
either for the rank messages received (and ignored) from u during the phase, and none or some of the rank
messages that were previously received from u (and not echoed yet). The latter can be at most the number
of items in lev(k − 1), the LE-list of v at the beginning of Phase k, because if a previously-received rank
message is not in lev(k − 1) (i.e., ignored or deleted), its echo has already been sent in some previous phase.
By Lemma 4.6, the number of rank messages arriving in phase k from u is O(log n) WHP, and by the same
lemma, so is the size of lev(k − 1). Finally, in each phase a node may exchange with each neighbor at most
one of each, leader, done, termination, messages. Hence, the lemma follows. �

Theorem 4.8 The LE-Dist algorithm terminates in O(S log n) rounds using O(|E|S log n) messages WHP.

Proof: Each phase takes O(log n) communication rounds WHP, by Lemma 4.7. When all nodes complete
S + 1 phases, no new rank messages are generated. Within additional S phases, echo messages travel back
to all nodes. Finally, constructing the termination tree by flooding a leader notification takes O(D) phases,
where D is the unweighted (hop) diameter. The resulting BFS tree has height D. Hence, a converge-cast of
done messages and a broadcast of the termination signal take altogether O(D) phases. In total, since D ≤ S ,
the algorithm terminates in O(S log n) rounds and uses O(|E|S log n) messages. �

Tightness of Analysis: The analysis of the LE-Dist Algorithm is tight up to constant factors as stated in the
following theorem.

Theorem 4.9 For arbitrary constants ϵ, δ > 0 such that 3ϵ + 2δ < 1, it is possible to construct a weighted
n-node graph G with S = Θ(nδ) and |E| = Θ(n2−2ϵ) such that the expected time and message complexities of
the LE-Dist algorithm are Ω(ϵS log n) and Ω(ϵ |E|S log n).
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Proof: For parameters N and S , the graph G is constructed as follows. G consists of 5 levels of nodes
(Figure 1):

• Level 1: N nodes

• Level 2: N1−ϵ−2δ nodes. Every node in Level 2 is connected to Nϵ+2δ nodes in Level 1 by an edge of
weight 1.

• Level 3: one node v that is connected to every node in Level 2 by S paths with the following properties:
The S paths have hop lengths 1, . . . , S ; the path P of hop length i has (weighted) length 2S − i + XP

where XP is a small random number (absolute value < 1/2). The random variables XP are independent
and identically distributed for all S N1−ϵ−2δ paths. For simplicity, in figure 1, the S paths connecting v
to a node in Level 2 are depicted as a collection of edges.

• Level 4: N1−ϵ nodes, all connected to v (Level 3) by an edge of weight 1.

• Level 5: N1−ϵ nodes, connected to Level 4 by a complete bipartite graph with edges of weight 1.

Note that the number of nodes (including the nodes on the paths connecting Levels 3 and 2) is n =
N + 2.5N1−ϵ + o(N1−ϵ). When assigning ranks at random, the probability that there exists a node in levels
3-5 whose rank is among the Nϵ smallest ranks is less than 2.5N1−ϵNϵ/(N + 3.5N1−ϵ) ≤ 5/9. Assume that
we are in this case. These Nϵ lowest ranks are scattered among the N1−ϵ−2δ ≥ N2ϵ clusters at random. The
probability of have more than 10 such ranks collide with another in the same cluster is less than

(
Nϵ
10

) (
1

Nϵ
)10 ≤(

e
10

)10
. Again, assume this is the case.

After phase 2 of the LE-Dist algorithm, node v receives the rank information of the Level 1 nodes over
the 1-hop paths connecting v to Level 2. Only one rank value per cluster (the smallest) may appear in the
LE-list of v. Due to the independent choice of weights on each of the one-hop paths connecting v to Level 2,
the LE-list of v after phase two contains Θ(log(Nϵ)) = Θ(ϵ log N) elements with at least constant probability.
In phase 3, v has to sequentially send all these elements to the nodes of Level 4. In phase 3, v also receives
new rank information from the Level 1 nodes. Because the 2-hop paths between v and Level 2 are all shorter
than the one-hop paths, v has to discard all old information about the Nϵ smallest rank values and add
Θ(ϵ log N) new elements to its LE-list with constant probability. Similarly, node v has to update Θ(ϵ log N)
of the values in its LE-list during S phases. All these O(ϵS log N) updates have to be propagated to the Level
4 and 5 nodes. This requires Θ(ϵS log N) time and Θ(N2−2ϵϵS log N) = Θ(ϵ |E|S log n) messages (product
of the required time and the number of edges in the bipartite graph between Levels 4 and 5). �

4.4 Analysis for Unweighted Graphs

In an unweighted graph, the LE-Dist algorithm can be simplified as described below. On unweighted graphs,
the distance ρ traveled by a message is simply the number of edges on the path that the message followed.
Initially, at phase k = 1, v forwards its own rank to all of its neighbors. By induction on k, we have that i)
the messages arriving at v in phase k, have larger ρ values than that of all messages arriving in phases k′ < k,
ii) all messages arriving at v in phase k, have ρ = k. As a result, in phase k + 1, we only need to forward the
message with the lowest-ranked originator among the messages received in phase k and we can ignore all
other messages. Hence, a message is never delayed, it is either ignored or forwarded. Consequently, each
phase boils down to a single round. We no longer need to use control messages to mark the end of a phase
and we do not need to keep the new/old flag. For the message complexity, we therefore only need to count
the number of rank messages. Note that the number of echo messages is exactly equal to the number of rank
messages.

Theorem 4.10 For unweighted graphs, LE-lists can be computed in O(D) rounds (for any ranking of the
nodes). If the ranks are chosen randomly, the message complexity is O(|E| ·min{D, log n}) WHP.
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Proof: Each phase takes one communication round (i.e., there is no delay). Hence the algorithm terminates
in O(S ) = O(D) rounds.

As we observed, the messages that arrive at node v in phase k have a larger ρ value than that of a
message that arrives in a phase k′ < k. Thus an item in lev never gets deleted once the item is inserted
into lev. Further, whenever v forwards a message, it inserts the corresponding item in lev. Thus the total
number of messages forwarded by v is bounded by |L(v)|. Node v forwards each message through at most
deg(v) adjacent edges, where deg(v) is the degree of v. Now, |lev| = O(log n) WHP (Lemma 4.6) and
also |lev| ≤ D since in each round, at most one item is inserted in lev. Thus, the message complexity is∑

v∈V deg(v) · O(|lev|) ≤
∑

v∈V deg(v) · O(min{D, log n}) = O(|E| ·min{D, log n}). �
Leader Election: The LE-Dist algorithm for unweighted graphs is a leader election algorithm since the
lowest ranked node can be elected as the leader and the all the rest know it (cf. Section 4.1). Hence
the algorithm for unweighted graphs can be used as a synchronous, leader election algorithm for arbitrary
graphs. By Theorem 4.10, the time complexity is O(D) (deterministically) and the message complexity
is O(|E| · min{D, log n}) WHP. Note that for the sole purpose of leader election, it is sufficient that each
node stores only the information about the highest rank among the ranks seen so far in each phase of the
algorithm.

5 Probabilistic Tree Embedding

Next we show how to implement FRT embedding in a distributed setting. We refer to [16] for the original
sequential algorithm for FRT embedding and its analysis. The β-lists below has been introduced to facilitate
distribtued implementation. The sequential algorithm does not require such β-lists.

1. Construction of LE-lists: Construct the LE-lists of the nodes using the LE-Dist algorithm.

2. Construction of β-lists: Given a parameter β ∈ [1, 2], let βi = 2i−1β for i = 0, 1, 2, . . . , δ = ⌈lg∆⌉ + 1.
The β-list of a node v, denoted by β(v), is a list of pairs ⟨βi, ui⟩ such that ui is the least element in Γβi(v).
The leader selects a real number β uniformly at random in [1, 2] and broadcasts β to the other nodes using
the BFS tree computed during the LE-lists computation. This needs O(D) time and O(n) messages. Once a
node gets β, it can compute its β-list from its LE-list.

3. Tree Embedding: The β-lists of the nodes define a hierarchical clustering as follows: The top level
cluster consists of all nodes in V and we define its level to be δ. Each level-i cluster Ci, j is decomposed into
level-(i− 1) clusters. We define ui to be the level i cluster center for v if ⟨βi, ui⟩ ∈ β(v). All nodes in Ci, j with
the same level-(i − 1) cluster center form one level-(i − 1) cluster. Thus v itself is its level-0 cluster center,
i.e., u0 = v, and the center of the root cluster is the least element in V . Note that a particular node may be the
center of several different clusters at the same level and at different levels. Also observe that each cluster at
level i has diameter at most 2iβ.

Given the hierarchical clustering, one can naturally define a tree as follows: each cluster corresponds to
a node in the tree, and we have an edge from cluster Ci, j to Ci−1, j′ iff Ci−1, j′ is a sub-cluster of Ci, j. The
level-0 clusters that form the leaves of this tree are singleton clusters that correspond to the nodes of V .
Thus each v ∈ V forms a leaf node in the tree (the black nodes in Figure 2). The edge from a level i cluster
to its parent has weight 2iβ. It is easy to verify that for any edge in the tree, the graph distance between
the corresponding cluster centers is no larger than twice the weight of the edge. Clusters have radii at most
2i−1β. In a distributed setting, we do not explicitly construct this FRT tree. Instead, the β-lists implicitly
define the tree. We think of each cluster as being represented by its center.

As the time and message complexity of the above implementation is dominated by that of the distribtued
construction of the LE-lists, we have the following theorem.
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Figure 2: Construction of GSF in an FRT tree. V = {v1, v2, . . . , v12}, δ = 4,V1 = {v1, v2, v3}, V2 =

{v4, v5, v6, v9, v10}, V3 = {v11, v12}. The solid black nodes are in V . The white nodes are internal nodes
of an FRT tree. Nodes in V1,V2 and V3 are marked by circles, squares, and triangles, respectively. The solid
lines are the edges in an FRT tree, and the dotted lines are the edges in the Steiner forest.

Theorem 5.1 Construction of distribtued FRT tree embedding takes O(S log n) rounds and O(|E|S log n)
messages.

Let dT (u, v) and dG(u, v) be the distances between nodes u and v in the FRT tree and the original graph
G, respectively. In [16] it has been shown that for any u, v ∈ V , dT (u, v) ≥ dG(u, v) (dT dominates dG)
and E[dT (u, v)] ≤ O(log n)dG(u, v). Following Theorem 4 in [3], for any problem P where the cost is a
linear combination of distances between vertices, if we solve P in FRT tree exactly, we can get an O(log n)-
approximation algorithm for P in G. In [16], the authors have discussed several problems such as the
group Steiner tree problem, the minimum cost communication network problem, the buy-at-bulk network
design problem, etc. for which better centralized approximation algorithm can be devised using this tree
embedding. In the next section, we present distributed O(log n)-approximation algorithms for the general-
ized Steiner forest problem, the minimum routing cost spanning tree problem and the k-source shortest path
problem.

6 Distributed Approximation Algorithms

6.1 Generalized Steiner Forests

The tree embedding inspires a natural centralized algorithm for the GSF problem (defined in Section 1):
Observe that the problem can be solved optimally on a tree by connecting each pair of nodes belonging to
the same group V j ( for all 1 ≤ j ≤ k) via the nearest common ancestors (Figure 2) and taking the union of
all selected edges for all sets V j, 1 ≤ j ≤ k. This solution, applied to the tree resulting from an embedding,
can be converted to a solution for the original graph by including, for each edge in the tree solution, the
shortest path in the graph between the corresponding cluster centers (note that the resulting subgraph may
not be forest). The bound on the expected distortion of the FRT embedding implies that in expectation, the
cost of OPT on the tree is no larger than O(log n) times the optimal solution to the original instance. The
fact that the distances in the tree are always larger than corresponding distances in the graph implies that
the cost of the solution induced on the graph is no larger than the cost of the solution on the tree. Thus, this
algorithm gives an O(log n)-approximation to the problem in expectation. Next, we describe a distributed
approximation algorithm based on this approach.
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Figure 3: Distributed GST construction. The dotted lines are the paths that are included in the Steiner sub-
graph. The light-colored dotted lines, e.g., P(v6, u1,3), may or may not be included in the Steiner subgraph.

Distributed Algorithm

We assume that we have an implicit representation of the FRT tree; i.e., each node has its LE-list and β-list.
At the end of the algorithm, each node knows which of its incident edges belong to the Steiner subgraph.
We focus on finding an O(log n)-approximate Steiner subgraph, not necessarily a forest. However, a Steiner
forest can be constructed from the Steiner subgraph, with the same time and message complexities, by a
breadth first search.

Before we detail the algorithm, we illustrate the main ideas with an example. In a distributed setting,
the internal nodes (the white nodes in Figure 2) of an FRT tree are represented by the centers of the cor-
responding clusters. An edge of an FRT tree is replaced by the shortest path between the corresponding
cluster centers. However, replacing an edge between two white nodes in an FRT tree is not straightforward:
using LE-lists as routing tables (Lemma 4.1), we can find the shortest path from a black node to any of its
ancestor white nodes but not between two white nodes. To resolve this problem, we pick an arbitrary black
descendant of a white node and connect it to the higher level white node. For example, as shown in Figure 3,
edge (u1,2, u2,1) of the FRT tree can be replaced with the shortest path P(v5, u2,1) in G.

For a group V j, let ℓ(V j) denote the level of the lowest common ancestor (LCA) of the nodes in V j, in
the tree; i.e., the smallest i such that all nodes in V j belong to a single level i cluster. For a node v in group
V j, we define ℓ(v) to be ℓ(V j) (recall that the groups are disjoint).

The algorithm consists of two parts: the first is a discovery part, where each node v computes ℓ(v), and
the second is a construction part where the Steiner subgraph is constructed using this information.

6.1.1 Discovery Part: Finding Lowest Common Ancestor (LCA)

The following algorithm for finding lowest common ancestor can be of independent interest and be used as
a subroutine of other distributed algorithms. We start by describing a simplified version of the discovery
part of the algorithm, which we will then refine to avoid congestion. We describe the algorithm for a single
group V j; the k groups run the algorithm in parallel. The algorithm consists of δ = ⌈log∆⌉ synchronized
phases. The nodes begin (i + 1)st phase after all nodes finish their ith phase. (We describe later how to
synchronize the phases.) Each node v computes ℓ(v) by sending messages to its level i ancestor ui, for each
i, and determining whether the cluster defined by its level i ancestor contains all of V j, starting from the top
down.

We next describe the ith phase. Let i = δ − i + 1. Each node v that hasn’t yet determined ℓ(v) sends a
find-lca message to its level i cluster center ui, containing its own identifier, its group identifier, and its level
i−1 cluster center. The level i cluster center looks at all the messages it receives, and if the messages contain
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at least two distinct level (i − 1) cluster centers, it declares itself to be the least common ancestor and sends
a YES reply to each node it received a message from. On the other hand, if all messages agree on the level
(i − 1) cluster center, the level i cluster center sends a NO message, communicating that the least common
ancestor is lower down the tree. A node v ∈ V j stops as soon as it receives a YES message and sets ℓ(v) to i.

Lemma 6.1 At the end of δ phases, each node v in each group will determine the correct value of ℓ(v).

Proof: The lemma would be immediate if instead of cluster center ui−1, we sent a unique identifier for the
cluster to the parent cluster center. However, one node u can be the cluster center for several clusters at the
same level. We next argue that from the point of view of this algorithm, the cluster centers are in fact unique
identifiers.

Let Ci∗ be the cluster corresponding to the true LCA with center ui∗ . Thus V j ⊆ Ci∗ , so that messages
sent to centers ui for i > i∗ all agree on their level i − 1 cluster and hence on the cluster center. The tree
construction is easily seen to have the property that all children clusters of a cluster C have distinct cluster
centers. Thus the messages to the level i∗ cluster center, which contain centers of at least two distinct
clusters, must in fact contain at least two distinct level (i∗ − 1) cluster centers. Thus the response from ui∗

will in fact be YES and the nodes in V j will stop with the correct value of ℓ(v). �
We next mention some implementation details and refinements.

Routing: Lemma 4.1 implies that for every v ∈ V , routing from v to its level i cluster center ui, for any i,
can be done using the LE-lists as routing tables. (The route taken will be the weighted shortest path to ui.)
Additionally, whenever a node w gets a message originating from v along edge e, destined for a node ui, w
stores a routing table entry consisting of v and the edge e. These routing table entries enable routing from ui

to v. Thus all messages can be routed without redundant transmissions.

Controlling Congestion: In the above protocol, several nodes can send a message to their level i cluster
center simultaneously. Since the paths from these nodes to their parents can intersect, this can lead to
congestion on edges. We modify the protocol so as to merge messages belonging to the same group and
destined for the same cluster center, according to the following rules:

1) If in any round, a node w gets at least two simple find-lca messages all agreeing in ui and ui−1 and j: w
picks one of the messages ⟨v, ui, ui−1, j⟩ arbitrarily and forwards it.

2) If in any round, a node w gets at least two simple find-lca messages ⟨v, ui, ui−1, j⟩ and ⟨v′, u′
i
, u′

i−1
, j⟩

such that ui = u′
i

but ui−1 , ui−1: w concatenates two of the messages and forwards a concatenated
message ⟨v, ui, ui−1, j, v′, u′

i−1
⟩.

3) If in any round, a node w receives more than one message agreeing on ui and j, including at least one
concatenated message: w forwards a concatenated message.

4) Messages agreeing on the group j but destined to different cluster centers are not combined.

5) Whenever w drops or concatenates messages, it makes a record locally so that when the reply arrives, it
can forward it to all the relevant nodes.

Note that now a cluster center ui learns of only a subset of the nodes in V j. However, the above rules
ensure that if there are at least two nodes u and u′ with different level (i − 1) cluster centers, then ui gets
messages for at least two such nodes. Thus the correctness of the algorithm (i.e., correctness of ℓ values)
continues to hold.

We next prove a lemma to help bound the congestion.

Lemma 6.2 Suppose nodes in a group V j send a message in phase i. Then they all have the same level i
ancestor ui.
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Proof: We show this by induction on i. In the first phase, clearly all messages are meant for the root so the
base case holds. Suppose the claim holds for all i − 1. Since a message is sent in phase i, all the previous
responses must be NO . In particular, ui+1 sent a NO message which implies that all nodes agree on ui. The
claim follows. �
Thus rule 4 above never applies and at most one message is sent per round on each edge.

Synchronizing the Phases: Let S ′ be the maximum number of edges in the shortest path from any node
v to any of v’s cluster center. In each phase, a cluster center waits S ′k rounds so that it receives all of the
find-lca messages destined to it before responding to any of them. Note that S ′ ≤ S and S ′ and k can easily
be computed during the execution of LE-dist algorithm. Before starting the next phase, each node waits for
another S ′k rounds to make sure all nodes receives the responses of their find-lca messages. The correctness
of this synchronization follows from the following lemma.

Lemma 6.3 Any message in the first part of the GST algorithm takes at most S ′k time to reach its destina-
tion.

Proof: A message travels through at most S ′ edges and congestion at any edge is at most k. The claim
follows. �

Theorem 6.4 gives the time and message complexity for finding LCA.

Theorem 6.4 Finding lowest common ancestors for k disjoint groups of nodes takes O(S k log n) time and
O(S n log n) messages in a weighted graph and takes O(Dk log n) time and O(Dn log n) messages in an
unweighted graph.

Proof: The time complexity follows from the fact that there are δ = O(log n) phases and each phase takes
O(S k) time (Lemma 6.3). For the message complexity, notice that in each phase, each node generates at
most one find-lca message and receives its response. Since each message travels through at most S edges,
the number of messages is at most 2S nδ. For the unweighted case, S = D, and the claim follows. �

Corollary 6.5 For a single group (k = 1) of n′ ≤ n nodes, finding lowest common ancestor takes O(S log n)
time and O(S n′ log n) messages in a weighted graph and takes O(D log n) time and O(Dn′ log n) messages
in an unweighted graph.

6.1.2 Construction Part: Converting FRT Tree Path to a Path in the Original Graph

The construction part of the algorithm also runs in synchronized phases. Each node v ∈ ∪V j, tries to
construct paths that correspond to the tree path from v to its level ℓ(v) ancestor. The definition of ℓ implies
that each group V j is connected in the resulting subgraph.

In phase i, each node v with ℓ(v) ≥ i ensures that its level (i − 1) cluster center is connected to its level i
cluster center. This is achieved by picking a node w from each relevant level (i − 1) cluster, and connecting
w both to its level i−1 cluster center and to its level i cluster center. Thus ui−1 and ui get connected via some
node w in ui’s cluster (see Figure 3).

However constructing the above subgraph may require too many messages (causing congestion), as
each node ui may represent several cluster centers, and hence may need to connect to several level (i + 1)
cluster centers in one phase. To alleviate this, we will actually construct only a subset of these edges. More
precisely, if there are several different nodes v1, . . . , vs belonging to the same group V j that want to connect
their level i cluster center ui (possibly representing different clusters), to their level (i + 1) cluster centers
u(1)

i+1, . . . , u
(s)
i+1 respectively, we select one arbitrarily and connect ui to ui+1. For concreteness, suppose that

we always select the vx with the lowest rank; we say that vy, x , y is overruled by vx. Let E′ be the
corresponding subset of pairs (ui, ui+1). For a pair (ui, ui+1) ∈ E′, define w(ui, ui+1) to be 2i+2β.
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Before we show how this is implemented in the distributed setting, we show that this optimization
preserves correctness. It is easy to see that this builds only a subset of edges and hence the approximation
guarantee is preserved. We next argue that this still ensures that each V j is connected in the resulting
subgraph.

Lemma 6.6 Let the subgraph E′ be constructed as above. Then each V j is connected in E′.
Proof: Consider a particular group V j, with ℓ(v) = l for each v in V j. Thus each v ∈ V j has the same level
l ancestor ul. We show that E′ has a path from ul to every v ∈ V j, by induction on the rank of v.

Clearly the lowest ranked node in V j never gets over-ruled, and hence constructs a path from its level i
ancestor to its level (i + 1) ancestor, for every i : 0 ≤ i ≤ (l − 1). This establishes the base case.

Consider a node v ∈ V j and assume inductively that all lower ranked nodes have a path to ul. If v is
never overruled, it clearly has a path to ul. Else it first gets overruled at some step i, say by a node v′. In this
case, v has a path to ui, and v′ has a path to ui as well. Moreover, since v′ has a lower rank, it inductively
has a path to ul. Hence v is connected to ul as well, and the claim follows. �

We next describe how this set E′ is constructed by the distributed algorithm. Nodes that have not yet
been overruled are considered selected, and these nodes send messages to their level i ancestors in phase i.
These messages help ui determine the next level cluster centers that it needs to connect to. For each such
ui+1, it picks an arbitrary descendant from the corresponding cluster and asks it to connect to ui+1. Initially,
each node v considers itself selected for phase 1 if ℓ(v) , 0. Only the selected nodes participate in the next
phase.
In phase i = 0, 1, 2, . . . , δ:

• Each selected node v belonging to a group V j sends a want connected message ⟨v, ui, ui+1, j⟩ to its
level-i cluster center ui.

• After the cluster center ui receives want connected messages, if any, from its selected descendants in
group V j, ui picks the one with the lowest rank and selects it. Then ui sends a selected-for-next-phase
message to it. Additionally, let Ui+1 be the set of level (i + 1) cluster centers that are received from
the selected nodes. For each ui+1 ∈ Ui+1, ui picks an arbitrary sender v of that request, and sends v a
chosen to connect message consisting of ui and ui+1.

• If v gets a chosen to connect message from ui consisting of ui and ui+1, it sends a connect message to
ui+1. When a connect message passes through an edge (v1, v2), both v1 and v2 mark this edge to be
included in the Steiner subgraph.

• After v′ gets the selected-for-next-phase message, v′ considers itself selected for the next phase if
i < ℓ(v′).

Note that the selected-for-next-phase, chosen to connect, and connect messages correspond uniquely to
some want connected message, and hence it suffices to analyze the time and message complexity of the want
connected messages. We next show the following invariants.

Lemma 6.7 If v sends a want connected message to ui, then v and ui are connected in the Steiner subgraph.
Proof: The proof is by induction on i. The base case is trivial as u is connected to itself. Suppose that v
is selected in phase i so that it sends a want connected message to ui+1. Then ui+1 ∈ Ui+1 so that there is v′

which receives a chosen to connect message from ui consisting of ui+1. Thus at the end of this phase, v′ and
ui+1 are connected in the Steiner subgraph. Inductively, both v and v′ were connected to ui in the Steiner
subgraph. The claim follows. �

Lemma 6.8 If ui is connected to ui+1 in E′ above, then the Steiner subgraph built by the distributed algo-
rithm has a ui—ui+1 path. Moreover, the Steiner subgraph has cost no more than w(E′).
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Proof: The set of edges incident on ui and a higher level cluster center in E′ consists exactly of the level
i + 1 ancestors of nodes that are minimal ranked in V j ∩ desc(ui) for some j. This is exactly the set Ui+1
and the chosen to connect messages ensure that the Steiner subgraph has a path from ui to ui+1, for every
ui+1 ∈ Ui+1. The fact that a unique v′ is chosen to connect ensures that bound on the weight of the subgraph.

�
These imply that running the above algorithm will give subgraph that connects each of the V j’s and has

expected cost at most O(log(n) · OPT).

Routing: Since messages go from nodes to their cluster centers, and back, routing is easily done as in the
first part.

Controlling Congestion: Similar to the discovery part of the algorithm congestion is controlled by combin-
ing the want connected messages if they meet at some intermediate node u on their way and have the same
destination:

• If two or more want connected messages belonging to the same group (e.g. messages originated by
nodes x1, x2, . . . , xr) with the same destination ui arrive at u at the same time, u picks the lowest ranked
one and forwards it towards ui.

• If ui sends a selected-for-next-phase or a chosen to connect message destined for x j, u simply forwards
it to x j.

It is easy to verify that while this pruning allows fewer want connected messages from reaching ui, it
still ensures that for each node that would get selected in the unpruned run, its want connected message is
not pruned, and hence the same set of nodes gets selected. Thus the set of edges in the Steiner subgraph is
unchanged.

Synchronizing the Phases: In each phase, a cluster center waits kS ′Lmax rounds so that it receives all of the
connect messages destined for it, where Lmax = maxv∈V |L(v)|. The leader can find k, S ′ and Lmax by using
BFS tree as an aggregation tree and broadcasting them to the other nodes. This takes O(D) time and O(n)
messages. Before starting the next phase, a selected node waits for another kS ′Lmax rounds. The correctness
of this synchronization follows from the following lemma.

Lemma 6.9 In the Construction Part of the GSF algorithm, congestion at any edge adjacent to v is at most
k|L(v)|.

Proof: A node v′ sends a message to one of its cluster centers ui through the shortest path P(v′, ui). If v
is on path P(v′, ui), there must be an entry ⟨ui, ∗⟩ in L(v) (cf. Lemma 4.1 and 4.4). Thus, v can be on the
shortest path tree for at most |L(v)| different destinations. The rules above for controlling congestion ensure
that at most one message is forwarded per group to each cluster center, and hence the congestion at any edge
(v, u′) is at most k|L(v)|. �

The following theorem shows the time and message complexity of the Construction Part.

Theorem 6.10 The Construction Part of the distributed GSF algorithm takes O(S k log2 n) time and O(S n log n)
messages in a weighted graph and takes O(Dk log2 n) time and O(Dn log n) messages in an unweighted
graph.

Proof: There are δ = O(log n) phases and each phase takes O(S ′kLmax) time. Since S ′ ≤ S and Lmax =

O(log n) (Lemma 4.6), we have the time complexity of O(S k log2 n). For the message complexity, notice
that in each phase, each node generates at most one want connected message and receives its response. Since
each message travels through at most S edges, the number of messages is at most 2S nδ. For the unweighted
case, the theorem follows from S = D. �
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Theorem 6.11 The above distributed GSF algorithm gives an expected O(log n) approximation and takes
O(S k log2 n) time and at most O(S |E| log n) messages in a weighted graph and takes O(Dk log2 n) time and
at most O(Dn log n) messages in an unweighted graph.

Proof: Notice that the congestion-related pruning does not affect the set of edges added to the Steiner
subgraph. Thus, the expected O(log n) approximation follows from Lemma 6.8 and Theorem 4 in [3] (as
discussed in the last paragraph of Section 5).

After constructing the FRT tree, the GSF algorithm executes the Discovery Part and Construction Part
in this order. Thus we have the state time and message complexity by adding the time and messages from
Theorem 5.1, 6.4, and 6.10. �

6.2 Minimum Routing Cost Spanning Trees

The minimum routing cost spanning tree problem, and its generalization, the optimum cost communication
tree problem (defined in Section 3) is trivially solvable optimally in trees. Thus, using the FRT embedding,
we can obtain an (expected) O(log n) approximation for the problem. The approach for the GSF problem
works here also, with k = 1. This is because, we can regard all nodes in the graph as one group – the
resultant spanning tree that connects all the nodes gives the desired approximation. Thus we state the
following theorem which follows from Theorem 6.11.

Theorem 6.12 There is an (expected) O(log n)-distributed approximation algorithm for the routing cost
spanning tree problem that takes O(S log2 n) time and O(S |E| log n) messages in a weighted graph and
takes O(D log2 n) time and at most O(Dn log n) messages in an unweighted graph.

6.3 k-Source Shortest Paths

We present a distributed approximation algorithm for k-source shortest paths problem (defined formally in
Section 3) in an arbitrary weighted network. FRT embedding gives (expected) O(log n)-approximate shortest
paths between any pair of nodes. Below is a description and analysis of the algorithm. The algorithm’s goal
is to construct routing tables for these (approximate) shortest paths. The routing table at a node specifies the
next hop neighbor on the path to any given destination; thus a message can be routed from a source to any
given destination along the approximate shortest path using the routing tables.

1. All v ∈ V find their LE-lists using LE-Dist algorithm and compute the β-lists.
2. Construct a BFS tree rooted at the leader, which can be found using the LE-Dist algorithm. Each

source s j ∈ K broadcasts its LE-list L(s j) to all v ∈ V using the edges of this BFS tree. The tree construction
takes O(|E|) messages and O(|D|) time. Since O(log n) messages (size of a β-list of a source) need to be sent
per source, this process takes overall O(kD log n) rounds and O(|E| + kn log n) messages for all k sources.

3. Each v ∈ V computes β(s j), 1 ≤ j ≤ k, from L(s j). Now v can determine the lowest common ancestor
of {v, s j} (for any j, 1 ≤ j ≤ k) from the β-lists β(v) and β(s j). A path from v to source s j is constructed by
concatenating the shortest paths P(v, ui) and P(ui, s j), where cluster center ui is the lowest common ancestor
of v and s j. By the FRT embedding, it follows that the above path is an O(log n)-approximation to the
shortest path between v and s j (for any j). The shortest path from any node to any of its cluster center can
be found using the the LE-lists as routing tables (Lemma 4.1). Thus, P(v, ui) can be constructed correctly,
but we can construct P(ui, s j) only in reverse direction. To solve this problem, i.e., to construct the routing
tables for the sub-path P(ui, s j) , each source s j sends a dummy message to all of its cluster centers ui so
that the nodes in this path can track their predecessors for the purpose of constructing the routing table for
the reverse paths toward the sources. For one source, this takes O(S log n) time and O(S log n) messages
because there at most O(log n) cluster centers and each message goes through the respective shortest path.
For all k-sources, this takes O(kS log n) time and O(kS log n) messages.
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The correctness of the algorithm is clear from the above description. Hence, combining the time and
messages needed for steps 1, 2, and 3, we have the following theorem.

Theorem 6.13 The above algorithm computes an (expected) O(log n)-approximate k-source shortest paths
in O(kD log n) time using O(|E| ·min D, log n+kn log n) messages in an unweighted graph and in O(kS log n)
time using O(|E|S log n + kn log n) messages in a weighted graph.

7 Conclusion

Developing uniform approaches to design efficient distributed approximation algorithms for a wide variety
of problems is important to the theory of distributed approximation. This paper presented an algorithmic
paradigm based on metric tree embeddings, in particular, probabilistic tree embeddings, to design efficient
distributed approximation algorithms. We show that a probabilistic tree embedding due to Fakcharoenphol,
Rao, and Talwar (FRT) can be used to design fast distributed (expected) O(log n)-approximation algorithms
for GSF, shortest paths, and routing cost spanning trees. The distributed construction of the FRT tree em-
bedding is based on the computation of least elements (LE) lists, a distributed data structure that seems to
be very useful in designing efficient distributed algorithms for many problems.

We conclude by discussing some issues for further work. A natural direction would be to extend our
approach to design distributed approximation algorithms for other network optimization problems. The FRT
tree embedding approach use here has the drawback that each cluster may not be internally connected, and
therefore a node may have to carry messages for clusters not containing it. A direct distributed implemen-
tation of an algorithm for the tree thus leads to large congestion. While we can overcome this hurdle for
some problems here, we leave open the question of finding a distributed embedding with internally con-
nected clusters. Moreover, the algorithms based on these tree embeddings can be easily derandomized in
the centralized setting. Designing deterministic distributed algorithms for these problems is a natural open
question.
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