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Abstract. We give a distributed algorithm that constructs a O(log n)-
approximate minimum spanning tree (MST) in arbitrary networks. Our algorithm
runs in time Õ(D(G)+L(G, w)) where L(G, w) is a parameter called the local
shortest path diameter and D(G) is the (unweighted) diameter of the graph. Our
algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exists
graphs which need Ω(D(G) + L(G, w)) time to compute an H-approximation
to the MST for any H ∈ [1, Θ(log n)]. Our result also shows that there can be
a significant time gap between exact and approximate MST computation: there
exists graphs in which the running time of our approximation algorithm is ex-
ponentially faster than the time-optimal distributed algorithm that computes the
MST. Finally, we show that our algorithm can be used to find an approximate
MST in wireless networks and in random weighted networks in almost optimal
Õ(D(G)) time.
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1 Introduction

1.1 Background and Previous Work

The distributed minimum spanning tree (MST) problem is one of the most impor-
tant problems in the area of distributed computing. There has been a long line of re-
search to develop efficient distributed algorithms for the MST problem starting with
the seminal paper of Gallager et al [1] that constructs the MST in O(n log n) time and
O(|E| + n logn) messages. The communication (message) complexity of Gallager et
al. is optimal, but its time complexity is not. Hence further research concentrated on im-
proving the time complexity. The time complexity was first improved to O(n log log n)
by Chin and Ting [2], further improved to O(n log∗ n) by Gafni [3], and then improved
to existentially optimal running time of O(n) by Awerbuch [4]. The O(n) bound is ex-
istentially optimal because there exists graphs where no distributed MST algorithm can
do better than Ω(n) time. This was the state of art till the mid-nineties when Garay,
Kutten, and Peleg [5] raised the question of identifying graph parameters that can bet-
ter capture the complexity (motivated by “universal” complexity) of distributed MST
computation. For many existing networks G, their diameter D(G) (or D for short)
is significantly smaller than the number of vertices n and therefore is a good candi-
date to design protocols whose running time is bounded in terms of D(G) rather than
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n. Garay, Kutten, and Peleg [5] gave the first such distributed algorithm for the MST
problem that ran in time O(D(G) + n0.61) which was later improved by Kutten and
Peleg [6] to O(D(G) +

√
n log∗ n). Elkin [7] refined this result further and argued that

the parameter called “MST-radius” captures the complexity of distributed MST bet-
ter. He devised a distributed protocol that constructs the MST in Õ(μ(G, w) +

√
n)

time, where μ(G, w) is the “MST-radius” of the graph [7] (is a function of the graph
topology as well as the edge weights). The ratio between diameter and MST-radius can
be as large as Θ(n), and consequently on some inputs this protocol is faster than the
protocol of [6] by a factor of Ω(

√
n). However, a drawback of this protocol (unlike pre-

vious MST protocols [6,5,2,3,1]) is that it cannot detect termination in this much time
(unless μ(G, w) is given as part of the input). Finally, we note that the time-efficient al-
gorithms of [6,7,5] are not message-optimal (i.e., they take asymptotically much more
than O(|E|+ n log n), e.g., the protocol of [6] takes O(|E|+ n1.5) messages.

The lack of progress in improving the result of [6], and in particular breaking the√
n barrier, led to work on lower bounds for distributed MST problem. Peleg and Ra-

binovich [8] showed that Ω̃(
√

n) is required for constructing MST even on graphs of
small diameter and showed that this result establishes the asymptotic near-tight (exis-
tential) optimality of the protocol of [6].

While the previous distributed protocols deal with computing the exact MST, the
next important question addressed in the literature concerns the study of distributed
approximation of MST, i.e., constructing a spanning tree whose total weight is near-
minimum. From a practical perspective, given that MST construction can take as much
as Ω̃(

√
n) time, it is worth investigating whether one can design distributed algorithms

that run faster and output a near-minimum spanning tree. Peleg and Rabinovich [8]
was one of the first to raise the question of devising faster algorithms that construct an
approximation to the MST and left it open for further study. To quote their paper: “To
the best of our knowledge nothing nontrivial is known about this problem...”. Since then,
the most important result known till date is the hardness results shown by Elkin [9]. This
result showed that approximating the MST problem on graphs of small diameter (e.g.,
O(log n)) within a ratio H requires essentially Ω(

√
n/HB) time (assuming B bits can

be sent through each edge in one round), i.e., this gives a time-approximation trade-off
for the distributed MST problem: T 2H = Ω(

√
n/B). However, not much progress has

been made on designing time-efficient distributed approximation algorithms for MST.
To quote Elkin’s survey paper [10]: “There is no satisfactory approximation algorithm
known for the MST problem”. To the best of our knowledge, the only known distributed
approximation algorithm for MST is given by Elkin in [9]. This algorithm gives an H-
approximation protocol for the MST with running time O(D(G)+ ωmax

H−1 ·log∗ n), where
ωmax is the ratio between the maximal and minimal weight of an edge in the input graph
G. Thus this algorithm is not independent of the edge weights and its running time can
be quite large.

1.2 Distributed Computing Model and Our Results

We present a fast distributed approximation algorithm for the MST problem. We will
first briefly describe the distributed computing model that is used by our algorithm (as
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well as the previous MST algorithms [2,1,5,6,4,3,7] mentioned above) which is now
standard in distributed computing literature (see e.g., the book by Peleg [11]).

Distributed computing model. We are given a network modeled as an undirected
weighted graph G = (V, E, w) where V is the set of nodes (vertices) and E is the
set of communication links between them and w(e) gives the weight of the edge e ∈ E.
Without loss of generality, we will assume that G is connected. Each node hosts a
processor with limited initial knowledge. Specifically, we make the common assump-
tion that nodes have unique identity numbers (this is not really essential, but simplifies
presentation) and at the beginning of the computation each vertex v accepts as input its
own identity number, the identity numbers of its neighbors in G (i.e., nodes that share
an edge with v), and the weights of the edges that are adjacent to v. Thus a node has
only local knowledge limited to itself and its neighbors. The vertices are allowed to
communicate through the edges of the graph G. We assume that the communication is
synchronous and occurs in discrete pulses (time steps). (This assumption is not essen-
tial for our time complexity analysis. One can use a synchronizer to obtain the same
time bound in an asynchronous network at the cost of some increase in the message
(communication) complexity [11].) During each time step, each node v is allowed to
send an arbitrary message of size O(log n) through each edge e = (v, u) that is ad-
jacent to v, and the message will arrive at u at the end of the current pulse. (We note
that if unbounded-size messages are allowed, then MST problem can be trivially solved
in O(D(G)) time[11].) The weights of the edges are at most polynomial in the num-
ber of vertices n, and therefore the weight of a single edge can be communicated in
one time step. This model of distributed computation is called the CONGEST (log n)
model or simply the CONGEST model [11] (the previous results on distributed MST
cited in Sect. 1.1 are for this model). We note that, more generally, CONGEST (B)
allows messages of size at most O(B) to be transmitted in a single time step across
an edge. Our algorithm can straightforwardly be applied to this model also. We will
assume B = log n throughout this paper.

Overview of results. Our main contribution is an almost existentially optimal (in both
time and communication complexity) distributed approximation algorithm that con-
structs a O(log n)-approximate minimum spanning tree, i.e., whose cost is within a
O(log n) factor of the MST. The running time1 of our algorithm is Õ(D(G)+L(G, w))
where L(G, w) is a parameter called as the local shortest path diameter (we defer the
definition of L(G, w) to Sect. 2.2). Like the MST-radius, L(G, w) depends both on the
graph topology as well as on the edge weights. L(G, w) always lies between 1 and
n. L(G, w) can be smaller or larger than the diameter and typically it can be much
smaller than n or even

√
n (recall that this is essentially a lower bound on distributed

(exact) MST computation). In fact, we show that there exists graphs for which any dis-
tributed algorithm for computing the MST will take Ω̃(

√
n) time, while our algorithm

will compute a near-optimal approximation in Õ(1) time, since L(G, w) = Õ(1) and
D = Õ(1) for these graphs. Thus there exists an exponential gap between exact MST
and O(log n)-approximate MST computation. However, in some graphs L(G, w) can

1 We use the notations Õ(f(n)) and Ω̃(f(n)) to denote O(f(n) · polylog(f(n))) and
Ω(f(n)/polylog(f(n))), respectively.
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be asymptotically much larger than both the diameter as well as
√

n. By combining
the MST algorithm of Kutten and Peleg [6] with our algorithm in an obvious way we
can obtain an algorithm with the same approximation guarantee but with running time
Õ(D(G) + min(L(G, w),

√
n)).

The parameter L(G, w) is not arbitrary. We show that it captures the hardness of dis-
tributed approximation quite precisely: there exists a family of n-vertex graphs where
Ω(L(G, w)) time is needed by any distributed approximation algorithm to approximate
MST within a H-factor (1 ≤ H ≤ O(log n)) (cf. Theorem 5). This implies that our
algorithm is existentially optimal (upto polylogarithmic factors) and in general no other
algorithm can do better. We note that the existential optimality our algorithm is with re-
spect to L(G, w) instead of n as in the case of Awerbuch’s algorithm [4]. Our algorithm
is also existentially optimal (upto polylogarithmic factors) with respect to communica-
tion (message) complexity — takes Õ(|E|) messages, since Ω(|E|) messages is clearly
needed in some graphs to construct any spanning tree[12,13].

One of our motivations for this work is to investigate whether fast distributed algo-
rithms that construct (near-optimal) MST can be given for special classes of networks.
An important consequence of our result is that networks with low L(G, w) value (com-
pared to O(D(G)) admit a Õ(D(G)) time O(log n)-approximate distributed algorithm.
In particular unit disk graphs have L(G, w) = 1. Unit disk graphs are commonly used
models in wireless networks. We also show L(G, w) = O(log n) with high probability
in any arbitrary network whose edge weights are chosen independently at random from
an arbitrary distribution (cf. Theorem 7).

2 Distributed Approximate MST Algorithm

2.1 Nearest Neighbor Tree Scheme

The main idea of our approach is to construct a spanning tree called as the Nearest
Neighbor Tree (NNT) efficiently in a distributed fashion. In our previous work [14], we
introduced the Nearest Neighbor Tree and showed that its cost is within a O(log n) fac-
tor of the MST. The scheme used to construct a NNT (henceforth called NNT scheme)
is as follows: (1) each node first chooses a unique identity number called rank and (2)
each node (except the one with the highest rank) connects (via the shortest path) to the
nearest node of higher rank. We showed that the NNT scheme constructs a spanning
subgraph in any weighted graph whose cost is at most O(log n) times that of the MST,
irrespective of how the ranks are selected (as long as they are distinct) [14]. Note that
cycles can be introduced in step 2, and hence to get a spanning tree we need to re-
move some edges to break the cycles. Our NNT scheme is based on the approximation
algorithm for the traveling salesman problem (coincidentally called Nearest Neighbor
algorithm) analyzed in a classic paper of Rosenkrantz, Lewis, and Stearns [15]. Imase
and Waxman [16] also used a scheme based on [15] (their algorithm can also be con-
sidered a variant of NNT scheme) to show that it can maintain a O(log n)-approximate
Steiner tree dynamically (assuming only node additions, but not deletions.) However,
their algorithm will not work in a distributed setting (unlike our NNT scheme) because
one cannot connect to the shortest node (they can do that since the nodes are added one
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by one) as this can introduce cycles. The approach needed for distributed implementa-
tion is very different (cf. Sect. 2.3).

The advantage of NNT scheme is this: each node, individually, has the task of finding
its own node to connect, and hence no explicit coordination is needed between nodes.
However, despite the simplicity of the NNT scheme, it is not clear how to efficiently im-
plement the scheme in a general weighted graph. In our previous work [14], we showed
NNT scheme can be implemented in a complete metric graph G (i.e., D(G) = 1). Our
algorithm takes only O(n log n) messages to construct a O(log n)-approximate MST
as opposed to Ω(n2) lower bound (shown by Korach et al [17]) needed by any distrib-
uted MST algorithm in this model. If time complexity needs to be optimized, then NNT
scheme can be easily implemented in O(1) time (using O(n2) messges), as opposed to
the best known time bound of O(log log n) for (exact) MST [18]. These results suggest
that NNT scheme can yield faster and communication-efficient algorithms compared
to the algorithm that compute the exact MST. However, efficient implementation in a
general weighted graph is non-trivial and was left open in [14]. Thus, a main contri-
bution of this paper is giving an efficient implementation of the scheme in a general
network. The main difficulty is in efficiently finding the nearest node of higher rank
in a distributed fashion because of congestion (since many nodes are trying to search
at the same time) and avoiding cycle formation. We use a technique of “incremental”
neighborhood exploration that avoids congestion and cycle formation and is explained
in detail in Sect. 2.3.

2.2 Preliminaries

We use the following definitions and notations concerning an undirected weighted graph
G = (V, E, w). We say that u and v are neighbors of each other if (u, v) ∈ E.

Notations:
|Q(u, v)| or simply |Q|— is the number of edges in path Q from u to v.
w(Q(u, v)) or w(Q) — is the weight of the path Q, which is defined as the sum of the
weights of the edges in path Q, i.e., w(Q) =

∑
(x,y)∈Q w(x, y). P (u, v) — is a shortest

path (in the weighted sense) from u to v.
d(u, v) — is the (weighted) distance between u and v, and defined by d(u, v) =
w(P (u, v)).
Nρ(v) — set of all neighbors u such that w(u, v) ≤ ρ, i.e., Nρ(v) = {u | (u, v) ∈
E ∧ w(u, v) ≤ ρ}.
W (v) — is the weight of the largest edge adjacent to v. W (v) = max(v,x)∈E w(v, x)
l(u, v) — is the minimum length (number of the edges) shortest path from u to v.
Note that there may be more than one shortest path from u to v. Thus l(u, v) is the
number of edges of the shortest path having the least number of edges, i.e, l(u, v) =
min{|P (u, v)| | P (u, v) is a shortest path from u to v}.
Definition 1. ρ-neighborhood. ρ-neighborhood of a node v, denoted by Γρ(v), is the
set of the nodes that are within distance ρ from v. Γρ(v) = {u | d(u, v) ≤ ρ}.
Definition 2. (ρ, λ)-neighborhood. (ρ, λ)-neighborhood of a node v, denoted by
Γρ,λ(v), is the set of all nodes u such that there is a path Q(v, u) such that w(Q) ≤ ρ
and |Q| ≤ λ. Clearly, Γρ,λ(v) ⊆ Γρ(v).
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Definition 3. Shortest Path Diameter (SPD). SPD is denoted by S(G, w) (or S for
short) and defined by S = maxu,v∈V l(u, v).

Definition 4. Local Shortest Path Diameter (LSPD). LSPD is denoted by L(G, w) (or
L for short) and defined by L = maxv∈V L(v), where L(v) = maxu∈ΓW (v)(v) l(u, v).

Notice that L ≤ S ≤ n in any graph. However, there exists graphs, where L is signifi-
cantly smaller than both S and the (unweighted) diameter of the graph, D. For example,
in a chain of n nodes (all edges with weight 1), S = n, D = n, and L = 1.

2.3 Distributed NNT Algorithm

We recall that the basic NNT scheme is as follows. Each node v selects a unique rank
r(v). Then each node finds the nearest node of higher rank and connects to it via the
shortest path.

Rank selection. The nodes select unique ranks as follows. First a leader is elected by a
leader election algorithm. Let s be the leader node. The leader picks a number p(s) from
the range [b− 1, b], where b is a number arbitrarily chosen by s, and sends this number
p(s) along with its ID (identity number) to its neighbors. A neighbor v of the leader
s, after receiving p(s), picks a number p(v) from the open interval [p(s) − 1, p(s)),
thus p(v) is less than p(s), and then transmits p(v) and ID(v) to all of its neighbors.
This process is repeated by every node in the graph. Notice that at some point, every
node in the graph will receive a message from at least one of its neighbors since the
given graph is connected; some nodes may receive more than one message. As soon
as a node u receives the first message from a neighbor v, it picks a number p(u) from
[p(v) − 1, p(v)), so that it is smaller than p(v), and transmits p(u) and ID(u) to its
neighbors. If u receives another message later from another neighbor v′, u simply stores
p(v′) and ID(v′), and does nothing else. p(u) and ID(u) constitute u’s rank r(u) as
follows. For any two nodes u and v, r(u) < r(v) iff i) p(u) < p(v), or ii) p(u) = p(v)
and ID(u) < ID(v).

At the end of execution of the above procedure of rank selection, it is easy to make
the following observations.

Observation 1
1. Each node knows the ranks of all of its neighbors.
2. The leader s has the highest rank among all nodes in the graph.
3. Each node v, except the leader, has one neighbor u, i.e. (u, v) ∈ E, such that

r(u) > r(v).

Connecting to a higher-ranked node. Each node v (except the leader s) executes the
following algorithm simultaneously to find the nearest node of higher rank and connect
to it. Each node v needs to explore only the nodes in ΓW (v)(v) to find a node of higher
rank.

Each node v executes the algorithm in phases. In the first phase, v sets ρ = 1. In the
subsequent phases, it doubles the value of ρ; that is, in the ith phase, ρ = 2i−1. In a
phase of the algorithm, v explores the nodes in Γρ(v) to find a node u (if any) such that
r(u) > r(v). If such a node with higher rank is not found, v continues to the next phase
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Fig. 1. A network with possible congestion in the edges adjacent to v. Weight of the edges (v, ui)
is 1 for all i, and 9 for the rest of the edges. Assume r(v) < r(ui) for all i.

with ρ doubled. By Observation 3 of 1, v needs to increase ρ to at most W (v). Each
phase of the algorithm consists of one or more rounds. In the first round, v sets λ = 1. In
subsequent rounds, values for λ are doubled. In a particular round, v explores all nodes
in Γρ,λ(v). At the end of each round, v counts the number of nodes it has explored. If
the number of nodes remain the same in two successive rounds of the same phase (that
is, v already explored all nodes in Γρ(v)), v doubles ρ and starts the next phase. If at
any point of time v finds a node of higher rank, it then terminates its exploration.

Since all of the nodes explore their neighborhoods simultaneously, many nodes may
have overlapping ρ-neighborhoods. This might create congestion of the messages in
some edges that may result in increased running time of the algorithm, in some cases
by a factor of Θ(n). Consider the network given in Fig. 1. If r(v) < r(ui) for all i,
when ρ ≥ 2 and λ ≥ 2, an exploration message sent to v by any ui will be forwarded
to all other uis. Note that values for ρ and λ for all uis will not necessarily be the same
at a particular time. Thus congestion at any edge (v, ui) can be as much as the number
of such nodes ui, which can be, in fact, Θ(n) in some graphs. However, to improve the
running time of the algorithm, we keep congestions on all edges bounded by O(1) by
sacrificing the quality of the NNT, but only by a constant factor. To do so, v decides
that some lower ranked uis can connect to some higher ranked uis and informs them
instead of forwarding their message to the other nodes (details are given below). Thus
v forwards messages from only one ui and this avoids congestion. As a result, a node
may not connect to the nearest node of higher rank. However, our algorithm guarantees
that distance to the connecting node is not larger than four times the distance to the
nearest node of higher rank. The detailed description is given below.

1. Exploration of ρ-neighborhood to find a node of higher rank:
Initiating exploration. Initially, each node v sets radius ρ ← 1 and λ← 1. v explores
the nodes in Γρ,λ(v) in a BFS-like manner to find if there is a node x ∈ Γρ,λ(v) such
that r(v) < r(x). v sends explore messages < explore, v, r(v), ρ, λ, pd, l > to all
u ∈ Nρ(v). In the message < explore, v, r(v), ρ, λ, pd, l >, v is the originator of the
explore message; r(v) is its rank, ρ is its current phase value; λ is its current round
number in this phase; pd is the weight of the path traveled by this message so far (from
v to the current node), and l is the number of links that the message can travel further.
Before v sends the message to its neighbor u, v sets pd← w(v, u) and l ← λ− 1.

Forwarding explore messages. Any node y may receive more than one explore mes-
sage from the same originator v via different paths for the same round. Any subsequent
message is forwarded only if the later message arrived through a shorter path than the
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previous one. Any node y, after receiving the message < explore, v, r(v), ρ, λ, pd, l >
from one of its neighbors, say z, checks if it previously received another message <
explore, v, r(v), ρ, λ, pd′, l′ > from z′ with the same originator v such that pd′ ≤ pd.
If so, y sends back a count message to z′ with count = 0. The purpose of the count
messages is to determine the number of nodes explored by v in this round. Otherwise,
if r(v) < r(y), y sends back a found message to v containing y’s rank. Otherwise, If
Nρ−pd(y)− {z} = φ or l = 0, y sends back a count message with count = 1 and sets a
marker counted(v, ρ, λ) ← TRUE. The purpose of the marker counted(v, ρ, λ) is to
make sure that y is counted only once for the same source v and in the same phase and
round of the algorithm. If r(v) > r(y), l > 0, and Nρ−pd(y)−{z} 	= φ, y forwards the
message to all of its neighbors u ∈ Nρ−pd(y) − {z} after setting pd ← pd + w(y, u)
and l← l − 1.

Controlling Congestion. If at any time step, a node v receives more than one, say
k > 1, explore messages from different originators ui, 1 ≤ i ≤ k, it takes the following
actions. Let < explore, ui, r(ui), ρi, λi, pdi, li > be the explore message from origi-
nator ui. If there is a uj such that r(ui) < r(uj) and pdj ≤ ρi, v sends back a found
message to ui telling that ui can connect to uj where weight of the connecting path
w(Q(v, v′)) = pdi + pdj ≤ 2ρi. In this way, some of the uis will be replied back a
found message and their explore messages will not be forwarded by v.

Let us be the node with lowest rank among the rest of uis (i.e., those uis which
were not sent a found message by v), and ut be an arbitrary node among the rest of uis
and let t 	= s. Now it must be the case that ρs is strictly smaller than ρt , i.e., us is in
an earlier phase than ut. This can happen if, in some previous phase, ut exhausted its
ρ-value with smaller λ-value leading to a smaller number of rounds in that phase and
quick transition to the next phase. In such a case, we keep ut waiting for at least one
round without affecting the overall running time of the algorithm. To do this, v forwards
explore message of us only and sends back wait messages to all ut.

Each explore message triggers exactly one reply (either found, wait, or count mes-
sage). These reply-back messages move in similar fashion as of explore messages but in
reverse direction and they are aggregated (convergecast) on the way back as described
next. Thus those reply messages also do not create any congestion in any edge.

Convergecast of the Replies of the explore Messages. If any node y forwards the
explore message < explore, v, r(v), ρ, λ, pd, l > received from z for the originator v
to its neighbors in Nρ−pd(y)−{z}, eventually, at some point later, y will receive replies
to these explore messages, which y forwarded to Nρ−pd(y)−{z}. Each of these replies
is either a count message, wait message, or a found message. Once y receives replies
from all nodes in Nρ−pd(y) − {z}, it takes the following actions. If at least one of the
replies is a found message or a wait message, y ignores all of the count messages and
sends the found message or the wait message to z towards the destination v. If all of
the replies are count messages, y adds the count values of these messages and sends a
single count message to v with the aggregated count. Also, y adds itself to the count if
the marker counted(v, ρ, λ) = FALSE and sets counted(v, ρ, λ) ← TRUE. At the
very beginning, y initializes counted(v, ρ, λ) ← FALSE. The count messages (also
the wait and found messages) travel in the opposite direction of the explore messages
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using the same paths toward v. Thus the count messages form a convergecast as opposed
to the (controlled) broadcast of the explore messages.
Actions of the Originator after Receiving the Replies of the explore messages. At
some time step, v receives replies of the explore messages originated by itself from all
nodes in Nρ(v). Each of these replies is either a count message, wait message, or a
found message. If at least one of the replies is a found message, v is done with explo-
ration and makes the connection as described in Item 2 below. Otherwise, if there is a
wait message, v again initiates exploration with same ρ and λ. If all of them are count
messages: (a) if λ = 1, v initiates exploration with λ← 2 and the same ρ; (b) if λ > 1
and count-value for this round is larger than that of the previous round, v initiates explo-
ration with λ ← 2λ and the same ρ; (c) otherwise v initiates exploration with λ ← 2λ
and ρ← 2ρ.

2. Making Connection:
Let u be a node with higher rank that v found by exploration. If v finds more than one
node with rank higher than itself, it selects the nearest one among them. Let Q(v, u) be
the path from v to u. The path Q(v, u) is discovered when u is found in the exploration
process initiated by v. The edges in Q(v, u) are added in the resulting spanning tree
as follows. To add the edges in Q(v, u), v sends a connect message to u along this
path. During the exploration process, the intermediate nodes in the path simply keeps
tracks of the predecessor and successor nodes for this originator v. Let Q(v, u) =<
v, . . . , x, y, . . . , u >. By our choice of u, note that all the intermediate nodes will have
rank lower than r(v). When the connect message passes through the edge (x, y), node x
uses (x, y) as its connecting edge regardless of x’s rank. If x did not find its connecting
node yet, x stops searching for such nodes as the edge (x, y) serves as x’s connection.
If x is already connected using a path, say < x, x1, x2, . . . , xk >, the edge (x, x1) is
removed from the tree, but the rest of the edges in this path still remains in the tree.
All nodes in path Q(v, u) including v upgrade their ranks to r(u); i.e., they assumes a
new rank which is equal to u’s rank. It might happen that in between exploration and
connection, some node x in path Q(v, u) changed its rank due to a connection by some
origin other than v. In such a case, when the connect message travels through x, if x’s
current rank is larger than r(v), x accepts the connections as the last node in the path
and returns a rank-update message toward v instead of forwarding the connect message
to the next node (i.e., y) toward u. This is necessary to avoid cycle creation.

2.4 Analysis of Algorithm

In this section, we analyze the correctness and performance of the distributed NNT
algorithm. The following lemmas and theorems show our results.

Lemma 1. Let, during exploration, v found a higher ranked node u and the path
Q(v, u). If v’s nearest node of higher rank is u′, then w(Q) ≤ 4d(v, u′).

Proof. Assume that u is found when v explored a (ρ, λ)-neighborhood for some ρ and
λ. Then d(v, u′) > ρ/2, otherwise, v would find u′ as a node of higher rank in the
previous phase and would not explore the ρ-neighborhood. Now, u could be found by
v in two ways. i) The explore message originated by v reached u and u sent back a
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found message. In this case, w(Q) ≤ ρ. ii) Some node y received two explore messages
originated by v and u via the paths R(v, y) and S(u, y) respectively, where r(v) < r(u)
and w(S) ≤ ρ; and y sent a found message to v (see “Controlling Congestion” in Item
1). In this case, w(Q) = w(R) + w(S) ≤ 2ρ, since w(R) ≤ ρ. Thus for both cases, we
have w(Q) ≤ 4d(v, u′).

Lemma 2. The algorithm adds exactly n− 1 edges to the NNT.

Proof. Let a node v connect to another node u using the path Q(v, u) = < v, . . ., x, y, z,
. . ., u >. When a connect message goes through an edge, say (x, y) (from x to y), in this
path, the edge (x, y) is added to the tree. We say the edge (x, y) is associated to node
x (not to y) based on the direction of the flow of the connect message. If, previously, x
was associated to some other edge, say (x, y′), the edge (x, y′) was removed from the
tree. Thus each node is associated to at most one edge.

Except the leader s, each node x must make a connection and thus at least one con-
nect message must go through or from x. Then, each node, except s, is associated to
some edge in the tree.

Thus each node, except s, is associated to exactly one edge in NNT; and s cannot be
associated to any node since a connect message cannot be originated by or go through s.

Now, to complete the proof, we need to show that no two nodes are associated to the
same edge. Let x be associated to edge (x, y). When the connect message went through
(x, y) from x to y, r(x) and r(y) became equal. Later if another connect message
increased r(x), then either r(y) also increased to the same value or x became associated
to some edge other than (x, y). Thus, while keeping (x, y) associated to x, it must be
true that r(x) ≤ r(y). Then any new connect message that might make (x, y) associated
to y by passing the connect message from y to x, must pass through x toward some
node with rank higher than r(y) (i.e., the connect message cannot terminate at x). This
will make x associated to some other edge than (x, y). Therefore, no two nodes are
associated to the same edge.

Lemma 3. The edges in the NNT added by the given distributed algorithm does not
create any cycle.

Proof. Each node has a unique rank and it can connect only to a node with higher rank.
Thus if each node can connect to a node of higher rank using a direct edge (as in a
complete graph), it is easy to see that there cannot be any cycle. However, in the above
algorithm, a node u connects to a node of higher rank, v, r(u) < r(v), using shortest
path P (u, v), which may contain more than one edge and in such a path, ranks of the
intermediate nodes are smaller than r(u). Thus the only possibility of creating a cycle
is when some other connecting shortest path goes though these intermediate nodes.
For example, in Fig. 2, the paths P (u, v) and P (p, q) both go through a lower ranked
node x.

In Fig. 2, if p connects to q using path < p, x, q > before u makes its connection, x
gets a new rank which is equal to r(q). Thus u finds a higher ranked node, x, at a closer
distance than v and connects to x instead of v. Note that if x is already connected to
some node, it releases such connection and takes < x, q > as its new connection, i.e., q
is x’s new parent. Now y2 uses either (y2, x) or (y2, v), but not both, for its connection.
Thus there is no cycle in the resulting graph.
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Fig. 2. A possible scenario of creating cycle and avoiding it. Nodes are marked with letters. Edge
weights are given in the figure. Let r(u) = 11, r(v) = 12, r(p) = 13, r(q) = 14, and ranks of
the rest of the nodes are smaller than 11. u connects to v, v connects to p, and p connects to q.

Now, assume that u already made its connection to v, but p is not connected yet.
At this moment, x’s rank is upgraded to r(v) which is still smaller than r(p). Thus p
finds q as its nearest node of higher rank and connects using path < p, x, q >. In this
connection process, x removes its old connecting edge (x, y2) and gets (x, q) as its new
connecting edge. Again, there cannot be any cycle in the resulting graph.

If x receives the connection request messages from both u (toward v) and p (toward
q) at the same time, x only forwards the message for the destination with highest rank;
here it is q. u’s connection only goes up to x. Note that x already knows the ranks of
both q and v from previous exploration steps.

From Lemmas 2 and 3 we have the following theorem.

Theorem 1. The above algorithm produces a tree spanning all nodes in the graph.

We next show that the spanning tree found is an O(log n)-approximation to the MST
(Theorem 2).

Theorem 2. Let the NNT be the spanning tree produced by the above algorithm. Then
the cost of the tree c(NNT ) ≤ 4
logn�c(MST ).

Proof. Let H = (VH , EH) be a complete graph constructed from G = (V, E) as
follows. VH = V and weight of the edge (u, v) ∈ EH is the weight of the shortest
path P (u, v) in G. Now, the weights of the edges in H satisfy triangle inequality. Let
NNTH be a nearest neighbor tree and MSTH be a minimum spanning tree on H . We
can show that c(NNTH) ≤ 
log n�c(MSTH) [14].

Let NNT ′ be a spanning tree on G, where each node connects to the nearest node
of higher rank. Then it is easy to show that c(NNT ′) ≤ c(NNTH) and c(MSTH) ≤
c(MST ).

By Lemma 1, we have c(NNT ) ≤ 4c(NNT ′). Thus we get,

c(NNT ) ≤ 4c(NNTH) ≤ 4
log n�c(MSTH) ≤ 4
logn�c(MST ).

Theorem 3. The running time of the above algorithm is O(D + L logn).
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Proof. Time to elect leader is O(D). The rank choosing scheme takes also O(D) time.
In the exploration process, ρ can increase to at most 2W ; because, within distance

W , it is guaranteed that there is a node of higher rank (Observation 3 of 1). Thus, the
number of phases in the algorithm is at most O(log W ) = O(log n).

In each phase, λ can grow to at most 4 ∗ L. When L ≤ λ < 2L and 2L ≤ λ < 4L,
in both rounds, the count of the number of nodes explored will be the same. As a result,
the node will move to the next phase.

Now, in each round, a node takes at most O(λ) time; because the messages travel at
most λ edges back and forth and at any time the congestion in any edge is O(1). Thus
any round takes time at most

log(4L)∑

λ=1

O(λ) = O(L).

Thus time for the exploration process is O(L log W ). Total time of the algorithm
for leader election, rank selection, and exploration is O(D + D + L logn) = O(D +
L logn).

Theorem 4. The message complexity of the algorithm is O(|E| log L log n) =
O(|E| log2 n).

Proof. The number of phases in the algorithm is at most O(log L). In each phase, each
node executes at most O(log W ) = O(log n) rounds. In each round, each edge car-
ries O(1) messages. That is, number of messages in each round is O(|E|). Thus total
messages is O(|E| log L log n).

3 Exact vs. Approximate MST and Near-Optimality of NNT
Algorithm

Comparison with Distributed Algorithms for (Exact) MST. There can be a large
gap between the local shortest path diameter L and Ω̃(

√
n), which is the lower bound

for exact MST computation. In particular, we can show that there exists a family of
graphs where NNT algorithm takes Õ(1) time, but any distributed algorithm for com-
puting (exact) MST will take Ω̃(

√
n) time. To show this we consider the parameterized

(weighted) family of graphs called JK
m defined in Peleg and Rabinovich [8]. (One can

also show a similar result using the family of graphs defined by Elkin [9].) The size of
JK

m is n = Θ(m2K) and its diameter Θ(Km) = Θ(Kn1/(2K)). For every K ≥ 2, Pe-
leg and Rabinovich show that any distributed algorithm for the MST problem will take
Ω(
√

n/BK) time on some graphs belonging to the family. The graphs of this family
have L = Θ(mK) =

√
n. We modify this construction as follows: the weights on all

the highway edges except the first highway (H1) is changed to 0.5 (originally they were
all zero); all other weights remain the same. This makes L = Θ(Km), i.e., same order
as the diameter. One can check that the proof of Peleg and Rabinovich is still valid, i.e.,
the lower bound for MST will take Ω(

√
n/BK) time on some graphs of this family,

but NNT algorithm will take only Ω̃(L) time. Thus we can state:
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Theorem 5. For every K ≥ 2, there exists a family of n−vertex graphs in which NNT
algorithm takes O(Kn1/(2K)) time while any distributed algorithm for computing the
exact MST requires Ω̃(

√
n) time. In particular, for every n ≥ 2, there exists a fam-

ily of graphs in which NNT algorithm takes Õ(1) time whereas any distributed MST
algorithm will take Ω̃(

√
n) time.

Such a large gap between NNT and any distributed MST algorithm can be also shown
for constant diameter graphs, using a similar modification of a lower bound construction
given in Elkin [9] (which generalizes and improves the results of Lotker et al [19]).

Near (existential) optimality of NNT algorithm. We show that there exists a family
of graphs such that any distributed algorithm to find a H(≤ log n)-approximate MST
takes Ω(L) time (where L is the local shortest path diameter) on some of these graphs.
Since NNT algorithm takes Õ(D+L), this shows the near-tight optimality of NNT (i.e.,
tight up to a polylog(n) factor). This type of optimality is called existential optimality
which shows that our algorithm cannot be improved in general.

To show our lower bound we look closely at the hardness of distributed approximation
of MST shown by Elkin [9]. Elkin constructed a family of weighted graphs Gω to show
a lower bound on the time complexity of any H−approximation distributed MST algo-
rithm (whether deterministic or randomized). We briefly describe this result and show
that this lower bound is precisely the local shortest path diameter L of the graph. The
graph family Gω(τ, m, p) is parameterized by 3 integers τ, m, and p, where p ≤ log n.
The size of the graph n = Θ(τm), the diameter is D = Θ(p) and the local shortest
path diameter can be easily checked to be L = Θ(m). Note that graphs of different size,
diameter, and LSPD can be obtained by varying the parameters τ, m, and p. (We refer
to [9] for the detailed description of the graph family and the assignment of weights.)
We now slightly restate the results of [9] (assuming the CONGEST (B) model):

Theorem 6 ([9]). 1. There exists graphs belonging to the family Gω(τ, m, p) having
diameter at most D for D ∈ 4, 6, 8, . . . and LPSD L = Θ(m) such that any randomized
H-approximation algorithm for the MST problem on these graphs takes T = Θ(L) =
Ω(( n

H·D·B )1/2−1/(2(D−1)) distributed time.
2. If D = O(log n) then the lower bound can be strengthened to Θ(L) =
Ω(

√
n

H·B·log n ).

Using a slightly different weighted family G̃ω(τ, m) parameterized by two parameters
τ and m, where size n = τm2, diameter D = Ω(m) and LSPD L = Θ(m2), one can
strengthen the lower bound of the above theorem by a factor of

√
log n for graphs of

diameter Ω(nδ).
The above results show the following two important facts:

1. There are graphs having diameter D << L where any H-approximation algorithm
requires Ω(L) time.

2. More importantly, for graphs with very different diameters — varying from a
constant (including 1, i.e., exact MST) to logarithmic to polynomial in the size of n —
the lower bound of distributed approximate-MST is captured by the local shortest path
parameter. In conjunction with our upper bound given by the NNT algorithm which
takes Õ(D + L) time, this implies that the LPSD L captures in a better fashion the
complexity of distributed O(log n)-approximate-MST computation.



368 M. Khan and G. Pandurangan

4 Special Classes of Graphs

We show that in unit disk graphs (a commonly used model for wireless networks)
L = 1, and in random weighted graphs, L = O((log n)) with high probability. Thus
our algorithm will run in near-optimal time of Õ(D(G)) on these graphs.

Unit Disk Graph (UDG). Unit disk graph is an euclidian graph where there is an edge
between two nodes u and v if and only if general dist(u, v) ≤ R for some R (R
is typically taken to be 1). Here dist(u, v) is the euclidian distance between u and v
which is the weight of the edge (u, v). For any node v, W (v) ≤ R. Now if there is node
u such that d(u, v) ≤ R, then dist(u, v) ≤ R by triangle inequality. Thus (u, v) ∈ E
and the edge (u, v) is the shortest path from u to v. As a result, for any UDG, L = 1.
For a 2-dimensional UDG, diameter can be as large as Θ(

√
(n)).

Graph with Random Edge Weights. Consider any graph G (topology can be arbi-
trary) with edge weights chosen randomly from an arbitrary distribution (i.e., each edge
weight is chosen i.i.d from the distribution). The following theorem shows that L and
S is small compared to the diameter for such a graph.

Theorem 7. Consider a graph G where the edge weights are chosen randomly from
a (arbitrary) distribution with a constant (independent of n) mean. Then: (1) L =
O(log n) with high probability (whp), i.e., probability at least 1− 1/nΩ(1); and (2) the
shortest path diameter S = O(log n) if D < log n and S = O(D) if D ≥ log n whp.

Proof. Without loss of generality, we can assume that edge weights are randomly drawn
from [0, 1] with mean μ. Otherwise the edge weights can be normalized to this range
without affecting the desired result. For any node v, W (v) ≤ 1. Consider any path with
m = k log n edges, for some constant k. Let the weights of the edges in this path be
w1, w2, · · · , wm. For any i, E[wi] = μ. Since 1

2μk log n ≥ 1 for sufficiently large k,
we have

Pr{
m∑

i=1

wi ≤ 1} ≤ Pr{
m∑

i=1

wi ≤
1
2
μk log n} = Pr{μ− 1

m

m∑

i=1

wi ≥
1
2
μ}.

Using Hoeffding bound [20] and putting k = 6
μ2 ,

Pr{μ− 1
m

m∑

i=1

wi ≥
1
2
μ} ≤ e−mμ2/2 =

1
n3

.

Thus if it is given that the weight of a path is at most 1, then the probability that
the number of edges ≤ 6

μ2 log n is at most 1
n3 . Now consider all nodes u such that

d(v, u) ≤ W (v). There are at most n− 1 such nodes and thus there are at most n− 1
shortest paths leading to those nodes from v.

Thus using union bound, Pr{L(v) ≥ 6
μ2 log n} ≤ n× 1

n3 = 1
n2 .

Using L = max{L(v)} and union bound, Pr{L ≥ 6
μ2 log n} ≤ n× 1

n2 = 1
n .

Therefore, with probability at least 1− 1
n , L is smaller than or equal to 6

μ2 log n.
Proof of part 2 is similar.
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