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ABSTRACT
We present a uniform approach to design efficient distributed ap-
proximation algorithms for various network optimization problems.
Our approach is randomized and based on a probabilistic tree em-
bedding due to Fakcharoenphol, Rao, and Talwar [10] (FRT embed-
ding). We show how to efficiently compute an (implicit) FRT em-
bedding in a decentralized manner and how to use the embedding
to obtain expected O(log n)-approximate distributed algorithms for
the generalized Steiner forest problem, the minimum routing cost
spanning tree problem, and the k-source shortest paths problem in
arbitrary networks. The time complexities of our algorithms are
within a polylogarithmic factor of the optimum.

The distributed construction of the FRT embedding is based on
the computation of least elements (LE) lists, a distributed data struc-
ture that might be of independent interest. Assuming a global order
on the nodes of a network, the LE list of a node stores the smallest
node (w.r.t. the given order) within every distance d (cf. Cohen [3],
Cohen and Kaplan [4]). Assuming a random order on the nodes, we
give an almost-optimal distributed algorithm for computing LE lists
on weighted graphs. For unweighted graphs, our LE lists computa-
tion has asymptotically optimal time complexity O(D), where D is
the diameter of the network. As a byproduct, we get an improved
synchronous leader election algorithm for general networks.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—computations on discrete
structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network problems
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1. INTRODUCTION AND
RELATED WORK

The emerging area of distributed approximation algorithms lies
at the intersection of two well-established theoretical computer sci-
ence areas: distributed computing and approximation algorithms.
Distributed approximation algorithms trade-off optimality of the
solution for the amount of resources (messages, time) consumed
by the distributed algorithm. Besides a fundamental theoretical in-
terest in understanding the algorithmic complexity of distributed
approximation, there also is a practical motivation in studying dis-
tributed approximation algorithms. Emerging networking technolo-
gies such as wireless ad hoc and sensor networks or peer-to-peer
networks operate under inherent resource constraints such as en-
ergy, bandwidth, etc. Moreover, the topology of such networks of-
ten changes dynamically. Hence it becomes critical to design effi-
cient distributed algorithms for various network optimization prob-
lems that have low communication (message) and time complexity
even if this comes at the cost of a reduced quality of the solution.
For this reason, in the distributed context, devising approximation
algorithms is well motivated even for network optimization prob-
lems that are not NP-hard. There is a large body of work on dis-
tributed approximation algorithms for classical graph optimization
problems such as minimum spanning tree, shortest path, minimum
dominating set and vertex cover, and maximum matching. [6, 9,
13, 14, 15, 16, 17, 18]. We also refer to the surveys by Elkin [7]
and Dubhashi et al. [5] that summarize many results regarding ef-
ficient distributed approximation algorithms and the hardness of
distributed approximation (in particular, lower bounds on the time-
approximation trade-off) for various classical optimization prob-
lems.

When dealing with a certain class of metric optimization prob-
lems, a standard approach to obtain approximation algorithms is



to use low-distortion metric embeddings. First, the given metric
space is embedded into a host space with a simpler structure (e.g.,
an `p-metric or a tree metric). If one can approximately, or exactly
solve the optimization problem on the host metric, one gets an ap-
proximation algorithm for the problem on the original metric. The
approximation ratio suffers depending on the quality (i.e. the dis-
tortion) of the embedding. While using embeddings to obtain ap-
proximation algorithms is a standard approach in a non-distributed
context, to the best of our knowledge, the technique has not been
used in distributed approximation.

In this paper, we develop a distributed version of a probabilis-
tic tree embedding due to Fakcharoenphol, Rao, and Talwar [10]
(henceforth referred to as the FRT embedding). The FRT embed-
ding embeds any n-point metric into a distribution over dominating
tree metrics such that the expected stretch of any edge is O(log n).
Moreover, in [10] it is shown how to efficiently sample a tree from
this distribution. This directly leads to polylogarithmic approxima-
tion algorithms for a variety of optimization problems (see [10] and
references therein for a detailed list). The stretch bound of the FRT
embedding is existentially tight: There are metric spaces for which
any probabilistic tree embedding has distortion Ω(log n).

The FRT embedding algorithm of [10] is centralized. We show
how to efficiently compute an (implicit) FRT embedding in a dis-
tributed manner and how to use the embedding to obtain distributed
algorithms for the generalized Steiner forest problem, the minimum
routing cost spanning tree problem, and the k-source shortest paths
problem with expected approximation ratio O(log n). The time
complexities of our algorithms are existentially optimal up to poly-
logarithmic factors. Our algorithms are the first known distributed
approximation algorithms for the generalized Steiner forest and the
minimum routing cost spanning tree problems. Our algorithm for
k-source shortest paths is significantly more time-efficient than pre-
vious algorithms at the cost of giving a logarithmic approximation.

For our distributed construction of the FRT embedding, we need
a distributed data structure called least elements (LE) lists that was
first described by Cohen in [3] and by Cohen and Kaplan in [4].
Assuming a global order on the nodes of a network, the LE list of
a node stores the smallest node (with respect to the given order)
within every distance d. For arbitrary weighted graphs, we give an
almost time-optimal distributed algorithm for computing LE lists,
assuming a random order on the nodes. As a byproduct, we get an
improved leader election algorithm in general networks that is both
time-optimal and, with high probability, almost message-optimal.
Since LE lists are useful in various contexts ([3, 4]), we believe that
this result can have other applications as well.

The main application of our distributed FRT embedding con-
struction is a fast distributed approximation algorithm for the gen-
eralized Steiner forest (GSF) problem (cf. Section 4.1): Given a
weighted graph G = (V, E,w), and a collection of k disjoint sub-
sets (groups) of V: V1,V2, . . . ,Vk, the problem is to find a mini-
mum weight subgraph in which each pair of nodes belonging to
the same group V j is connected. The GSF problem is a general-
ization of the minimum Steiner tree problem (where k = 1) which
in turn is a generalization of the minimum spanning tree (MST)
problem, both of which are fundamental problems in distributed
computing and communication networks. There is a long line of re-
search on time-efficient distributed algorithms for the (exact) MST
problem (see e.g. [11, 1, 19, 8]). The best known algorithms take
O(D+

√
n log∗ n) time [19, 8] (where D is the network diameter). In

[22], it is shown that this is existentially tight up to polylogarithmic
factors in the

√
n term.

Distributed computations of approximate MST solutions were
first considered by Elkin in [9]. He showed that approximating the

MST within a ratio of H requires Ω(D +
√

n/(HB log n)) time (as-
suming B bits can be sent through each edge in one round). Note
that this lower bound applies for the more general minimum Steiner
tree and GSF problems as well. In [15], Khan and Pandurangan
presented a fast distributed approximation algorithm that constructs
an O(log n)-approximate minimum spanning tree. Up to polylog-
arithmic factors, the time complexity of the algorithm of [15] is
optimal (i.e., no O(log n)-approximate algorithm can in general do
better). The algorithm of [15] can be easily modified to yield an
O(log n)-approximation for the minimum Steiner tree problem as
well. When applied to the more general GSF problem, the tech-
nique however only yields an O(k log n)-approximation, where k is
the number of disjoint sets. The question of getting a time opti-
mal O(log n) distributed approximation was left open and this was
a motivation for our new approach in this paper.

1.1 General Notations and Definitions
Throughout the paper, we use the following definitions and nota-

tions concerning an undirected weighted graph G = (V, E,w) with
|V | = n nodes, |E| = m edges, and non-negative edge-weights w(e)
for all edges e ∈ E.
• Q(u, v) : a path from node u to node v
• |Q(u, v)|, |Q| : number of edges on path Q(u, v)
• w(Q(u, v)), w(Q) : sum of the edge weights of Q(u, v)
• P(u, v) : a minimum weight path from u to v
• d(u, v) = w(P(u, v)) : (weighted) distance between u and v
• l(u, v) = |P(u, v)| : number of edges on shortest path
• D = maxu,v minQ |Q(u, v)| : diameter of G
• ∆ = maxu,v w(P(u, v)) : weighted diameter of G
• Γρ(v) = {u | d(u, v) ≤ ρ} : ρ-neighborhood of node v

We also call the number of edges |Q| of a path Q, the length of
Q. Similarly, w(Q) is called the weight of the path Q. If there is
more than one minimum weight path P(u, v) between u and v, l(u, v)
denotes the length of the shortest (w.r.t. number of hops) such path.

Definition 1.1. Shortest Path Diameter (SPD). The SPD is de-
noted by S (G,w) (or S for short) and defined as S = maxu,v∈V l(u, v).
Note that 1 ≤ D ≤ S ≤ n for every connected graph and S = D for
unweighted graphs.

We use the term “with high probability” (WHP) to mean with
probability at least 1 − 1/nc for c ≥ 1.

1.2 Distributed Computing Model
Without loss of generality, we assume that G is connected. We

assume that each node has a unique identifier and that at the begin-
ning of the computation, each node v accepts as input its own iden-
tifier and the weights of the edges adjacent to v. We assume a syn-
chronous message passing model [21]. In one time step, a node v
can send an arbitrary message of size at most O(log n) through each
of its edges. The weights of the edges are assumed to be at most
polynomial in the number of nodes n, and therefore, the weight of a
single edge can be communicated in one time step (we assume that
all weights are normalized to be at least 1). Such a restriction on
the message size is quite natural as the bandwidth of single com-
munication channels is typically bounded in practical applications.
Moreover, note that without restricting the maximum message size,
a single convergecast would suffice to send all input information to
a single node and do all the computation locally at this node. The
model we use is a standard model of distributed computation called
the (synchronous) CONGEST(log n) model or simply the CON-
GEST model [21] and has been used by all previous distributed
MST algorithms (e.g., [11, 12, 19, 1, 8]) as well as the distributed



MST approximation algorithm of [15]. It would be straightforward
to adapt our algorithms the a more general CONGEST(B) model
where O(B) bits can be transmitted in a single message. By us-
ing a synchronizer, our algorithms can also be made to work in an
asynchronous system under the same time bounds, but at the cost
of some increase in the message complexity [21]. Finally, although
we assume that local computations (at a node) are for free, our al-
gorithms only perform local operations that are polynomial in n.

1.3 Overview of the Results
Distributed Computation of LE Lists:
Assuming that the nodes are ranked according to a random order,
we give an almost time-optimal distributed algorithm for comput-
ing LE lists (cf. Section 2). In weighted graphs, our algorithm
terminates in O(S log n) time (i.e., all nodes will detect termina-
tion within this time) with a message complexity of O(S |E| log n)
where S is the shortest path diameter. It is not hard to see that Ω(S )
is a lower bound on the time complexity of any distributed algo-
rithm that computes LE-lists (even when assuming a random node
ordering) and hence the time complexity is optimal up to a loga-
rithmic factor. For unweighted graphs, our algorithm terminates in
O(D) rounds and WHP, uses at most O(|E|min(D, log n)) messages.
The algorithm for unweighted graphs can be used as a randomized,
synchronous leader election algorithm by selecting the node with
the smallest rank as leader. This improves over the the previous
best synchronous leader election algorithm by Peleg [20]. Peleg’s
(deterministic) algorithm has time complexity O(D) and message
complexity O(D|E|).

In prior work, Cohen [3] presented a centralized strategy for
computing LE-lists that incurs O(|E| log n) memory operations. The
strategy in [3] requires nodes to spread their rank values sequen-
tially in ascending order. This is not trivial to emulate in a dis-
tributed setting. Cohen and Kaplan [4] compute LE list in a dis-
tributed setting. However, their protocol still assumes sequential
spreading of rank values, only their order is determined in a dis-
tributed manner.

Distributed Approximation Algorithms:
We use LE lists to implicitly compute an FRT embedding. Using
the embedding, we obtain distributed approximation algorithms for
the following problems (cf. Section 4):
1. Generalized Steiner Forest (GSF) Problem: We give a dis-
tributed algorithm takes O(S k log2 n) time and O(S n log n) mes-
sages and computes an (expected) O(log n)-approximate Steiner
subgraph. The parameter S can be shown to capture the hardness
of distributed approximation quite precisely. Using the hardness
results of Elkin [9], one can show that there exists a family of n-
node graphs where Ω(S ) time is needed by any distributed approx-
imation algorithm to approximate the MST within an H-factor, for
any H ∈ [1,O(log n)] (we refer to [15] for details). Since the MST
problem is a special case of the GSF problem, our algorithm is exis-
tentially time-optimal (up to a factor of O(k log n)). Note that S can
be much smaller than

√
n. (Recall that Ω̃(

√
n) is a lower bound on

the time needed to compute exact MST or Steiner tree solutions.)
For example, in networks where edge weights are chosen uniformly
and independently from an arbitrary distribution, S = O(D + log n)
with high probability [15].

No previous distributed approximation algorithm for the GSF
problem is known. For the special case of the minimum Steiner tree
problem (k = 1), there is a well-known centralized 2-approximation
algorithm based on computing the MST on the node set V1 [23].
Using this fact, an O(n log n)-time 2-approximate distributed algo-
rithm was designed in [2] based on the classical distributed MST
algorithm due to Gallager et al [11]. This algorithm is not time op-

timal (since Gallager et al. also is not). Also, the approach cannot
be generalized to the GSF problem.
2. Minimum Routing Cost Spanning Tree Problem: In this problem,
the weight of an edge represents the cost of routing messages be-
tween its endpoints. The routing cost for a pair of nodes in a given
spanning tree is the sum of the weights of the edges of the unique
tree path connecting the two nodes. The routing cost of the tree
then is the sum of the pairwise routing costs over all pairs of nodes.
Finding a spanning tree with minimum routing cost is NP-hard for
general weighted undirected graphs. We refer to [24] for a detailed
background. We present an (expected) O(log n)-distributed approx-
imation algorithm that takes O(S log2 n) time and O(S n log n) mes-
sages.
3. k-Source Shortest Paths Problem: Formally, given an undirected
weighted graph G = (V, E,w) and a subset K ⊆ V of k nodes,
the goal is to compute (approximate) shortest paths between all
pairs of nodes in V × K. We refer to [6] for a detailed background
on this fundamental algorithmic problem. We give an algorithm
that computes (expected) O(log n)-approximate k-source shortest
paths in O(kD log n) time using O(|E|(min[D, log n] + k) + kn log n)
messages in an unweighted graph and in O(kS log n) time using
O(|E|(S log n + k) + kn log n) messages in a weighted graph.

In [6], Elkin presented a distributed algorithm that computes a
path that is (1 + ε) times the shortest path plus an additive con-
stant. On unweighted graphs, the algorithm runs in O(kD + n1+δ/2)
time and uses O(|E|nρ+kn1+δ) messages (in the synchronous model)
where ε, ρ, and δ are arbitrarily small positive constants. On weighted
graphs, the algorithm runs in O(wmaxn1+δ/2+kD) time using O(|E|nρ+
kn1+δ) messages and the additive error depends on wmax, the ratio
between the largest and smallest weight in the network. Since the
algorithm’s time complexity depends on the edge weights, its run-
ning time can be quite large. Our result substantially improves the
time complexity of Elkin’s algorithm both for weighted and un-
weighted graphs. This however comes at the cost of an O(log n)-
factor in the quality of the solution. Our algorithm also improves
over the communication complexity of exact algorithms (e.g. [6]).

2. LEAST ELEMENT LISTS
At the core of our approximation techniques is a distributed pro-

tocol called LE-Dist. Given an undirected weighted network G =

(V, E,w), LE-Dist assigns to each node v a unique rank R(v) drawn
uniformly at random, and computes Cohen’s LE-Lists [3] for all
nodes.

The least element in Γρ(v), denoted by Lρ(v), is a node u ∈ Γρ(v)
such that for all u′ ∈ Γρ(v) and u′ , u, R(u) < R(u′). For every
node v ∈ V , we want to compute the least element in Γρ(v) for every
distance ρ ∈ [0,∆]. These least elements are maintained as a list of
ordered pairs, called the least-element list (LE-list):

Definition 2.1. LE-list. The LE-list of a node v ∈ V, L(v) =

{〈u, ρ〉 | ρ = d(v, u) and u = Lρ(v)}.

Several properties follow from the definition of LE-lists. Let
〈ui, ρi〉 be the ith element in the sorted order of the elements of L(v)
in increasing order of ρ, i.e., ρi < ρi+1 for 1 ≤ i < |L(v)|. We have
(a) Lρ(v) = ui for any ρ ∈ [ρi, ρi+1), for 1 ≤ i ≤ |L(v)| assuming
ρ|L(v)|+1 = ∆+ε with any ε > 0, (b) R(ui) > R(ui+1) for 1 ≤ i < |L(v)|,
and (c) u|L(v)| is the least element in V .

2.1 The LE-Dist Algorithm
We present a distributed algorithm called LE-Dist for computing

the LE-lists of all nodes. The nodes first choose their ranks ran-
domly. The basic strategy is to let each node flood its rank to the



network. A node v needs to forward a rank message from w to its
neighbors only if w is the lowest ranking node at distance d(v,w)
from v.

All nodes execute the algorithm simultaneously in phases, where
a phase consists of several communication rounds. Initially, a node
only knows its own rank and distance (0). In each phase, a node
exchanges rank information with its neighbors. The node updates
its knowledge of ranks in the network based on the messages it
receives from neighbors. These changes are forwarded to neighbors
in the next phase. It is easy to see that after phase k, a node has rank
information regarding all nodes within hop-count k. Thus, after S
phases (S is the shortest path diameter of G, defined in Section 1.1),
every node has full rank information and can compute L(v).

Note that, in a weighted graph, at the time that node v gets w’s
rank, v may not have information about all the nodes within dis-
tance d(v,w). So w’s rank message may get forwarded by v, and
later, v may receive a rank message from a lower ranking node
within distance d(v,w). This may result in having extraneous mes-
sages being forwarded, and also in extra delays, since only one
message may be sent over each link per time step. The challenge is
to keep the communication and completion time bounded. Subse-
quent sections address the time and message analysis.

More specifically, a node locally v maintains a data structure lev

which stores v’s current view of L(v). Initially, it contains the LE-
list of {v}, the node itself. At the beginning of round k, it stores the
LE-list for v of all nodes at hop-distance k − 1 from v. For conve-
nience, each entry in lev contains, in addition to the pair 〈u,R(u)〉,
the following information:

• ρ, the minimal distance that u’s rank message traveled to
reach v;

• u′, the last node on the minimal-distance path from u to v;

• a new/old flag.

The details for the LE-Dist algorithm are given by Algorithm 1. In
an initialization step, the nodes first choose random ranks. Choos-
ing p(v) from {1, . . . , nc} guarantees that all nodes v choose different
p(v) WHP. Initially, lev contains the single entry 〈v,R(v), 0, v, new〉.
After the initialization, the algorithm runs in phases. In phase k,
node v exchanges all items marked new in its list with its neigh-
bors, and incorporates their rank messages into lev. At the end of
a phase, a node v proceeds to the next phase as long as it has not
received a control message notifying it of termination. The control
messages needed for termination are omitted from the pseudo-code
of the algorithm. We discuss termination detection in the following
section.

2.2 Detecting Termination
As we already argued above, after phase S , every node v has rank

information from the entire network, and lev does not change any
more. Therefore, no more rank messages are generated after phase
S ends. Since S is not known to the nodes initially, relying on the
rank messages only, a node cannot determine whether there are any
outstanding rank messages in the network and does not know when
to terminate.

To detect termination, we introduce an additional mechanism.
If v ignores a rank message it receives from u′, it echoes it back.
Otherwise, it waits for echoes from all neighbors other than u′, and
then echoes it back. Note that, if u′ is v’s only neighbor, then the
waiting vacuously completes immediately, and v echoes back the
message.

Every rank message is eventually echoed back, either when it
cannot travel farther or when it is ignored. At the latest, after the

Algorithm 1 LE-Dist Algorithm (at node v)
Initialization:
1: choose p(v) uniformly at random from {1, . . . , nc}
2: rank R(v) := (p(v), ID(v))
3: // use lexicographical order when comparing ranks
4: insert 〈v,R(v), 0, v, new〉 into lev

Phases:
5: // execute phase code until termination message received
6: for phase k := 1, 2, . . . do
7: for each new item 〈u,R(u), ρ, u′, new〉 in lev do
8: send rank msg. 〈u,R(u), ρ〉 to all neighbors except u′

9: end for
10: send end-of-phase control msg. to all neighbors
11: mark the new items in lev old
12: wait until end-of-phase msg. received from all neighbors
13: for all neighbors u′ do
14: for all rank msg. 〈u,R(u), ρ〉 rcv. from neighbor u′ do
15: ρ′ := ρ + w(u′, v)
16: for all 〈ui,R(ui), ρi, u′i , ∗〉 ∈ lev do
17: if ρi ≤ ρ′ and R(ui) ≤ R(u) then
18: delete (ignore) rank message 〈u,R(u), ρ〉
19: else
20: for all 〈ui,R(ui), ρi, u′i , ∗〉 ∈ lev do
21: if ρi ≥ ρ′ and R(ui) ≥ R(u) then
22: delete 〈ui,R(ui), ρi, u′i , ∗〉 ∈ lev from lev

23: end if
24: end for
25: insert 〈u,R(u), ρ′, u′, new〉 into lev

26: end if
27: end for
28: end for
29: end for
30: end for

end of Phase S , any remaining rank message is echoed. It may take
up to S additional phases for echoes to reach their origins. After
the end of Phase 2S , every node has received echoes for its own
rank message from all of its neighbors. Still, nodes do not know
when all of their peers have received their echoes.

Consider a node v whose rank is not the lowest. Its rank mes-
sage is ignored at least by one other node (the lowest ranking). A
node that ignores v’s rank message forwards at the next phase in-
formation about a lower rank. That lower rank, or an even lower
rank message that collides with it, reaches v at the latest one phase
after the echo message reaches v. Therefore, a node w that receives
its own echoes from all of its neighbors at phase r, and does not
receive any lower rank message at phase r + 1, knows that it is the
lowest ranking node in the network. Node w then floods the net-
work with a leader message. A node that receives a leader message
stores the last (parent) hop, and forwards the leader message to all
other neighbors. This builds a BFS tree rooted at the lowest ranking
node w.

After having collected echo message for its rank message from
all of its neighbors, a leader message, and done messages from
every child neighbor (all but parent), a node sends a done message
to the parent neighbor. The leader waits for done messages from
all of its children, and then floods the network with a termination
signal.

More precisely, in a phase, after having exchanged rank mes-
sages as described above, a node v exchanges messages with neigh-
bors as follows.



Echo:

a) When v ignores a rank message 〈u,R(u), ρ〉 received from a
neighbor u′ (see Step 2(e)i. above), it sends an echo message,
for this rank message, back to u′.

b) If v forwards the rank message 〈u,R(u), ρ〉 (Step 2a), it waits
until it receives the echo messages for this rank message
from its neighbors (except u′, whom v did not forward the
rank message to). Once v receives these echo messages, if v
did not send an echo u′ already, v sends an echo message to
u′. If v does not have any neighbor other than u′, i.e., there
is no neighbor to forward 〈u,R(u), ρ〉 to, v sends the echo
immediately to u′.

c) If an item 〈ui,R(ui), ρi, u′i , ∗〉 gets deleted from lev (Step 2(e)ii),
and if v did not send the echo to u′i for this rank message yet,
v sends the echo to u′i .

One full phase after having received echo messages for its own
rank from all of its neighbors, a node v starts the following termi-
nation protocol.

Termination:

a) If there are no lower rank items in lev, then v knows it is
the leader and sends leader message to all its neighbors. It
waits for done messages back from them, and then sends a
termination signal to all of them.

b) If v receives a leader message from u, and parentv is empty,
then v sets parentv to u and forwards the leader message to
every neighbor except u.

c) If parentv is not empty, and v received done messages from
every neighbor except parentv (vacuously holds if parentv is
the only neighbor), then v sends a done message to parentv.

2.3 Correctness
By applying the following lemma recursively, one can show that

using the LE-lists as “routing tables", a node v can trace back a path
(which is the weighted shortest path) to the lowest ranked node in
Γρ(v) for any ρ.

Lemma 2.1. At the end of the LE-Dist algorithm (Algorithm 1),
if 〈u,R(u), ρ, u′, ∗〉 ∈ lev, then 〈u,R(u), ρ − w(u′, v), u′′, ∗〉 ∈ leu′ for
some u′′ such that u′′ , v and (u′, u′′) ∈ E.

Proof. 〈u,R(u), ρ, u′〉, ∗ can be inserted in lev only after v re-
ceives rank message 〈u,R(u), ρ−w(u′, v)〉 from neighbor u′, and at
that time 〈u,R(u), ρ − w(u′, v), u′′〉, ∗ is in le′u. Clearly u′′ , v, be-
cause if u′ receives this message from v, u′ would not forward it to
v. Later 〈u,R(u), ρ−w(u′, v), u′′, ∗〉 can be deleted from le′u only if u′

receives another message 〈u1,R(u1), ρ1〉 from u′1 with R(u1) ≤ R(u)
and ρ − w(u′, v) ≤ ρ1 + w(u′, u′1). If u′1 , v, u′ would forward this
message to v leading to the deletion of 〈u,R(u), ρ, u′, ∗〉 from lev,
and if u′1 = v, v would delete it before forwarding the message to
u′.

Lemma 2.2. By the time, a node u receives the echoes of the
rank message originated by itself from all of its neighbors, the rank
message 〈u,R(u), ρ〉 has reached every node v for which 〈u,R(u), ρ, ∗, ∗〉
is supposed to be in lev.

Proof. In Steps 3a and 3b, the echo for a rank message is gen-
erated only when the rank messages is not forwarded, and if it is
forwarded (by v), v waits until the echo messages comes back from

the neighbors to which v forwarded the message to. Thus, clearly,
the rank messages (originated by u) complete their journey before
u receives the echoes back. In Step 3c, v sends an echo early if an
item 〈u,R(u), ρ, ∗, ∗〉 is deleted from lev. Consider any node v′ such
that the rank message 〈u,R(u), ∗〉 travels from u to v′ via v. Since
〈u,R(u), ρ, ∗, ∗〉 is deleted from lev, following Lemma 2.1, the item
〈u,R(u), ρ, ∗, ∗〉 corresponding to the rank message 〈u,R(u), ρ〉 can-
not be in the “final" LE-list of v′. Thus, the lemma follows.

Lemma 2.3. If a node u receives the echoes of its own rank mes-
sage from all of its neighbors by the end of phase k, then by the end
of phase k + 1 it has a lower ranking entry in lev if there exists a
lower rank in the graph.

Proof. Consider a node v whose rank is not the lowest. Its rank
message is ignored at least by one other node (the lowest ranking).
A node that ignores v’s rank message forwards at the next phase
information about a lower rank. That lower rank, or a lower rank
message that collides with it, reaches v at the latest one phase after
the echo message reaches v.

Lemma 2.4. At the end of Algorithm 1, 〈u,R(u), ρ, u′, ∗〉 ∈ lev if
and only if ρ = d(v, u) and u = Lρ(v).

Proof. When the algorithm terminates, every node v will have
received echoes for its own rank message from all its neighbors.
Therefore, by Lemma 2.2, for every node u, such that u in lev,
u’s rank message has arrived at v. It remains to show that lev is
computed correctly from all such messages. This follows from
lines 16–27 of the algorithm. Notice that a rank message, origi-
nated by u = Lρ(v), that follows the shortest path P(u, v), meaning
ρ = d(v, u), cannot be ignored or deleted by an intermediate node
in path P(u, v) or by v itself. On the other hand, if it does not fol-
low P(u, v) (i.e., ρ > d(v, u)), its deletion is caused, if it is not
deleted yet, by another rank message originated by u that follows
P(u, v). If ρ = d(v, u) but u , Lρ(v), i.e., there exist u1 ∈ Γρ(v) with
R(u1) < R(u), the deletion is caused by the rank message originated
by u1 that follows P(u1, v).

Theorem 2.5. The LE-Dist algorithm correctly computes the LE-
list of each node.

2.4 Analysis for Weighted Graphs
In this section, we provide an analysis of the number of rounds

and messages needed for completion. We will make use of the
following notation in our proofs: lev(k) denotes the LE-list lev at
the end of phase k.

Lemma 2.6. E [|lev(k)|] ≤ log n, and simultaneously for all v ∈
V and all phases k, |lev(k)| ≤ O(log n) WHP.

Proof. Let Hk(v) be the set of nodes within k-hop distance from
v, i.e., Hk(v) = {u | ∃Q(v, u) s.t. |Q(v, u)| ≤ k}. The graph G re-
stricted to nodes in Hk(v) and edges connecting them is denoted
Gk(v). Let Mk(v) be a set of ordered pairs defined as Mk(v) =

{〈u, ρ〉 | u ∈ Hk(v) and ρ = min|Q|≤k w(Q(v, u))}. We have |Mk(v)| =
|Hk(v)| ≤ n. Now, consider a sorted order of the elements in Mk(v)
in non-decreasing order of ρ, and let 〈ui, ρi〉 be the ith element
in this sorted order, where 1 ≤ i ≤ |Mk(v)|. It is easy to see
that the LE-list of v on the restricted graph Gk is equal to the set
LMk (v) = {〈ui, ρi〉 | R(u j) > R(ui) for all j < i}. The list constructed
by the algorithm at the end of phase k at node v is the LE-list of v
on Gk. Hence, lev(k) is LMk (v).

Let ξi be the event that 〈ui, ρi〉 ∈ LMk (v). Event ξi occurs if and
only if R(ui) is the lowest among R(u1),R(u2), . . . ,R(ui). Since the



ranks are chosen by the nodes independently at random, we have
Pr{ξi} = 1

i , and thus, E[|LMk (v)|] =
∑|Mk(v)|

i=1
1
i ≤ log |Mk(v)| ≤ log n.

Notice that the events ξis, 1 ≤ i ≤ |Mk(v)|, are independent.
By using the Chernoff bound, we can show that for a particular v,
|L(Mk(v))| < 5 log n with probability at least 1 − 1

n3 . Since k < n,
by using the union bound, we have |LMk (v)| < 5 log n for all v and
k simultaneously with probability at least 1 − n2

n3 ≥ 1 − 1
n . This

completes the proof.

Lemma 2.7. In every phase k, a node v exchanges O(log n) mes-
sages with each of its neighbors WHP.

Proof. Nodes exchange three types of messages during a phase:
Rank, echo, and termination-related (leader, done, termination).

By Lemma 2.6, each node sends its neighbors O(log(n)) rank
messages, and likewise, receives O(log(n)) rank messages from
each neighbor.

We now bound echo messages. During phase k, a node v echoes
back to a neighbor u either rank messages received (and ignored)
from u during the phase, or rank messages that were previously
received from u. The latter must correspond to entries that exist
at the beginning of the phase in lev(k − 1), and are either deleted
at phase k, or remain in lev(k) (and echoes for them arrived). By
Lemma 2.6, the number of messages arriving in phase k from u is
bounded by O(log n) WHP, and by the same lemma, so is the size
of lev(k − 1).

Finally, in each phase a node may exchange with each neighbor
at most one of each, leader, done, termination, messages. Hence,
the lemma follows.

Theorem 2.8. The LE-Dist algorithm terminates in O(S log n)
rounds using O(|E|S log n) messages WHP.

Proof. Each phase takes O(log(n)) communication rounds WHP,
by Lemma 2.7. When all nodes complete S +1 phases, no new rank
messages are generated. Within additional S phases, echo mes-
sages travel back to all nodes. Finally, constructing the termination
tree by flooding a leader notification takes O(D) phases, where D is
the unweighted (hop) diameter. The resulting BFS tree has height
D. Hence, a converge-cast of done messages and a broadcast of
the termination signal take altogether O(D) phases. In total, since
D ≤ S , the algorithm terminates in O(S log n) rounds and uses
O(|E|S log n) messages.

Tightness of Analysis: The analysis of the LE-Dist Algorithm is
tight up to constant factors as stated in the following theorem (the
proof is omitted).

Theorem 2.9. For arbitrary constants ε, δ > 0 such that ε + δ <
1/2, it is possible to construct a weighted n-node graph G with
S = Θ(nδ) and |E| = Θ(n2−2ε) such that the expected time and
message complexities of the LE-Dist algorithm are Ω(εS log n) and
Ω(ε|E|S log n).

2.5 Analysis for Unweighted Graphs
In an unweighted graph, the LE-Dist algorithm can be simplified

as described below. On unweighted graphs, the distance ρ traveled
by a message is simply the number of edges on the path that the
message followed. Initially, at phase k = 1, v forwards its own rank
to all of its neighbors. By induction on k, we have that i) the mes-
sages arriving at v in phase k, have larger ρ values than that of all
messages arriving in phases k′ < k, ii) all messages arriving at v
in phase k, have ρ = k. As a result, in phase k + 1, we only need
to forward the message with the lowest-ranked originator among

the messages received in phase k and we can ignore all other mes-
sages. Hence, a message is never delayed, it is either ignored or
forwarded. As a result, each phase boils down to a single round.
We no longer need to use control messages to mark the end of a
phase and we do not need to keep the new/old flag. For the mes-
sage complexity, we therefore only need to count the number of
rank messages. Note that the number of echo messages is exactly
equal to the number of rank messages.

Theorem 2.10. For unweighted graphs, LE-lists can be com-
puted in O(D) rounds (for any ordering of the nodes). If ranks are
chosen randomly, the message complexity is O(|E|min(D, log n))
WHP.

Proof. Each phase takes one communication round (i.e., there is
no delay). Hence the algorithm terminates in O(S ) = O(D) rounds.

As we observed, the messages that arrive at node v in phase k
have a larger ρ value than that of a message that arrives in a phase
t′ < t. Thus an item in lev never gets deleted once the item is
inserted into lev. Further, whenever v forwards a message, it inserts
the corresponding item in lev. Thus the total number of messages
forwarded by v is bounded by |L(v)|. Node v forwards each message
through at most deg(v) adjacent edges, where deg(v) is the degree
of v. Now, |lev| = O(log n) WHP (Lemma 2.6) and also |lev| ≤
D since in each round, at most one item is inserted in lev. Thus,
the message complexity is

∑
v∈V deg(v) · O(|lev|) ≤ ∑

v∈V deg(v) ·
O(min{D, log n}) = O(|E| ·min{D, log n}).

Leader Election: The LE-Dist algorithm for unweighted graphs
is a leader election algorithm since the lowest ranked node can be
elected as the leader and the all the rest know it (cf. Section 2.2).
Hence the algorithm for unweighted graphs can be used as a syn-
chronous, leader election algorithm for arbitrary graphs. By Theo-
rem 2.10, the time complexity is O(D) (deterministically) and the
message complexity is O(|E|min(D, log n)) WHP.

3. PROBABILISTIC TREE EMBEDDING
We next show how to compute an FRT embedding as described

in [10], i.e., we give a randomized algorithm that maps the given
graph metric into a tree such that every pair of nodes has good
expected stretch, where the expectation is taken over the coin tosses
of the algorithm.
1. Construction of LE-lists: Construct the LE-lists of the nodes
using the LE-Dist algorithm.
2. Construction of β-lists: Given a parameter β ∈ [1, 2], let βi =

2i−1β for i = 0, 1, 2, . . . , δ = dlog ∆e. The β-list of a node v, denoted
by β(v), is a list of pairs 〈βi, ui〉 such that ui is the least element
in Γβi (v). The leader selects a real number β uniformly at random
in [1, 2] and broadcasts β to the other nodes using the BFS tree
computed during the LE lists computation. This needs O(D) time
and O(n) messages. Once a node gets β, it can compute its β-list
from its LE-list.
3. Tree Embedding: The β-lists of the nodes define a hierarchical
clustering as follows: The top level cluster consists of all nodes
in V and we define its level to be δ. Each level-i cluster Ci, j is
decomposed into level-(i − 1) clusters. We define ui to be the level
i cluster center for v if 〈βi, ui〉 ∈ β(v). All nodes in Ci, j with the
same level-(i− 1) cluster center form one level-(i− 1) cluster. Thus
v itself is its level-0 cluster center, i.e., u0 = v, and the center of the
root cluster is the least element in V . Note that a particular node
may be the center of several different clusters at the same level
and at different levels. Also observe that each cluster at level i has
diameter at most 2iβ.
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Figure 1: Construction of GSF in an FRT tree. V =

{v1, v2, . . . , v12}, δ = 4,V1 = {v1, v2, v3}, V2 = {v4, v5, v6, v9, v10},
V3 = {v11, v12}. The solid black nodes are in V . The white nodes
are internal nodes of an FRT tree. Nodes in V1,V2 and V3 are
marked by circles, squares, and triangles, respectively. The
solid lines are the edges in an FRT tree, and the dotted lines
are the edges in the Steiner forest.

Given the hierarchical clustering, one can naturally define a tree
as follows: each cluster corresponds to a node in the tree, and we
have an edge from cluster Ci, j to Ci−1, j′ iff Ci−1, j′ is a sub-cluster of
Ci, j. The level-0 clusters that form the leaves of this tree are sin-
gleton clusters that correspond to the nodes of V . Thus each v ∈ V
forms a leaf node in the tree (the black nodes in Figure 1). The
edge from a level i cluster to its parent has weight 2iβ. It is easy to
verify that for any edge in the tree, the graph distance between the
corresponding cluster centers is no larger than twice the weight of
the edge. Clusters have radii at most 2i−1β. It is shown in [10] that
for any v,w ∈ V , the tree distance between v and w is (determinis-
tically) at least as large as the original graph distance, and that the
expected tree distance between them is O(log n) times their original
distance.

In a distributed setting, we do not explicitly construct this FRT
tree. Instead, the β-lists implicitly define the tree. We will think of
each cluster as being represented by its center.

4. DISTRIBUTED APPROXIMATION
ALGORITHMS

4.1 Generalized Steiner Forests
The tree embedding inspires a natural centralized algorithm for

the GSF problem (defined in Section 1): Observe that the problem
can be solved optimally on a tree by connecting each pair of nodes
belonging to the same group V j ( for all 1 ≤ j ≤ k) via the nearest
common ancestors (Figure 1) and taking the union of all selected
edges for all sets V j, 1 ≤ j ≤ k. This solution, applied to the tree
resulting from an embedding, can be converted to a solution for the
original graph by including, for each edge in the tree solution, the
shortest path in the graph between the corresponding cluster centers
(note that the resulting subgraph may not be forest). The bound
on the expected distortion of the FRT embedding implies that in
expectation, the cost of OPT on the tree is no larger than O(log n)
times the optimal solution to the original instance. The fact that the
distances in the tree are always larger than corresponding distances
in the graph implies that the cost of the solution induced on the
graph is no larger than the cost of the solution on the tree. Thus,
this algorithm gives an O(log n)-approximation to the problem in
expectation. Next, we describe a fast distributed approximation
algorithm based on this approach.
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Figure 2: Distributed GST construction. The dotted lines are
the paths that are included in the Steiner subgraph. The light-
colored dotted lines, e.g., P(v6, u1,3), may or may not be included
in the Steiner subgraph.

Distributed Algorithm
We assume that we have an implicit representation of the FRT tree;
i.e., each node has its LE-list and β-list. Our distributed algorithm
constructs an (explicit) O(log n)-approximate Steiner subgraph. In
other words, at the end of the algorithm, each node knows which
of its incident edges belong to the Steiner subgraph. We focus on
finding an O(log n)-approximate Steiner subgraph, not necessarily
a forest. However, a Steiner forest can be constructed from the
Steiner subgraph, with the same time and message complexities,
by a breadth first search.

Before we detail the algorithm, we illustrate the main ideas with
an example. In a distributed setting, the internal nodes (the white
nodes in Figure 1) of an FRT tree are represented by the centers of
the corresponding clusters. An edge of an FRT tree is replaced by
the shortest path between the corresponding cluster centers. How-
ever, replacing an edge between two white nodes in an FRT tree is
not straightforward: using LE-lists as routing tables (Lemma 2.1),
we can find the shortest path from a black node to any of its ances-
tor white nodes but not between two white nodes. To resolve this
problem, we pick an arbitrary black descendant on a white node
and connect it to the higher level white node. Thus in Figure 1,
edge (u1,2, u2,1) of an FRT tree can be replaced with the shortest
path P(v5, u2,1) in G.

For a group V j, let `(V j) denote the level of the lowest common
ancestor of the nodes in V j, in the tree; i.e. the smallest i such
that all nodes in V j belong to a single level i cluster. For a node v
in group V j, we define `(v) to be `(V j) (recall that the groups are
disjoint).

The algorithm consists of two parts: the first is a discovery part,
where each node v computes `(v), and the second is a construction
part where the Steiner subgraph is constructed using this informa-
tion.
Discovery Part
We start by describing a simplified version of the discovery part
of the algorithm, which we will then refine to avoid congestion.
We describe the algorithm for a single group V j; the k groups run
the algorithm in parallel. The algorithm consists of δ = dlog ∆e
synchronized phases. The nodes begin (i+1)st phase after all nodes
finish their ith phase. (We describe later how to synchronize the
phases.) Each node v computes `(v) by sending messages to its
level i ancestor ui, for each i, and determining whether the cluster
defined by its level i ancestor contains all of V j, starting from the
top down.

We next describe the ith phase. Let i = δ − i + 1. Each node v
that hasn’t yet determined `(v) sends a find-lca message to its level
i cluster center ui, containing its own identifier, its group identifier,
and its level i − 1 cluster center. The level i cluster center looks at



all the messages it receives, and if it receives messages containing
at least two of its children as level (i− 1) cluster centers, it declares
itself to be the least common ancestor and sends a YES reply to
each node it received a message from. On the other hand, if all
messages agree on the level (i − 1) cluster center, the level i cluster
center sends a NO message, communicating that the least common
ancestor is lower down the tree. A node v ∈ V j stops as soon as it
receives a YES message and sets `(v) to i.

Lemma 4.1. At the end of δ phases, each node v in each group
will determine the correct value of `(v).

Proof. The lemma would be immediate if instead of cluster cen-
ter ui−1, we sent a unique identifier for the cluster to the parent clus-
ter center. However, one node u can be the cluster center for several
clusters at the same level. We next argue that from the point of view
of this algorithm, the cluster centers are in fact unique identifiers.

Let Ci∗ be the cluster corresponding to the true lca with center
ui∗ . Thus V j ⊆ Ci∗ , so that messages sent to centers ui for i ≥ i∗ all
agree on their level i−1 cluster and hence on the cluster center. The
tree construction is easily seen to have the property that all children
of a cluster C have distinct cluster centers. Thus the messages to the
level i∗ cluster center, which contain centers of at least two distinct
clusters, must in fact contain at least two distinct cluster centers.
Thus the response from ui∗ will in fact be YES and the nodes in V j

will stop with the right value of `(v).

We next mention some implementation details and refinements.

Routing: Lemma 2.1 implies that for every v ∈ V , routing from v
to its level i cluster center ui, for any i, can be done using the LE
lists as routing tables. (The route taken will be the weighted short-
est path to ui.) Additionally, whenever a node w gets a message
originating from v along edge e, destined for a node ui, w stores a
routing table entry consisting of v and the edge e. These routing
table entries enable routing from ui to v. Thus all messages can be
routed without redundant transmissions.

Controlling Congestion: In the above protocol, several nodes can
send a message to their level i cluster center simultaneously. Since
the paths from these nodes to their parents can intersect, this can
lead to congestion on edges. We modify the protocol so as to merge
messages belonging to the same group and destined for the same
cluster center, according to the following rules:

1) If in any round, a node w gets at least two simple find-lca mes-
sages all agreeing in ui and ui−1 and j: w picks one of the
messages 〈v, ui, ui−1, j〉 arbitrarily and forwards it.

2) If in any round, a node w gets at least two simple find-lca mes-
sages 〈v, ui, ui−1, j〉 and 〈v′, u′

i
, u′

i−1
, j〉 such that ui = u′

i
but

ui−1 , ui−1: w concatenates two of the messages and for-
wards a concatenated message 〈v, ui, ui−1, j, v′u′

i−1
〉.

3) If in any round, a node w receives more than one message
agreeing on ui and j, including at least one concatenated mes-
sage: w forwards a concatenated message.

4) Messages agreeing on the group j but meant for different cluster
centers are not combined.

5) Whenever w drops or concatenates messages, it makes a record
locally so that when the reply arrives, it can forward it to all
the relevant nodes.

Note that now a cluster center ui learns of only a subset of the
nodes in V j. However, the above rules ensure that if there are at
least two nodes u and u′ with different level (i − 1) cluster centers,
then ui gets messages for at least two such nodes. Thus the cor-
rectness of the algorithm (i.e., correctness of ` values) continues to
hold.

We next prove a lemma to help bound the congestion.

Lemma 4.2. Suppose nodes in a group V j send a message in
phase i. Then they all have the same level i ancestor ui.

Proof. We show this by induction on i. In the first phase, clearly
all messages are meant for the root so the base case holds. Suppose
the claim holds for all i − 1. Since a message is sent in phase i,
all the previous responses must be NO . In particular, ui+1 sent a
NO message which implies that all nodes agree on ui. The claim
follows.

Thus rule 4) above never applies and at most one message is sent
per round on each edge.

Synchronizing the Phases: In each phase, a cluster center waits
S k rounds so that it receives all of the find-lca messages destined
to it before responding to any of them. Note that S and k can easily
be computed during the execution of LE-dist algorithm.

Before starting the next phase, each node waits for another S k
rounds to make sure all nodes receives the responses of their find-
lca messages. The correctness of this synchronization follows from
the following lemma.

Lemma 4.3. Any message in the first part of the GST algorithm
takes at most S k time to reach its destination.

Proof. A message travels through at most S edges and conges-
tion at any edge is at most k. The claim follows.

Construction Part
The construction part of the algorithm also runs in synchronized
phases. Each node v ∈ ∪V j, tries to construct paths that correspond
to the tree path from v to its level `(v) ancestor. The definition of `
implies that each group V j is connected in the resulting subgraph.

In phase i, each node v with `(v) ≥ i ensures that its level (i −
1) cluster center is connected to its level i cluster center. This is
achieved by picking a node w from each relevant level (i−1) cluster,
and connecting w both to its level i−1 cluster center and to its level
i cluster center. Thus ui−1 and ui get connected via some node w in
ui’s cluster, and the tree construction ensures that the expected cost
of this subgraph is within O(log n) of OPT.

However constructing the above subgraph may require too many
messages, as each node ui may represent several cluster centers,
and hence may need to connect to several level (i + 1) cluster cen-
ters in one phase. To alleviate this, we will actually construct only
a subset of these edges. More precisely, if there are several dif-
ferent nodes v1, . . . , vs belonging to the same group V j that want
to connect their level i cluster center ui (possibly representing dif-
ferent clusters), to their level (i + 1) cluster centers u(1)

i+1, . . . , u
(s)
i+1

respectively, we select one arbitrarily and connect ui to ui+1. For
concreteness, suppose that we always select the vx with the lowest
rank; we say that vy, x , y is overruled by vx. Let E′ be the corre-
sponding subset of pairs (ui, ui+1). For a pair (ui, ui+1) ∈ E′, define
w(ui, ui+1) to be 2i+2β.

Before we show how this is implemented in the distributed set-
ting, we show that this optimization preserves correctness. It is
easy to see that this builds only a subset of edges and hence the
approximation guarantee is preserved. We next argue that this still
ensures that each V j is connected in the resulting subgraph.



Lemma 4.4. Let the subgraph E′ be constructed as above. Then
each V j is connected in E′.

Proof. Consider a particular group V j, with `(v) = l for each v
in V j. Thus each v ∈ V j has the same level l ancestor ul. We show
that E′ has a path from ul to every v ∈ V j, by induction on the rank
of v.

Clearly the lowest ranked node in V j never gets over-ruled, and
hence constructs a path from its level i ancestor to its level (i + 1)
ancestor, for every i : 0 ≤ i ≤ (l−1). This establishes the base case.

Consider a node v ∈ V j and assume inductively that all lower
ranked nodes have a path to ul. If v is never overruled, it clearly has
a path to ul. Else it first gets overruled at some step i, say by a node
v′. In this case, v has a path to ui, and v′ has a path to ui as well.
Moreover, since v′ has a lower rank, it inductively has a path to ul.
Hence v is connected to ul as well, and the claim follows.

We next describe how this set E′ is constructed by the distributed
algorithm. Nodes that have not yet been overruled are considered
selected, and these nodes send messages to their level i ancestors
in phase i. These messages help ui determine the next level cluster
centers that it needs to connect to. For each such ui+1, it picks an
arbitrary descendant from the corresponding cluster and asks it to
connect to ui+1. Initially, each node v considers itself selected for
phase 1 if `(v) , 0. Only the selected nodes participate in the next
phase.

In phase i = 0, 1, 2, . . . , δ:

• Each selected node v belonging to a group V j sends a want
connected message 〈v, ui, ui+1, j〉 to its level-i cluster center
ui.

• After the cluster center ui receives want connected messages,
if any, from its selected descendants in group V j, ui picks
the one with the lowest rank and selects it. Then ui sends a
selected-for-next-phase message to it. Additionally, let Ui+1

be the set of level (i + 1) cluster centers that are received
from the selected nodes. For each ui+1 ∈ Ui+1, ui picks an
arbitrary sender v of that request, and sends v a chosen to
connect message consisting of ui and ui+1.

• If v gets a chosen to connect message from ui consisting of ui

and ui+1, it sends a connect message to ui+1. When a connect
message passes through an edge (v1, v2), both v1 and v2 mark
this edge to be included in the Steiner subgraph.

• After v′ gets the selected-for-next-phase message, v′ consid-
ers itself selected for the next phase if i < `(v′).

Note that the selected-for-next-phase, chosen to connect, and
connect messages correspond uniquely to some want connected
message, and hence it suffices to analyze the time and message
complexity of the want connected messages. We next show the
following invariants.

Lemma 4.5. If v sends a want connected message to ui, then v
and ui are connected in the Steiner subgraph.

Proof. The proof is by induction on i. The base case is trivial
as u is connected to itself. Suppose that v is selected in phase i so
that it sends a want connected message to ui+1. Then ui+1 ∈ Ui+1

so that there is v′ which receives a chosen to connect message from
ui consisting of ui+1. Thus at the end of this phase, v′ and ui+1 are
connected in the Steiner subgraph. Inductively, both v and v′ were
connected to ui in the Steiner subgraph. The claim follows.

Lemma 4.6. If ui is connected to ui+1 in E′ above, then the Steiner
subgraph built by the distributed algorithm has a ui—ui+1 path.
Moreover, the Steiner subgraph has cost no more than w(E′).

Proof. The set of edges incident on ui and a higher level cluster
center in E′ consists exactly of the level i+1 ancestors of nodes that
are minimal ranked in V j ∩ desc(ui) for some j. This is exactly the
set Ui+1 and the chosen to connect messages ensure that the Steiner
subgraph has a path from ui to ui+1, for every ui+1 ∈ Ui+1.

The fact that a unique v′ is chosen to connect ensures that bound
on the weight of the subgraph.

These imply that running the above algorithm will give sub-
graph that connects each of the V j’s and has expected cost at most
O(log(n) · OPT).

Routing: Since messages go from nodes to their cluster centers,
and back, routing is easily done as in the first part.

Controlling Congestion: Similar to the discovery part of the al-
gorithm congestion is controlled by combining the want connected
messages if they meet at some intermediate node u on their way
and have the same destination:

• If two or more want connected messages belonging to the
same group (e.g. messages originated by nodes x1, x2, . . . , xr)
with the same destination ui arrive at u at the same time, u
picks the lowest ranked one and forwards it towards ui.

• If ui sends a selected-for-next-phase or a chosen to connect
message destined for x j, u simply forwards it to x j.

It is easy to verify that while this pruning allows fewer want con-
nected messages from reaching ui, it still ensures that for each node
that would get selected in the unpruned run, its want connected
message is not pruned, and hence the same set of nodes gets se-
lected. Thus the set of edges in the Steiner subgraph is unchanged.

Synchronizing the Phases: In each phase, a cluster center waits
kS Lmax rounds so that it receives all of the connect messages des-
tined for it, where Lmax = maxv∈V |L(v)|. The leader can find k and
Lmax by using BFS tree as an aggregation tree and broadcasting Lmax

to other nodes. This takes O(D) time and O(n) messages. Before
starting the next phase, a selected node waits for another kS Lmax

rounds. The correctness of this synchronization follows from the
following lemma.

Lemma 4.7. In the second part of the GSF algorithm, conges-
tion at any edge adjacent to v is at most k|L(v)|.

Proof. A node v′ sends a message to one of its cluster centers
ui through the shortest path P(v′, ui). If v is on path P(v′, ui), there
must be an entry 〈ui, ∗〉 in L(v) (cf. Lemma 2.1 and 2.4). Thus, v can
be on the shortest path tree for at most |L(v)| different destinations.
The rules above for controlling congestion ensure that at most one
message is forwarded per group to each cluster center, and hence
the congestion at any edge (v, u′) is at most k|L(v)|.

Theorem 4.8. The above distributed GSF algorithm gives an
expected O(log n) approximation and takes O(S k log2 n) time and
at most O(S n log n) messages.

Proof. The expected O(logn) approximation follows from
Lemma 4.6, and the fact that the congestion-related pruning does
not affect the set of edges added to the Steiner subgraph.

The time complexity follows from the fact that there are δ phases
and each phase takes 2S k time in the first part and O(S kLmax) time
in the second part of the algorithm. For the message complexity,



notice that in each phase, each node generates at most one find-lca
or one want connected message and receives its response. Since
each message travels through at most S edges, the number of mes-
sages is at most 4S nδ.

Unweighted Graphs: In an unweighted graph, the algorithm works
in the same way except for the following modification of the syn-
chronization of the phases. In the first part, in phase i, a cluster cen-
ter waits dβiek rounds to receive all find-lca messages, and a node v
waits for 2dβiek rounds to begin the next phase. In the second part,
in phase i, a cluster center waits kdβieLmax rounds to receive the
want connected messages, and v waits for 2kdβieLmax rounds to be-
gin the next phase, which leads to the following time and message
complexity.

Theorem 4.9. In an unweighted graph, the distributed GSF al-
gorithm time and message complexities O

(
kD log n + D log2 n

)
and

O(nD log n), respectively.

4.2 Routing Cost Spanning Trees
The problem (defined in Section 1.3) is trivially solvable in trees.

Thus, using the FRT embedding, we can obtain an (expected) O(log n)
approximation for the problem. Using a similar approach to GSF
(with k = 1) we obtain the following result.

Theorem 4.10. There is an (expected) O(log n)-distributed ap-
proximation algorithm for the routing cost spanning tree problem
that takes O(S log2 n) time and O(S n log n) messages.

4.3 k-Source Shortest Paths
We present a distributed approximation algorithm for k-source

shortest paths (defined formally in Section 1.3) in an arbitrary weighted
network. FRT embedding gives (expected) O(log n)-approximate
paths between any pair of nodes. Below is a brief description of the
algorithm.

1. All v ∈ V find their LE-lists using LE-Dist algorithm and
compute the β-lists.

2. Each source s j ∈ K constructs a BFS tree BFS j rooted at s j

by initiating a breadth-first search and broadcasts its LE-list L(s j)
to all v ∈ V using using the edges of BFS j . This process takes
O(kD log n) rounds and O(k|E|+kn log n) messages for all k sources.

3. Each v ∈ V computes β(s j), 1 ≤ j ≤ k, from L(s j). Now v can
determine the lowest common ancestor of {v, s j} from the β-lists
β(v) and β(s j). A path from v to s j is constructed by concatenating
the shortest paths P(v, ui) and P(ui, s j). The shortest path from any
node to any of its cluster center can be found using the the LE-lists
as routing tables (Lemma 2.1). Thus, P(v, ui) can be constructed
correctly, but we can construct P(ui, s j) only in reverse direction.
To solve this problem, each source s j sends a dummy message to
all of its cluster centers ui so that the nodes in this path can track
their predecessors for the purpose of constructing the routing table
for the reverse paths toward the sources. This step takes O(kS log n)
time and O(kS log n) messages.

Theorem 4.11. The above algorithm computes an (expected)
O(log n)-approximate k-source shortest paths in O(kD log n) time
using O(|E|(min[D, log n]+k)+kn log n) messages in an unweighted
graph and in O(kS log n) time using O(|E|(S log n + k) + kn log n)
messages in a weighted graph.

5. CONCLUDING REMARKS
It would be interesting to improve the time and message com-

plexities of our distributed approximation algorithms, especially for
weighted graphs. The key in doing this is to improve the complex-
ities for computing LE-lists. It might also be possible to extend
our approach to design O(log n) (or polylogarithmic) distributed
approximation algorithms for other network optimization problems
that are easily solvable on trees.
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