
Maleq Khan · Gopal Pandurangan

A Fast Distributed Approximation Algorithm for Minimum
Spanning Trees

Abstract We present a distributed algorithm that con-
structs an O(logn)-approximate minimum spanning tree
(MST) in any arbitrary network. This algorithm runs in
time Õ(D(G) + L(G,w)) where L(G,w) is a parameter
called the local shortest path diameter and D(G) is the
(unweighted) diameter of the graph. Our algorithm is ex-
istentially optimal (up to polylogarithmic factors), i.e.,
there exists graphs which need Ω(D(G)+L(G,w)) time
to compute an H-approximation to the MST for any H ∈
[1,Θ(logn)]. Our result also shows that there can be a
significant time gap between exact and approximate MST
computation: there exists graphs in which the running
time of our approximation algorithm is exponentially faster
than the time-optimal distributed algorithm for exact MST.
Finally, we show that our algorithm can be used to find
an approximate MST in wireless networks and in ran-
dom weighted networks in almost optimal Õ(D(G)) time.

Keywords Minimum Spanning Tree · Distributed
Approximation Algorithm · Randomized Algorithm

1 Introduction

1.1 Background and Previous Work

The distributed minimum spanning tree (MST) problem
is one of the most important problems in the area of dis-
tributed computing. There has been a long line of re-
search to develop efficient distributed algorithms for the
MST problem starting with the seminal paper of Gal-
lager et al [8] that constructs the MST in O(n logn) time

M. Khan
Department of Computer Science, Purdue University, West
Lafayette, IN 47907, USA. E-mail: mmkhan@cs.purdue.edu

G. Pandurangan
Department of Computer Science, Purdue University, West
Lafayette, IN 47907, USA. E-mail: gopal@cs.purdue.edu

and O(|E|+n logn) messages. The communication (mes-
sage) complexity of the Gallager et al. algorithm is op-
timal, but its time complexity is not. Hence further re-
search concentrated on improving the time complexity.
The time complexity was first improved to O(n log logn)
by Chin and Ting [2], further improved to O(n log∗ n)
by Gafni [7], and then improved to existentially opti-
mal running time of O(n) by Awerbuch [1]. The O(n)
bound is existentially optimal in the sense that there ex-
ists graphs where no distributed MST algorithm can do
better than Ω(n) time. This was the state of the art till the
mid-nineties when Garay, Kutten, and Peleg [9] raised
the question of identifying graph parameters that can bet-
ter capture the complexity (motivated by “universal” com-
plexity) of distributed MST computation. For many ex-
isting networks G, their diameter D(G) (or D for short)
is significantly smaller than the number of vertices n and
therefore is a good candidate to design protocols whose
running time is bounded in terms of D(G) rather than
n. Garay, Kutten, and Peleg [9] gave the first such dis-
tributed algorithm for the MST problem with running
time O(D(G)+n0.61), which was later improved by Kut-
ten and Peleg [16] to O(D(G) +

√
n log∗ n). Elkin [4]

refined this result further and argued that a parameter
called “MST-radius” captures the complexity of distributed
MST algorithms better. He devised a distributed protocol
that constructs the MST in Õ(µ(G,w)+

√
n) time, where

µ(G,w) is the “MST-radius” of the graph [4] (is a func-
tion of the graph topology as well as the edge weights).
The ratio between diameter and MST-radius can be as
large as Θ(n), and consequently, on some inputs, this
protocol is faster than the protocol of [16] by a factor
of Ω(

√
n). However, a drawback of this protocol (unlike

the previous MST protocols [16,9,2,7,8]) is that it can-
not detect the termination of the algorithm in that time
(unless µ(G,w) is given as part of the input). Finally, we
note that the time-efficient algorithms of [16,4,9] are not
message-optimal (i.e., they require asymptotically much

2 M. Khan and G. Pandurangan

more than O(|E|+ n logn) messages, e.g., the protocol
of [16] takes O(|E|+n1.5) messages).

The lack of progress in improving the result of [16],
and in particular breaking the

√
n barrier, led to work

on lower bounds for the distributed MST problem. Pe-
leg and Rabinovich [21] showed that Ω̃(

√
n) time is re-

quired for constructing an MST even on graphs of small
diameter (for any D = Ω(logn)) and showed that this
result establishes the asymptotic near-tight (existential)
optimality of the protocol of [16]. Faster algorithms can
be developed for networks with very small constant di-
ameter. An O(log logn) time algorithm for networks with
D = 1 was given in [19], and an O(logn) time algo-
rithm for networks with D = 2 was given in [18]. How-
ever, there exist a significant gap in the time complexity
of the distributed MST algorithms between the cases of
network diameters 2 and 3. In [18], it was shown that
the time complexity of any distributed MST algorithm is
Ω(4
√

n/
√

B) for networks of diameter 3 and Ω(3
√

n/
√

B)
for networks of diameter 4.

While the previous distributed protocols deal with
computing the exact MST, the next important question
addressed in the literature concerns the study of distributed
approximation of the MST, i.e., constructing a spanning
tree whose total weight is near-minimum. From a prac-
tical perspective, given that the construction of an MST
can take as much as Ω̃(

√
n) time, it is worth investigat-

ing whether one can design distributed algorithms that
run faster and output a near-minimum spanning tree. Pe-
leg and Rabinovich [21] was one of the first to raise the
question of devising faster algorithms that construct an
approximation to the MST and left it open for further
study. To quote their paper: “To the best of our knowl-
edge, nothing nontrivial is known about this problem...”.
Since then, the most important new result is the hard-
ness results shown by Elkin [6]. This result shows that
approximating the MST problem on graphs of small di-
ameter (e.g., O(logn)) within a ratio H requires essen-
tially Ω(

√
n/HB) time (assuming B bits can be sent

through each edge in one round), i.e., this gives a time-
approximation trade-off for the distributed MST prob-
lem: T 2H = Ω(

√
n/B). However, not much progress

has been made on designing time-efficient distributed
approximation algorithms for the MST problem. To quote
Elkin’s survey paper [5]: “There is no satisfactory ap-
proximation algorithm known for the MST problem”. To
the best of our knowledge, the only known distributed
approximation algorithm for the MST problem is given
by Elkin in [6]. This algorithm gives an H-approximation
to the MST with running time O(D(G)+ ωmax

H−1 · log∗ n),
where ωmax is the ratio between the maximum and min-
imum weights of the edges in the input graph G. Thus,

this algorithm is not independent of the edge weights and
its running time can be quite large.

1.2 Distributed Computing Model and Our Results

We present a fast distributed approximation algorithm
for the MST problem. First, we briefly describe the dis-
tributed computing model that is used by our algorithm
(as well as the previous MST algorithms [2,8,9,16,1,7,
4] mentioned above) which is now standard in the dis-
tributed computing literature (see e.g., the book by Peleg
[20]).
Distributed computing model. We are given a network
modeled as an undirected weighted graph G = (V,E,w)
where V is the set of the nodes (vertices) and E is the
set of the communication links between them and w(e)
is the weight of the edge e ∈ E. Without loss of gener-
ality, we assume that G is connected. Each node hosts
a processor with limited initial knowledge. Specifically,
we make the common assumption that each node has
unique identity numbers (this is not really essential, but
simplifies presentation) and at the beginning of compu-
tation, each vertex v accepts as input its own identity
number and the weights of the edges adjacent to v. Thus,
a node has only local knowledge limited to itself and
its neighbors. The vertices are allowed to communicate
through the edges of the graph G. We assume that the
communication is synchronous and occurs in discrete
pulses (time steps). (This assumption is not essential for
our time complexity analysis. One can use a synchro-
nizer to obtain the same time bound in an asynchronous
network at the cost of some increase in the message com-
plexity [20].) In each time step, each node v can send an
arbitrary message of size O(logn) through each edge e =
(v,u) that is adjacent to v, and the message arrives at u by
the end of this time step. (If unbounded-size messages
are allowed, the MST problem can be trivially solved
in O(D(G)) time[20].) The weights of the edges are at
most polynomial in the number of vertices n, and there-
fore, the weight of a single edge can be communicated in
one time step. This model of distributed computation is
called the CONGEST(logn) model or simply the CON-
GEST model [20] (the previous results on the distributed
MST problem cited in Section 1.1 are for this model).
We note that more generally, CONGEST(B) model al-
lows messages of size at most O(B) to be transmitted
in a single time step across an edge. Our algorithm can
straightforwardly be applied to this model also. We will
assume B = logn throughout this paper.
Overview of the results. Our main contribution is an
almost existentially optimal (in both time and communi-
cation complexity) distributed approximation algorithm
that constructs an O(logn)-approximate minimum span-

A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 3

ning tree, i.e., whose cost is within an O(logn) factor of
the MST. The running time1 of our algorithm is Õ(D(G)+
L(G,w)), where L(G,w) is a parameter called the lo-
cal shortest path diameter (we defer the definition of
L(G,w) to Sect. 2.2). Like the MST-radius, L(G,w) de-
pends both on the graph topology as well as on the edge
weights. L(G,w) always lies between 1 and n. The pa-
rameter L(G,w) can be smaller or larger than the diame-
ter and typically it can be much smaller than

√
n (recall

that this is essentially a lower bound on distributed (ex-
act) MST computation). In fact, we show that there ex-
ist some graphs for which any distributed algorithm for
computing an MST will take Ω̃(

√
n) time, while our al-

gorithm will compute a near-optimal MST in Õ(1) time,
since L(G,w) = Õ(1) and D = Õ(1) for these graphs.
Thus there exists an exponential gap between exact MST
and O(logn)-approximate MST computation. However,
in some graphs L(G,w) can be asymptotically larger than
both the diameter and

√
n. By combining the MST algo-

rithm of Kutten and Peleg [16] with our algorithm in an
obvious way, we can obtain an algorithm with the same
approximation guarantee but with running time Õ(D(G)+
min(L(G,w),

√
n)).

The parameter L(G,w) is not arbitrary. We show that
it captures the hardness of distributed approximation quite
precisely: there exists a family of n-vertex graphs where
Ω(L(G,w)) time is needed by any distributed approxi-
mation algorithm to approximate the MST within an H-
factor, 1 ≤ H ≤ O(logn) (cf. Theorem 5). This implies
that our algorithm is existentially optimal (upto a poly-
logarithmic factor) and in general, no other algorithm
can do better. We note that the existential optimality of
our algorithm is with respect to L(G,w) instead of n as in
the case of Awerbuch’s algorithm [1]. Our algorithm is
also existentially optimal (upto a polylogarithmic factor)
with respect to the communication (message) complex-
ity — it takes Õ(|E|) messages — since Ω(|E|) mes-
sages are clearly needed in some graphs to construct any
spanning tree[15,23].

One of the motivations for this work is to investi-
gate whether a fast distributed algorithm that constructs
a (near-optimal) MST can be developed for some spe-
cial classes of networks. An important consequence of
our results is that networks with low L(G,w) value (com-
pared to O(D(G)) admit a distributed Õ(D(G)) time O(logn)-
approximation algorithm. In particular, unit disk graphs
have L(G,w) = 1. Unit disk graphs are commonly used
to model wireless networks. We also show that L(G,w)=
O(logn) with high probability in any arbitrary network
whose edge weights are chosen independently at random

1 We use the notations Õ(f (n)) and Ω̃(f (n)) to denote O(f (n) ·
polylog(f (n))) and Ω(f (n)/polylog(f (n))), respectively.

following any distribution with constant mean (cf. The-
orem 8).

2 Distributed Approximate MST Algorithm

2.1 Nearest Neighbor Tree Scheme

The main objective of our approach is to construct a
spanning tree, called the Nearest Neighbor Tree (NNT),
efficiently in a distributed fashion. In our previous work
[13], we introduced the Nearest Neighbor Tree and showed
that its cost is within an O(logn) factor of the cost of the
MST. The scheme is used to construct an NNT (hence-
forth called NNT scheme) as follows: (1) each node first
chooses a unique rank from a totally-ordered set; a rank-
ing of the nodes corresponds to a permutation of the
nodes; (2) each node (except the one with the highest
rank) connects (via the shortest path) to the nearest node
of higher rank. We show that the NNT scheme constructs
a spanning subgraph in any weighted graph whose cost
is at most O(logn) times that of the MST, irrespective
of how the ranks are selected (as long as they are dis-
tinct). Note that some cycles can be introduced in step
2, and hence to get a spanning tree we need to remove
some edges to break the cycles. Our NNT scheme is
closely related to the approximation algorithm for the
traveling salesman problem (coincidentally called Near-
est Neighbor algorithm) analyzed in a classic paper of
Rosenkrantz, Lewis, and Stearns [22]. Imase and Wax-
man [12] also used a scheme based on [22] (their al-
gorithm can also be considered a variant of the NNT
scheme) to show that it can maintain an O(logn)-approximate
Steiner tree dynamically (assuming only node additions,
but not deletions.) However, their algorithm will not work
in a distributed setting (unlike our NNT scheme) because
one cannot connect to the nearest node (they can do that
since the nodes are added one by one) as this can intro-
duce cycles.

The main advantage of the NNT scheme is that each
node, individually, has the task of finding its nearest node
of higher rank to connect to, and hence no explicit coor-
dination is needed among the nodes. However, despite
the simplicity of the NNT scheme, it is not clear how to
efficiently implement the scheme in a general weighted
graph. In our previous work [13], we showed how the
NNT scheme can be implemented in a complete met-
ric graph G (i.e., D(G) = 1). This algorithm takes only
O(n logn) messages to construct an O(logn)-approximate
MST as opposed to the Ω(n2) lower bound (shown by
Korach et al [14]) on the number of messages needed
by any distributed MST algorithm in this model. If the
time complexity needs to be optimized, then the NNT

4 M. Khan and G. Pandurangan

scheme can easily be implemented in O(1) time by us-
ing O(n2) messages, as opposed to the best known time
bound of O(log logn) for the (exact) MST [17]. These
results suggest that the NNT scheme can yield faster
and more communication-efficient algorithms than the
algorithms that compute the exact MST. However, an
efficient implementation in a general weighted graph is
non-trivial and was left open in [13]. Thus, a main con-
tribution of this paper is an efficient implementation of
the scheme in a general network. The main difficulties
are avoiding congestion when finding the nearest node
of higher rank efficiently in a distributed fashion (since
many nodes are trying to search at the same time) and
avoiding cycle formation. We use a technique of “incre-
mental” neighborhood exploration that avoids conges-
tion and cycle formation, and is explained in detail in
Sect. 2.3.

2.2 Preliminaries

We use the following definitions and notations concern-
ing an undirected weighted graph G = (V,E,w). We say
that u and v are neighbors of each other if (u,v) ∈ E.
Notations:
– |Q(u,v)| or simply |Q| — is the number of edges in

path Q from u to v. We call |Q| the length of the path
Q.

– w(Q(u,v)) or w(Q) — is the weight of the path Q,
which is defined as the sum of the weights of the
edges in path Q, i.e., w(Q) = ∑(x,y)∈Q w(x,y).

– P(u,v) — is a shortest path (in the weighted sense)
from u to v.

– d(u,v) — is the (weighted) distance between u and
v, and defined by d(u,v) = w(P(u,v)).

– Nρ(v) — is the set of all neighbors of v within dis-
tance ρ , i.e., Nρ(v) = {u | (u,v) ∈ E ∧w(u,v)≤ ρ}.

– W (v) — is the weight of the largest edge adjacent to
v, e.g., W (v) = max(v,x)∈E w(v,x).

– l(u,v) — is the number of edges in the minimum-
length shortest path from u to v. Note that there may
be more than one shortest path from u to v. Thus,
l(u,v) is the number of edges of the shortest path
having the least number of edges, i.e,

l(u,v) = min{|P(u,v)| | P(u,v) is a shortest path}.
Definition 1 ρ-neighborhood. ρ-neighborhood of a node
v, denoted by Γρ(v), is the set of the nodes that are within
distance ρ from v. Γρ(v) = {u | d(u,v)≤ ρ}.
Definition 2 (ρ,λ)-neighborhood. (ρ,λ)-neighborhood
of a node v, denoted by Γρ,λ (v), is the set of all nodes u
such that there is a path Q(v,u) such that w(Q) ≤ ρ and
|Q| ≤ λ . Clearly, Γρ,λ (v)⊆ Γρ(v).

Definition 3 Shortest Path Diameter (SPD). SPD is
denoted by S(G,w) (or S for short) and defined by

S = max
u,v∈V

l(u,v).

Definition 4 Local Shortest Path Diameter (LSPD).
LSPD is denoted by L(G,w) (or L for short) and defined
by L = maxv∈V L(v), where L(v) = maxu∈ΓW (v)(v) l(u,v).

Notice that 1 ≤ L ≤ S ≤ n in any graph. However,
there exists graphs, where L is significantly smaller than
both S and the (unweighted) diameter of the graph, D.
For example, in a chain of n nodes (all edges with weight
1), S = n, D = n, and L = 1.

2.3 Distributed NNT Algorithm

We recall the basic NNT scheme as follows. Each node
v selects a unique rank r(v). Then each node finds the
nearest node of higher rank and connects to it via the
shortest path. Now we describe each of these steps in
detail.
Rank selection. The nodes select unique ranks as fol-
lows. First, a leader is elected by using a leader election
algorithm. Let s be the leader node. The leader picks
a number p(s) from the range [b− 1,b], where b is a
number arbitrarily chosen by s, and sends this number
p(s) along with its identity number ID(s) to all of its
neighbors. A neighbor v of the leader s, after receiv-
ing p(s), picks a number p(v) from the open interval
[p(s)− 1, p(s)), thus p(v) is less than p(s), and then
transmits p(v) and ID(v) to all of its neighbors. This
process is repeated by every node in the graph. Notice
that at some point, every node in the graph will receive
a message from at least one of its neighbors since the
given graph is connected; some nodes may receive more
than one message. As soon as a node u receives the first
message from a neighbor v, it picks a number p(u) from
[p(v)−1, p(v)), so that it is smaller than p(v), and trans-
mit p(u) and ID(u) to the neighbors. If u receives another
message later from another neighbor v′, u simply stores
p(v′) and ID(v′), and does nothing else. p(u) and ID(u)
constitute u’s rank r(u) as follows.

Definition 5 Rank. The rank of a node u is defined as
r(u) = (p(u), ID(u)) and for any two nodes u and v,

r(u) < r(v) iff
p(u) < p(v) or [p(u) = p(v) and ID(u) < ID(v)].

At the end of execution of the above procedure of rank
selection, it is easy to make the following observations.

Observation 1 Each node knows the ranks of all of its
neighbors.

A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 5

Proof Once a node receives the rank from one of its
neighbors, it selects it own rank and sends it to all of its
neighbors. Since the underlying graph G is connected,
eventually (within time D, where D is the diameter of
the graph), each node receives the messages containing
the ranks from all of its neighbors.

Observation 2 Each node u, except the leader s, has at
least one neighbor v, i.e., (u,v) ∈ E, such that r(u) <
r(v).

Proof Each node u 6= s, selects its own rank r(u) such
that r(u)< r(v) only after receiving r(v) from some neigh-
bor v.

Observation 3 The leader s has the highest rank among
all nodes in the graph.

Proof Since the leader s is the initiator of this rank se-
lection process, we have r(s) > r(v) for any v ∈V where
v 6= s.

Connecting to a higher-ranked node. Each node v (ex-
cept the leader s) executes the following algorithm si-
multaneously to find the nearest node of higher rank and
connect to it. By Observation 2, we can conclude that for
any node v, exploring the nodes in ΓW (v)(v) is sufficient
to find a node of higher rank.

Each node v executes the algorithm in phases. In the
first phase, v sets ρ = 1. In the subsequent phases, it dou-
bles the value of ρ; that is, in the ith phase, ρ = 2i−1. In
a phase of the algorithm, v explores the nodes in Γρ(v)
to find a node u (if any) such that r(u) > r(v). If such
a node with higher rank is not found, v continues to the
next phase with ρ doubled. By Observation 2, v needs to
increase ρ to at most W (v). Each phase of the algorithm
consists of one or more rounds. In the first round, v sets
λ = 1. In the subsequent rounds, the values for λ are
doubled, i.e., in the jth round, λ = 2 j−1. In a particular
round, v explores all nodes in Γρ ,λ (v). At the end of each
round, v counts the number of the nodes it has explored.
If the number of nodes remain the same in two succes-
sive rounds of the same phase (that is, v already explored
all nodes in Γρ(v)), v doubles ρ and starts the next phase.
If at any point of time, v finds a node of higher rank, it
terminates its exploration.

Since all of the nodes explore their neighborhoods
simultaneously, many nodes may have overlapping ρ-
neighborhoods. This might create congestion of the mes-
sages in some edges that may result in increased running
time of the algorithm, in some cases by a factor of Θ(n).
Consider the network given in Fig. 1. If r(v) < r(ui) for
all i, when ρ ≥ 2 and λ ≥ 2, an exploration message sent
to v by any ui will be forwarded to all other uis. Note that
the values for ρ and λ for all uis may not necessarily be

 6

 5
 4

 3

 2

 1

 2 1

 7

 6

 5

 4

 3u

x

x

x

x
x

x

 7 9
9

9

9

9

9

99
 9

 9

9

 99

1

1
1 1

1

11
x

v
u

u

u

u

uu

Fig. 1 A network with possible congestion in the edges adjacent
to v. The weight of the edge (v,ui) is 1 for every i, and 9 for the
rest of the edges. Assume r(v) < r(ui) for all i.

the same at a particular time. Thus, the congestion at any
edge (v,ui) can be as much as the number of such nodes
ui, which can be, in fact, Θ(n) in some graphs. However,
to improve the running time of the algorithm, we keep
congestions on all edges bounded by O(1) by sacrificing
the quality of the NNT, but only by a constant factor. To
do so, v decides that some lower ranked uis can connect
to some higher ranked uis and informs them instead of
forwarding their message to the other nodes (details are
given below). Thus, v forwards messages from only one
ui and this avoids the congestion. As a result, a node may
not connect to the nearest node of higher rank. However,
our algorithm guarantees that the distance to the connect-
ing node is not larger than four times the distance to the
nearest node of higher rank. The detailed description is
given below.
1. Exploration of ρ-neighborhood to find a node of
higher rank:

Initiating exploration. Initially, each node v sets the
radius ρ ← 1 and λ ← 1. The node v explores the nodes
in Γρ,λ (v) in a BFS-like manner to find if there is a node
x ∈ Γρ,λ (v) such that r(v) < r(x). v sends explore mes-
sages < explore,v,r(v),ρ,λ , pd, l > to all u ∈ Nρ(v). In
the message < explore,v,r(v),ρ,λ , pd, l >, v is the orig-
inator of the explore message; r(v) is its rank, ρ is its
current phase value; λ is its current round number in this
phase; pd is the weight of the path traveled by this mes-
sage so far (from v to the current node), and l is the num-
ber of links that the message can travel further. Before v
sends the message to its neighbor u, v sets pd ← w(v,u)
and l ← λ −1.

Forwarding explore messages. Any node y may re-
ceive more than one explore message from the same orig-
inator v via different paths for the same round. Any sub-
sequent message is forwarded only if the later message
arrives through a shorter path than the previous one. Any
node y, after receiving the message < explore,v,r(v),ρ,λ , pd, l >
from one of its neighbors, say z, checks if it previously
received another message < explore,v,r(v),ρ,λ , pd′, l′ >

6 M. Khan and G. Pandurangan

from z′ with the same originator v such that pd′ ≤ pd.
If so, y sends back a count message to z with count =
0. The purpose of the count messages is to determine
the number of nodes explored by v in this round. Oth-
erwise, if r(v) < r(y), y sends back a found message to
v containing y’s rank. Otherwise, If Nρ−pd(y)−{z}= φ
or l = 0, y sends back a count message with count = 1
and sets a marker counted(v,ρ,λ) ← T RUE. The pur-
pose of the marker counted(v,ρ,λ) is to make sure that
y is counted only once for the same source v and in the
same phase and round of the algorithm. If r(v) > r(y),
l > 0, and Nρ−pd(y)−{z} 6= φ , y forwards the explore
message to all of its neighbors u ∈ Nρ−pd(y)−{z} after
setting pd ← pd +w(y,u) and l ← l−1.

Controlling Congestion. If at any time step, a node
v receives more than one, say k > 1, explore messages
from different originators ui, 1 ≤ i ≤ k, v forwards only
one explore message and replies back to the other uis as
follows. Let < explore,ui,r(ui),ρi,λi, pdi, li > be the ex-
plore message from originator ui. If there is a u j such that
r(ui) < r(u j) and pd j ≤ ρi, v sends back a found message
to ui telling that ui can connect to u j where the weight of
the connecting path w(Q(ui,u j)) = pdi + pd j ≤ 2ρi. In
this way, some of the uis are replied back a found mes-
sage and their explore messages will not be forwarded
by v.

Now, there are at least one ui left, to which v did not
send the found message back. If there is exactly one such
ui, v forwards its explore message; otherwise, v takes the
following actions. Let us be the node with lowest rank
among the rest of the uis (i.e., those uis which were not
sent a found message by v), and ut , with t 6= s, be an ar-
bitrary node among the rest of uis. Now, it must be the
case that ρs is strictly smaller than ρt (otherwise, v would
send a found message to us), i.e., us is in an earlier phase
than ut . This can happen if in some previous phase, ut
exhausted its ρ-value with smaller λ -value leading to a
smaller number of rounds in that phase and a quick tran-
sition to the next phase. In such a case, we keep ut wait-
ing for at least one round without affecting the overall
running time of the algorithm. To do this, v forwards ex-
plore message of us only and sends back wait messages
to all ut .

Each explore message triggers exactly one reply (ei-
ther found, wait, or count message). These reply-back
messages move in similar fashion as of explore messages
but in the reverse direction and they are aggregated (con-
vergecast) on the way back as described next. Thus those
reply messages also do not create any congestion in any
edge.

Convergecast of the Replies of the explore Mes-
sages. If any node y forwards the explore message <
explore,v, r(v),ρ,λ , pd, l > received from z for the orig-
inator v to its neighbors in Nρ−pd(y)−{z}, eventually, at

some point later, y will receive replies to these explore
messages, from the nodes in Nρ−pd(y)−{z}. Each of
these replies is either a count message, a wait message,
or a found message. Once y receives replies from all
nodes in Nρ−pd(y)−{z}, it takes the following actions.
If at least one of the replies is a found message, y ignores
all wait and count messages, and sends the found mes-
sage to z toward the originator v. If there is more than one
found message, select the one with the minimum path
weight and ignore the rest. Now, if there is no found mes-
sage and at least one wait message, y sends back only one
wait message to z toward the originator v and ignore the
count messages. If all of the replies are count messages, y
adds the count values of these messages and sends a sin-
gle count message to v with the aggregated count. Also,
y adds itself to the count if the marker counted(v,ρ,λ) =
FALSE and sets counted(v,ρ,λ)← T RUE. At the very
beginning, y initializes counted(v,ρ,λ)← FALSE. The
count messages (also the wait and found messages) travel
in the opposite direction of the explore messages using
the same paths toward v. Thus, these reply-back mes-
sages form a convergecast as opposed to the (controlled)
broadcast of the explore messages.

Actions of the Originator after Receiving the Replies
of the explore messages. At some time step, v receives
replies of the explore messages originated by itself from
all nodes in Nρ(v). Each of these replies is either a count
message, a wait message, or a found message. If at least
one of the replies is a found message, v is done with
the exploration and makes the connection as described
in Item 2 below. Otherwise, if there is a wait message, v
again initiates exploration with the same ρ and λ . If all
of them are count messages, v calculates the total count
by adding the count values of these messages and does
the following:

(a) if λ = 1, v initiates exploration with λ ← 2 and the
same ρ (2nd round of the same phase);

(b) if λ > 1 and the total count for this round is larger
than that of the previous round, v initiates exploration
with λ ← 2λ and the same ρ (next round of the same
phase);

(c) otherwise, v initiates exploration with λ ← 1 and ρ ←
2ρ (first round of the next phase).

2. Making Connection:
Let u be a node with higher rank that v found by

exploration. If v finds more than one node with rank
higher than the rank of itself, then v selects the nearest
one among them (break the ties arbitrarily). Let Q(v,u)
be the path from v to u. The path Q(v,u) is discovered
when u is found in the exploration process initiated by v.
During the exploration process, the intermediate nodes
in the path simply keep track of the predecessor and
successor nodes in the path Q(v,u) for this originator

A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 7

v. The edges in Q(v,u) are added in the resulting span-
ning tree as follows. To add the edges in Q(v,u), v sends
a connect message to u along this path. Let Q(v,u) =
< v, . . . ,x,y, . . . ,u >. Note that by our choice of u, all of
the intermediate nodes in this path have rank lower than
r(v). When the connect message passes through the edge
(x,y), node x uses (x,y) as its connecting edge regardless
of the ranks of x and y. If x is still doing exploration to
find a higher ranked node, x stops the exploration pro-
cess as the edge (x,y) serves as x’s connection. If x is
already connected using a path, say < x,x1,x2, . . . ,xk >,
the edge (x,x1) is removed from the tree, but the rest of
the edges in this path still remains in the tree. Once u
receives the connect message originated by v, u sends
a rank-update message back to v. All nodes in the path
Q(v,u) including v upgrade their ranks to r(u); i.e., they
assumes a new rank which is equal to the rank of u.

It might happen that in between exploration and con-
nection, some node x in the path Q(v,u) changed its rank
due to a connection by some originator other than v. In
such a case, when the connect message originated by v
travels through x, if x’s current rank is larger than r(v), x
accepts the connection as the last node in the path and re-
turns a rank-update message with r(x) toward v instead
of forwarding the connect message to the next node (i.e.,
y) toward u. This is necessary to avoid cycle creation.

Each node has a unique rank and it can connect only
to a node with higher rank. Thus if each node can con-
nect to a node of higher rank using a direct edge (as in
a complete graph), it is easy to see that there cannot be
any cycle. However, in the above algorithm, a node u
connects to a node of higher rank, v, r(u) < r(v), us-
ing a path Q(u,v), which may contain more than one
edge and in such a path, ranks of the intermediate nodes
are smaller than r(u). Thus the only possibility of cre-
ating a cycle is when some other connecting path goes
though these intermediate nodes. For example, in Fig. 2,
the paths P(u,v) and P(p,q) both go through a lower
ranked node x.

In Fig. 2, if p connects to q using path < p,x,q >
before u makes its connection, x gets a new rank which
is equal to r(q). Thus u finds a higher ranked node, x,
at a closer distance than v and connects to x instead of
v. Note that if x is already connected to some node, it
releases such connection and takes < x,q > as its new
connection, i.e., q is x’s new parent. Now y2 uses either
(y2,x) or (y2,v), but not both, for its connection. Thus
there is no cycle in the resulting graph.

Now, assume that u already made its connection to
v, but p is not connected yet. At this moment, x’s rank
is upgraded to r(v) which is still smaller than r(p). Thus
p finds q as its nearest node of higher rank and connects
using path < p,x,q >. In this connection process, x re-
moves its old connecting edge (x,y2) and gets (x,q) as its

p

3

3

3

3

1111

q

3y

v2u y1
x y

Fig. 2 A possible scenario of creating cycle and avoiding it. Nodes
are marked with letters. Edge weights are given in the figure. Let
r(u) = 11,r(v) = 12,r(p) = 13,r(q) = 14, and ranks of the rest of
the nodes are smaller than 11. Node u connects to v, v connects to
p, and p connects to q.

new connecting edge. Again, there cannot be any cycle
in the resulting graph.

If x receives the connection request messages from
both u (toward v) and p (toward q) at the same time, x
only forwards the message for the destination with high-
est rank; here it is q. u’s connection only goes up to x.
Note that x already knows the ranks of both q and v from
previous exploration steps. In the next section, a formal
and robust proof is given to show that there is no cycle
in the resulting NNT (Lemma 4).

2.4 Analysis of Algorithm

In this section, we analyze the correctness and perfor-
mance of the distributed NNT algorithm. The following
lemmas and theorems show our results.

Lemma 1 Assume that during the exploration, v found a
higher ranked node u and the path Q(v,u). If v’s nearest
node of higher rank is u′, then w(Q)≤ 4d(v,u′).

Proof Assume that u is found when v explored the (ρ,λ)-
neighborhood for some ρ and λ . Then d(v,u′) > ρ/2,
otherwise, v would find u′ as a node of higher rank in the
previous phase and would not explore the ρ-neighborhood.
Now, u could be found by v in two ways. i) The ex-
plore message originated by v reaches u and u sends
back a found message. In this case, w(Q) ≤ ρ . ii) Some
node y receives two explore messages originated by v
and u via the paths R(v,y) and S(u,y) respectively, where
r(v) < r(u) and w(S) ≤ ρ; and y (on behalf of u) sent
a found message to v (see “Controlling Congestion” in
Item 1). In this case, w(Q) = w(R)+ w(S) ≤ 2ρ , since
w(R)≤ ρ . Thus, in both cases, we have w(Q)≤ 4d(v,u′).

Lemma 2 The algorithm adds exactly n−1 edges to the
NNT.

8 M. Khan and G. Pandurangan

Proof Let a node v connect to another node u using the
path Q(v,u) = < v, . . ., x, y, z, . . ., u >. When a connect
message goes through an edge, say (x,y) (from x to y),
in this path, the edge (x,y) is added to the tree. We say
the edge (x,y) is associated to node x (not to y) based on
the direction of the flow of the connect message. If, pre-
viously, x was associated to some other edge, say (x,y′),
the edge (x,y′) was removed from the tree. Thus each
node is associated to at most one edge.

Except the leader s, each node x must make a con-
nection and thus at least one connect message must go
through or from x. Then, each node, except s, is associ-
ated to some edge in the tree.

Thus each node, except s, is associated to exactly one
edge in the NNT; and s cannot be associated to any node
since a connect message cannot be originated by or go
through s; s can only be the destination (the last node in
the path) since s has the highest rank.

Now, to complete the proof, we need to show that no
two nodes are associated to the same edge. To show this,
we use the following lemma.

Lemma 3 Whenever x is associated to the edge (x,y),
at that point of time, r(x)≤ r(y).

Proof Node x become associated to the edge (x,y) only
after a connect message passes through (x,y) from x to y.
When the connect message went through (x,y) from x to
y, r(x) and r(y) became equal. Later if another connect
message increases r(x), then either r(y) is also increased
to the same value or x become associated to some edge
other than (x,y). Thus, while keeping (x,y) associated to
x, it must be true that r(x)≤ r(y). [The end of the proof
of Lemma 3]

Only the nodes x and y can be associated to the edge
(x,y). Let x be associated to the edge (x,y). By Lemma 3,
r(x) ≤ r(y). Then any new connect message that might
make (x,y) associated to y, by passing the connect mes-
sage from y to x, must pass through x toward some node
with rank higher than r(y) (i.e., this connect message
cannot terminate at x). This will make x associated to
some edge other than (x,y). Therefore, no two nodes are
associated to the same edge.

Lemma 4 The edges in the NNT added by the given dis-
tributed algorithm do not create any cycle.

Proof Suppose to the contrary that < v0,v1,v3 . . . ,vk,v0 >
be a cycle created by the edges added to the NNT. Then
either one of the following must be true.

– vi is associated to (vi,vi+1) for 0 ≤ i ≤ k−1, and vk
is associated to (vk,v0).

– vi is associated to (vi,vi−1) for 1 ≤ i ≤ k, and v0 is
associated to (v0,vk).

For both cases, by Lemma 3, we have r(v0)= r(v1)=
. . . = r(vk). Here, we have a contradiction. The ranks of
all nodes in this cycle can never be the same. Initially,
the ranks are distinct. Later, when a node u connects to
the node v via the connecting path Q(u,v), the ranks of
the nodes in the path Q(u,v) are upgraded to r(v). No-
tice that the rank of a node cannot be decreased. It can
only be increased. It is easy to see that a single connect-
ing path cannot contain any cycle. The above cycle must
be created by at least two connecting paths. Let Q(u,v)
be the last connecting path that completes this cycle, and
vi and v j be the first and last node in the path Q(u,v)
among the nodes that are common both in this path and
the cycle. The path Q(u,v) goes beyond vi; that means
r(v) > r(vi). Since r(vi) = r(v j), r(v) > r(v j); this im-
plies that v 6= v j and the path Q(u,v) goes beyond v j. As
a result, this connecting path (u,v) will upgrade the ranks
of vi and v j to r(v), which is higher than the ranks of the
other nodes in the cycle. This leads to a contradiction.
Thus, there cannot be any cycle in the NNT.

From Lemmas 2 and 4 we have the following theo-
rem.

Theorem 1 The above algorithm produces a tree span-
ning all nodes in the graph.

We next show that the spanning tree found by our al-
gorithm is an O(logn)-approximation to the MST (The-
orem 2).

Theorem 2 Let the NNT be the spanning tree produced
by the above algorithm. Then the cost of the tree c(NNT)≤
4dlognec(MST).

Proof Let H =(VH ,EH) be a complete graph constructed
from G = (V,E) as follows. VH = V and weight of the
edge (u,v)∈ EH is the weight of the shortest path P(u,v)
in G. Now, the weights of the edges in H satisfy the tri-
angle inequality. Let NNTH be a nearest neighbor tree
and MSTH be a minimum spanning tree on H. We can
show that c(NNTH)≤ dlognec(MSTH) (a proof is given
in the appendix).

Let NNT ′ be a spanning tree on G, where each node
connects to the nearest node of higher rank via a short-
est path. By Lemma 1, we have c(NNT) ≤ 4c(NNT ′).
Further, it is easy to show that c(NNT ′)≤ c(NNTH) and
c(MSTH)≤ c(MST). Thus, we have

c(NNT) ≤ 4c(NNTH)
≤ 4dlognec(MSTH)
≤ 4dlognec(MST).

Remark: With the help of Theorem 2.13 in [10], an al-
ternative upper bound of 12dlog wmax

wmin
ec(MST) for c(NNT)

A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 9

can be achieved, where wmax and wmin are the maximum
and minimum edge weights, respectively. This bound is
independent of the number of nodes n, but depends on
the weights of the edges.

Theorem 3 The running time of the above algorithm is

O(D+L logn).

Proof Time to elect leader is O(D). The rank choosing
scheme takes also O(D) time.

In the exploration process, ρ can increase to at most
2W ; because, within distance W , it is guaranteed that
there is a node of higher rank (Observation 2). Thus, the
number of phases in the algorithm is at most O(logW) =
O(logn).

In each phase, λ can grow to at most 4L. When L ≤
λ < 2L and 2L≤ λ < 4L, in both rounds, the count of the
number of nodes explored will be the same. As a result,
the node will move to the next phase.

Now, in each round, a node takes at most O(λ) time;
because the messages travel at most λ edges back and
forth and at any time the congestion in any edge is O(1).
Thus any round takes time at most

log(4L)

∑
λ=1

O(λ) = O(L).

Thus, time for the exploration process is O(L logW).
Total time of the algorithm for leader election, rank se-
lection, and exploration is O(D + D + L logn) = O(D +
L logn).

Theorem 4 The message complexity of the algorithm is

O(|E| logL logn) = O(|E| log2 n).

Proof The number of phases in the algorithm is at most
O(logL). In each phase, each node executes at most O(logW)=
O(logn) rounds. In each round, each edge carries O(1)
messages. That is, number of messages in each round is
O(|E|). Thus total messages is O(|E| logL logn).

3 Exact Vs. Approximate MST and Near-Optimality
of NNT Algorithm

Comparison with Distributed Algorithms for (Exact)
MST. There can be a large gap between the local shortest
path diameter L and Ω̃(

√
n), which is the lower bound

for exact MST computation. In particular, we can show
that there exists a family of graphs where NNT algo-
rithm takes Õ(1) time, but any distributed algorithm for
computing (exact) MST will take Ω̃(

√
n) time. To show

this we consider the parameterized (weighted) family of

graphs called J K
m defined in Peleg and Rabinovich [21]

(see Section 4.1 and 5.3 in [21] for a description of how
to construct J K

m). (One can also show a similar result
using the family of graphs defined by Elkin in [6].) The
size of J K

m is n = Θ(m2K) and its diameter Θ(Km) =
Θ(Kn1/(2K)). For every K ≥ 2, Peleg and Rabinovich
show that any distributed algorithm for the MST prob-
lem will take Ω(

√
n/BK) time on some graphs belong-

ing to the family. The graphs of this family have L =
Θ(mK) =

√
n. We modify this construction as follows:

the weights on all the highway edges except the first
highway (H1) is changed to 0.5 (originally they were all
zero); all other weights remain the same. This makes L =
Θ(Km), i.e., same order as the diameter. One can check
that the proof of Peleg and Rabinovich is still valid, i.e.,
the lower bound for MST will take Ω(

√
n/BK) time on

some graphs of this family, but NNT algorithm will take
only Ω̃(L) time. Thus we can state:

Theorem 5 For every K ≥ 2, there exists a family of
n−vertex graphs in which NNT algorithm takes O(Kn1/(2K))
time while any distributed algorithm for computing the
exact MST requires Ω̃(

√
n) time. In particular, for ev-

ery n ≥ 2, there exists a family of graphs in which NNT
algorithm takes Õ(1) time whereas any distributed MST
algorithm will take Ω̃(

√
n) time.

Such a large gap between NNT and any distributed
MST algorithm can be also shown for constant diameter
graphs, using a similar modification of a lower bound
construction given in Elkin [6] (which generalizes and
improves the results of Lotker et al [18]).
Near (existential) optimality of NNT algorithm. We
show that there exists a family of graphs such that any
distributed algorithm to find a H(≤ logn)-approximate
MST takes Ω(L) time (where L is the local shortest path
diameter) on some of these graphs. Since NNT algorithm
takes Õ(D + L), this shows the near-tight optimality of
NNT (i.e., tight up to a polylog(n) factor). This type of
optimality is called existential optimality which shows
that our algorithm cannot be improved in general. To
show our lower bound we look closely at the hardness
of distributed approximation of MST shown by Elkin
[6]. Elkin constructed a family of weighted graphs G ω

(Figure 1, Section 3.1 in [6]) to show a lower bound
on the time complexity of any H−approximation dis-
tributed MST algorithm (whether deterministic or ran-
domized). We briefly describe this result and show that
this lower bound is precisely the local shortest path di-
ameter L of the graph. The graph family G ω(τ,m, p) is
parameterized by 3 integers τ,m, and p, where p≤ logn.
The size of the graph n = Θ(τm), the diameter is D =
Θ(p) and the local shortest path diameter can be easily
checked to be L = Θ(m). Note that graphs of different

10 M. Khan and G. Pandurangan

size, diameter, and LSPD can be obtained by varying the
parameters τ,m, and p. (We refer to [6] for the detailed
description of the graph family and the assignment of
weights.) We now slightly restate the results of [6] (as-
suming the CONGEST(B) model):

Theorem 6 ([6]) 1. There exist some graphs belonging
to the family G ω(τ ,m, p) having diameter at most D for
D ∈ 4,6,8, . . . and LPSD L = Θ(m) such that any ran-
domized H-approximation algorithm for the MST prob-

lem on these graphs takes T =Θ(L)= Ω((n
H·D·B)

1
2− 1

2(D−1)

distributed time.
2. If D = O(logn) then the lower bound can be strength-
ened to Θ(L) = Ω(

√
n

H·B·logn).

Using a slightly different weighted family ˜G ω(τ,m)
parameterized by two parameters τ and m, where size
n = τm2, diameter D = Ω(m) and LSPD L =Θ(m2), one
can strengthen the lower bound of the above theorem by
a factor of

√
logn for graphs of diameter Ω(nδ).

The above results show the following two important facts:
1. There are graphs having diameter D << L where

any H-approximation algorithm requires Ω(L) time.
2. More importantly, for graphs with very different

diameters — varying from a constant (including 1, i.e.,
exact MST) to logarithmic to polynomial in the size of
n — the lower bound of distributed approximate-MST
is captured by the local shortest path parameter. In con-
junction with our upper bound given by the NNT algo-
rithm which takes Õ(D + L) time, this implies that the
LPSD L captures in a better fashion the complexity of
distributed O(logn)-approximate-MST computation.

4 Special Classes of Graphs

We show that in unit disk graphs (a commonly used model
for wireless networks) L = 1, and in random weighted
graphs, L = O((logn)) with high probability. Thus our
algorithm will run in near-optimal time of Õ(D(G)) on
these graphs.
Unit Disk Graph (UDG). Unit disk graph is an euclid-
ian graph where there is an edge between two nodes u
and v if and only if general dist(u,v)≤ R for some R (R
is typically taken to be 1). Here dist(u,v) is the euclidian
distance between u and v; that is the weight of the edge
(u,v). Theorem 7 shows that for any UDG, L = 1. For a
2-dimensional UDG, the diameter D can be as large as
Θ(

√
(n)).

Theorem 7 In any UDG, the local shortest path diame-
ter L is 1.

Proof For any node v, W (v) ≤ R by definition of UDG.
Now if there is a node u such that d(u,v) ≤ R, then
dist(u,v) ≤ R by the triangle inequality. Thus, (v,u) is
in E and the edge (v,u) is the shortest path from v to u;
as a result, l(v,u) = 1. Therefore, for any v,

L(v) = max
u∈ΓW (v)(v)

l(v,u) = 1,

L = max
v∈V

L(v) = 1.

Graph with Random Edge Weights. Consider any graph
G (topology can be arbitrary) with edge weights chosen
randomly from [0,1] following any arbitrary distribution
(i.e., each edge weight is chosen i.i.d from the distribu-
tion). The following theorem shows that L and S is small
compared to the diameter for such a graph.

Theorem 8 Consider a graph G where the edge weights
are chosen randomly from [0,1] following any (arbitrary)
distribution with a constant (independent of n) mean.
Then: (1) L = O(logn) with high probability (whp), i.e.,
probability at least 1−1/nΩ(1); and (2) the shortest path
diameter S = O(logn) if D < logn and S = O(D) if D≥
logn whp.

Proof Let the edge weights are randomly drawn from
[0,1] with mean µ . For any node v, W (v) ≤ 1. Consider
any path with m = k logn edges, for some constant k. Let
the weights of the edges in this path be w1,w2, · · · ,wm.
For any i, E[wi] = µ . Since 1

2 µk logn≥ 1 for sufficiently
large k, we have

Pr

{
m

∑
i=1

wi ≤ 1

}
≤ Pr

{
m

∑
i=1

wi ≤ 1
2

µk logn

}

= Pr

{
µ− 1

m

m

∑
i=1

wi ≥ 1
2

µ

}
.

Using Hoeffding bound [11] and putting k = 6
µ2 ,

Pr

{
µ− 1

m

m

∑
i=1

wi ≥ 1
2

µ

}
≤ e−mµ2/2 =

1
n3 .

Thus if it is given that the weight of a path is at
most 1, then the probability that the number of edges
≤ 6

µ2 logn is at most 1
n3 . Now consider all nodes u such

that d(v,u) ≤W (v). There are at most n− 1 such nodes
and thus there are at most n−1 shortest paths leading to
those nodes from v. Thus using union bound,

Pr
{

L(v)≥ 6
µ2 logn

}
≤ n× 1

n3 =
1
n2 .

A Fast Distributed Approximation Algorithm for Minimum Spanning Trees 11

Using L = max{L(v)} and union bound,

Pr
{

L≥ 6
µ2 logn

}
≤ n× 1

n2 =
1
n
.

Therefore, with probability at least 1− 1
n , L is smaller

than or equal to 6
µ2 logn.

Proof of part 2 is similar.

5 Conclusion and Future Work

We presented and analyzed a simple approximation al-
gorithm for constructing a low-weight spanning tree. We
also presented its efficient implementation in an arbitrary
network of processors.

The local nature of the NNT-scheme seems to be
suitable for designing an efficient distributed dynamic al-
gorithm, where the goal is to maintain an NNT of good
quality, as nodes are added or deleted. Moreover, it is
interesting to see whether the ideas in this paper can be
extended to design an efficient distributed algorithm for
the more challenging problem of finding a k-connected
subgraph. These look promising for future work.

Acknowledgements We are very grateful to the referees for their
careful reading of the paper and detailed comments which helped
greatly in improving the presentation of the paper.

References

1. Awerbuch, B.: Optimal distributed algorithms for minimum
weight spanning tree, counting, leader election, and related
problems. In: Proc. 19th ACM Symp. on Theory of Comput-
ing, pp. 230–240 (1987)

2. Chin, F., Ting, H.: An almost linear time and O(n logn + e)
messages distributed algorithm for minimum-weight span-
ning trees. In: Proc. 26th IEEE Symp. Foundations of Com-
puter Science, pp. 257–266 (1985)

3. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algo-
rithms. The MIT Press (1990)

4. Elkin, M.: A faster distributed protocol for constructing min-
imum spanning tree. In: Proc. of the ACM-SIAM Symp. on
Discrete Algorithms, pp. 352–361 (2004)

5. Elkin, M.: An overview of distributed approximation. ACM
SIGACT News Distributed Computing Column 35(4), 40–57
(2004)

6. Elkin, M.: Unconditional lower bounds on the time-
approximation tradeoffs for the distributed minimum span-
ning tree problem. In: Proc. of the ACM Symposium on The-
ory of Computing, pp. 331 – 340 (2004)

7. Gafni, E.: Improvements in the time complexity of two
message-optimal election algorithms. In: Proc. of the 4th
Symp. on Principles of Distributed Computing, pp. 175–185
(1985)

8. Gallager, R., Humblet, P., Spira, P.: A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems 5(1), 66–77 (1983)

9. Garay, J., Kutten, S., Peleg, D.: A sublinear time distributed
algorithm for minimum-weight spanning trees. SIAM J.
Comput. 27, 302–316 (1998)

10. Herlihy, M., Kuhn, F., Tirthapura, S., Wattenhofer, R.: Dy-
namic analysis of the arrow distributed protocol. Theory of
Computing Systems 39(6), 875–901 (2006)

11. Hoeffding, W.: Probability for sums of bounded random vari-
ables. J. of the American Statistical Association 58, 13–30
(1963)

12. Imase, M., Waxman, B.: Dynamic steiner tree problem. Siam
J. Discrete Math 4(3), 369–384 (1991)

13. Khan, M., Pandurangan, G., Kumar, V.: A simple random-
ized scheme for constructing low-weight k-connected span-
ning subgraphs with applications to distributed algorithms.
Theoretical Computer Science (TCS) (2007). Article in press,
doi: 10.1016/j.tcs.2007.05.028

14. Korach, E., Moran, S., Zaks, S.: The optimality of distributive
constructions of minimum weight and degree restricted span-
ning trees in a complete network of processors. SIAM Journal
of Computing 16(2), 231–236 (1987)

15. Korach, E., Moran, S., Zaks, S.: Optimal lower bounds for
some distributed algorithms for a complete network of pro-
cessors. Theoretical Computer Science 64, 125–132 (1989)

16. Kutten, S., Peleg, D.: Fast distributed construction of k-
dominating sets and applications. J. Algorithms 28, 40–66
(1998)

17. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-
weight spanning tree construction in O(log logn) communi-
cation rounds. SIAM J. Comput. 35(1), 120–131 (2005)

18. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed mst for con-
stant diameter graphs. Distributed Computing 18(6), 453–460
(2006)

19. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: Mst con-
struction in o(log log n) communication rounds. In: Proc. of
the 15th ACM Symposium on Parallel Algorithms and Archi-
tectures, pp. 94–100 (2003)

20. Peleg, D.: Distributed Computing: A Locality Sensitive Ap-
proach. SIAM (2000)

21. Peleg, D., Rabinovich, V.: A near-tight lower bound on the
time complexity of distributed mst construction. In: Proc. of
the 40th IEEE Symp. on Foundations of Computer Science,
pp. 253–261 (1999)

22. Rosenkrantz, D., Stearns, R., Lewis, P.: An analysis of sev-
eral heuristics for the traveling salesman problem. SIAM J.
Comput. 6(3), 563–581 (1977)

23. Tel, G.: Introduction to Distributed Algorithms. Cambridge
University Press (1994)

Appendix

Cost of an NNT in a Complete Metric Graph

For a complete metric graph H, Lemma 6 shows an up-
per bound on the cost of the nearest neighbor tree NNTH
with respect to the cost of a minimum spanning tree MSTH
on H. To prove Lemma 6, we use the following lemma
concerning the traveling salesman problem (TSP) that
appears in Rosenkrantz, Stearns, and Lewis [22, Lemma
1].

Lemma 5 [22] Let G =(V,E) be a weighted metric (com-
plete) graph on n nodes. Let d(p,q) be the weight of the

12 M. Khan and G. Pandurangan

edge between nodes p and q. Suppose there is a map-
ping l assigning each node p a number lp such that the
following two conditions hold:

(a) d(p,q)≥ min(lp, lq) for all nodes p and q.
(b) lp ≤ 1

2 c(T SP) for all nodes p, where c(T SP) is the
cost of a optimal (shortest) traveling salesman tour
in G.

Then

∑
p∈V

lp ≤ 1
2
(dlogne+1)c(T SP).

Lemma 6 For a complete metric graph H,

c(NNTH)≤ dlognec(MSTH).

Proof It can be shown that (e.g., see [3])

c(T SPH)≤ 2c(MSTH). (1)

To apply Lemma 5, based on the NNT scheme, we
define a mapping l as follows:

lp = d(p,nnt(p)) if nnt(p) (the node that p connects
to) exists; otherwise (if p is the highest-ranked node),
lp = 1

2 c(T SPH).
l satisfies condition (a): Let p and q be any two nodes,

and without loss of generality, assume rank(p)< rank(q).
Then by definition of nnt(), d(p,q) ≥ d(p,nnt(p)) = lp
(note that p cannot be the highest-ranked node).

l satisfies also condition (b): It is trivially true for the
highest-ranked node. For any other node p, lp = d(p,nnt(p)).
There are exactly two disjoint paths between p and nnt(p)
in the TSP route. Let S1 and S2 be these two paths. Then

c(S1)+ c(S2) = c(T SPH),

and by triangle inequality, we have d(p,nnt(p))≤ c(S1)
and also d(p,nnt(p))≤ c(S2). Thus

d(p,nnt(p))≤ 1
2

c(T SPH).

Let p0 be the highest-ranked node. By the construc-
tion of NNT and applying Lemma 5, we have

c(NNTH) = ∑
p∈V

lp− lp0 ≤
1
2
dlognec(T SPH). (2)

The lemma follows from Inequality 1 and 2.

Remark: Lemma 6 can also alternatively be derived by
a reduction of Theorem 2 in Imase and Waxman [12]
(which also uses Lemma 1 of [22]). Imase and Waxman
gave an O(logn)-approximation algorithm that maintains
a Steiner tree dynamically under node additions only (not
deletions). Theorem 2 in [12] can be used to show our
Lemma 6 if we make the following observation: add the
nodes one by one in decreasing order of their ranks.

