
Parallel Algorithms for Generating Random Networks with Given

Degree Sequences

Maksudul Alam∗†

maksud@vbi.vt.edu

Maleq Khan†

maleq@vbi.vt.edu

Abstract

Random networks are widely used for modeling and analyzing complex processes. Many mathemat-
ical models have been proposed to capture diverse real-world networks. One of the most important
aspects of these models is degree distribution. Chung–Lu (CL) model is a random network model, which
can produce networks with any given arbitrary degree distribution. The complex systems we deal with
nowadays are growing larger and more diverse than ever. Generating random networks with any given
degree distribution consisting of billions of nodes and edges or more has become a necessity, which re-
quires efficient and parallel algorithms. We present an MPI-based distributed memory parallel algorithm
for generating massive random networks using CL model, which takes O

(
m+n
P

+ P
)

time with high prob-
ability and O(n) space per processor, where n, m, and P are the number of nodes, edges and processors,
respectively. The time efficiency is achieved by using a novel load-balancing algorithm. Our algorithms
scale very well to a large number of processors and can generate massive power–law networks with one
billion nodes and 250 billion edges in one minute using 1024 processors.

Keywords. Massive Networks, Parallel Algorithms, Network Generator

1 Introduction

The advancements of modern technologies are causing a rapid growth of complex systems. These systems,
such as the Internet [22], biological networks [9], social networks [24, 25], and various infrastructure networks
[6, 11] are sometimes modeled by random graphs for the purpose of studying their behavior. The study of
these complex systems have significantly increased the interest in various random graph models such as
Erdős–Rényi (ER) [8], small-world [23], Barabási–Albert (BA) [1], Chung-Lu (CL) [7], HOT [4], exponential
random graph (ERGM) [20], recursive matrix (R-MAT) [5], and stochastic Kronecker graph (SKG) [13, 14]
models. Among those models, the SKG model has been included in Graph500 supercomputer benchmark [10]
due to its simple parallel implementation. The CL model exhibits similar properties of the SKG model and
further has the ability to generate a wider range of degree distributions [19]. To the best of our knowledge,
there is no parallel algorithm for the CL model.

Analyzing a very large complex system requires generating massive random networks efficiently. As the
interactions in a larger network lead to complex collective behavior, a smaller network may not exhibit the
same behavior, even if both networks are generated using the same model. In [12], by experimental analysis,
it was shown that the structure of larger networks is fundamentally different from small networks and many
patterns emerge only in massive datasets. Demand for large random networks necessitates efficient algorithms
to generate such networks. However, even efficient sequential algorithms for generating such graphs were
nonexistent until recently. Sequential algorithms are sometimes acceptable in network analysis with tens of
thousands of nodes, but they are not appropriate for generating large graphs [3]. Although, recently some
efficient sequential algorithms have been developed [3, 5, 13, 16], these algorithms can generate networks
with only millions of nodes in a reasonable time. But, generating networks with billions of nodes can take
an undesirably long time. Thus, efficient parallel algorithms that scale to large number of processors are
desirable in dealing with these problems.

∗Department of Computer Science, Virginia Tech
†Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute

1

mailto:maksud@vbi.vt.edu
mailto:maleq@vbi.vt.edu

In this paper, we present a time-efficient MPI–based distributed memory parallel algorithm for generating
random networks from a given sequence of expected degrees using the CL model. Please note that this
algorithm can easily be adapted for shared-memory parallel systems. To the best of our knowledge, it is
the first parallel algorithm for the CL model. The most challenging part of this algorithm is load-balancing.
Partitioning the nodes with a balanced computational load is a non trivial problem. In a sequential setting,
many algorithms for the load-balancing problem were studied [15, 17, 18]. Some of them are exact and some
are approximate. These algorithms use many different techniques such as heuristic, iterative refinement,
dynamic programming, and parametric search. All of these algorithms require at least Ω(n+ P log n) time,
where n, P are the number of nodes and processors respectively. To the best of our knowledge, there is
no parallel algorithm for this problem. In this paper, we present a novel and efficient parallel algorithm
for computing the balanced partitions in O

(
n
P + P

)
time. The parallel algorithm for load balancing can

be of independent interest and probably could be used in many other problems. Using this load balancing
algorithm, the parallel algorithm for the CL model takes an overall runtime of O

(
n+m
P + P

)
with high

probability (w.h.p.). The algorithm requires O(n) space per processor. Our algorithm scales very well to
a large number of processors and can generate a power-law network with one billion nodes and 250 billion
edges in memory in less than a minute using 1024 processors.

The rest of the paper is organized as follows. In Section 2 we describe the problem and the efficient
sequential algorithm. In Section 3, we present the parallel algorithm along with analysis of partitioning and
load balancing. Experimental results showing the performance of our parallel algorithms are presented in
Section 4. We conclude in Section 5.

2 Chung–Lu Model and Efficient Sequential Algorithm

Chung–Lu (CL) model [7] generates random networks from a given sequence of expected degrees. We are
given n nodes and a set of non-negative weights w = (w0, . . . wn−1) assuming maxi w

2
i < S, where S =

∑
k wk

[7]. For every pair of nodes i and j, edge (i, j) is added to the graph with probability pi,j =
wiwj
S . If no

self loop is allowed, i.e., i 6= j, the expected degree of node i is given by
∑
j
wiwj
S = wi − w2

i

S . For massive
graphs, where n is very large, the average degree converges to wi, thus wi represents the expected degree of
node i [16].

The näıve algorithm of CL model for an undirected graph with n nodes takes each of the n(n−1)
2 possible

node pairs {i, j} and creates the edge with probability pi,j , therefore requiring O
(
n2
)

time. An O(n + m)
algorithm was proposed in [16] to generate networks assuming w is sorted in non-increasing order, where m
is the number of edges. It is easy to see that O(n+m) is the best possible runtime to generate m edges. The
algorithm is based on the edge skipping technique introduced in [3] for Erdős–Rényi model. Adaptation of
that technique leads to the efficient sequential algorithm in [16]. The pseudocode of the algorithm is given
in Algorithm 2.1, consisting of two procedures Serial–CL and Create–Edges. Note that we restructured
Algorithm 2.1 by defining procedure Create–Edges to use it without any changes later in our parallel
algorithm. Below we provide an overview and a brief description of the algorithm (for complete explanation
and correctness see [16]).

The algorithm starts at Serial–CL, which computes the sum S and calls procedure Create–Edges(w, S, V),
where V is the entire set of nodes. For each node i ∈ V , the algorithm selects some random nodes v from
[i + 1, n − 1], and creates the edges (i, v). A näıve way to select the nodes v from [i + 1, n − 1] is: for each
j ∈ [i+ 1, n− 1], select j independently with probability pi,j =

wiwj
S , leading to an algorithm with run time

O(n2). Instead, the algorithm skips the nodes that are not selected by a random skip length δ as follows. For

each i ∈ V (Line 6), the algorithm starts with j = i+ 1 and computes a random skip length δ ←
⌊

log(r)
log(1−p)

⌋
,

where r is a real number in (0, 1) chosen uniformly at random and p = pi,j =
wiwj
S . Then node v is selected

by skipping the next δ nodes (Line 14), and edge (i, v) is selected with probability q
p , where q = pi,v = wiwv

S

(Line 16–19). Then from the next node j + v, this cycle of skipping and selecting edges is repeated (while
loop in Line 8–20). As we always have i < j and no edge (i, j) can be selected more than once, this algorithm
does not create any self-loop or parallel edges. As the set of weights w is sorted in non-increasing order, for
any node i, the probability pi,j =

wiwj
S decreases monotonically with the increase of j. It is shown in [16]

that for any i, j, edge (i, j) is included in E with probability exactly
wiwj
S , as desired, and that the algorithm

2

Algorithm 2.1 Sequential Chung–Lu Algorithm

1: procedure Serial–CL(w)
2: S ←∑

k wk
3: E ← Create–Edges(w, S, V)

4: procedure Create–Edges(w, S, V)
5: E ← ∅
6: for all i ∈ V do
7: j ← i+ 1, p← min

(wiwj
S , 1

)

8: while j < n and p > 0 do
9: if p 6= 1 then

10: choose a random r ∈ (0, 1)

11: δ ←
⌊

log(r)
log(1−p)

⌋

12: else
13: δ ← 0
14: v ← j + δ . skip δ edges
15: if v < n then
16: q ← min

(
wiwv
S , 1

)

17: choose a random r ∈ (0, 1)
18: if r < q

p then

19: E ← E ∪ {i, v}
20: p← q, j ← v + 1

21: return E

runs in O(n+m) time.

3 Parallel Algorithm for the CL Model

Next we present our distributed memory parallel algorithm for the CL model. Although our algorithm
generates undirected edges, for the ease of discussion we consider u as the source node and v as the destination
node for any edge (u, v) generated by the procedure Create–Edges. Let Tu be the task of generating the
edges from source node u (Lines 6–20 in Algorithm 2.1). It is easy to see that for any pair of nodes (u, v),
generating edges in task Tu does not depend on generating edges in task Tv, i.e., tasks Tu and Tv can be
executed independently by two different processors. Now execution of procedure Create–Edges(w, S, V)
is equivalent to executing the set of tasks {Tu : u ∈ V }. Efficient parallelization of Algorithm 2.1 requires:

• Computing the sum S =
∑n−1
k=0 wk in parallel

• Dividing the task of executing Create–Edges into independent subtasks

• Accurately estimating the computational cost for each task

• Balancing computational load among the processors

To compute the sum S efficiently, a parallel sum operation is performed on w using P processors, which
takes O

(
n
P + logP

)
time. To divide the task of executing procedure Create–Edges into independent

subtasks, the set of nodes V is divided into P disjoint subsets V1, V2, . . . , VP ; that is, Vi ⊂ V , such that
for any i 6= j, Vi ∩ Vj = ∅ and

⋃
i Vi = V . Then Vi is assigned to processor Pi, and Pi execute the tasks

{Tu : u ∈ Vi}; that is, Pi executes Create–Edges(w, S, Vi).
Estimating and balancing computational loads accurately are the most challenging tasks. To achieve good

speedup of the parallel algorithm, both tasks must also be done in parallel, which are non-trivial problems. A
good load balancing is achieved by properly partitioning the set of nodes V such that the computational loads
are equally distributed among the processors. We use two classes of partitioning schemes named consecutive

3

partitioning (CP) and round-robin partitioning (RRP). In CP scheme consecutive nodes are assigned to each
partition, whereas in RRP scheme nodes are assigned to the partitions in a round-robin fashion. The use
of various partitioning schemes is not only interesting for understanding the performance of the algorithm,
but also useful in analyzing the generated networks. It is sometimes desirable to generate networks on the
fly and analyze it without performing disk I/O. Different partitioning schemes can be useful for different
network analysis algorithms. Many network analysis algorithms require partitioning the graph into an equal
number of nodes (or edges) per processor. Some algorithms also require the consecutive nodes to be stored
in the same processor. Before discussing the partitioning schemes in detail, we describe some formulations
that are applicable to all of these schemes.

Let eu be the expected number of edges produced and cu be the computational cost in task Tu for a
source node u. For the sake of simplicity, we assign one unit of time to process a node or an edge. With
S =

∑n−1
v=0 wv, we have:

eu =

n−1∑

v=u+1

pu,v =

n−1∑

v=u+1

wuwv
S

=
wu
S

n−1∑

v=u+1

wv (1)

cu = eu + 1 (2)

For two nodes u, v ∈ V such that u < v, we have cu ≥ cv as shown in Lemma 3.1.

Lemma 3.1. For any two nodes u, v ∈ V such that u < v, cu ≥ cv.

Proof. Proof omitted. The lemma follows immediately from Equation 2 and the fact that, the weights are
sorted in non-increasing order.

The expected number of edges generated by the tasks {Tu : u ∈ Vi} is given by mi =
∑
u∈Vi eu. Note

that the expected number of edges in the generated graph, i.e., the expected total number of edges generated
by all processors is m = |E| = ∑P−1

i=0 mi =
∑n−1
u=0 eu. The computational cost for processor Pi is given by:

c(Vi) =
∑

u∈Vi
cu =

∑

u∈Vi
(eu + 1) = mi + |Vi| (3)

Therefore, the total cost for all processors is given by:

P−1∑

i=0

c(Vi) =

P−1∑

i=0

(mi + |Vi|) = m+ n (4)

3.1 Consecutive Partitioning (CP)

Let partition Vi starts at node ni and ends at node ni+1 − 1, where n0 = 0 and nP = n, i.e., Vi =
{ni, ni+1, . . . , ni+1−1} for all i. We say ni is the lower boundary of partition Vi. A näıve way for partitioning
V is where each partition consists of an equal number of nodes, i.e., |Vi| =

⌈
n
P

⌉
for all i. To keep the discussion

neat, we simply use n
P . Although the number of nodes in each partition is equal, the computational cost

among the processors is very imbalanced. Lemma 3.2 shows that for two consecutive partitions Vi and Vi+1,

c(Vi) > c(Vi+1) for all i and the difference is at least n2

SP 2W iW i+1, where W i = 1
|Vi|
∑
u∈Vi wu, the average

weight (degree) of the nodes in Vi.

Lemma 3.2. Let c(Vi) be the computational cost for partition Vi. In the näıve partitioning scheme, we have

c(Vi)− c(Vi+1) ≥ n2

SP 2W iW i+1, where W i = 1
|Vi|
∑
u∈Vi wu, the average weight of the nodes in Vi.

Proof. In the naıve partitioning scheme, each of the partitions has x = n
P nodes, except the last partition

which can have smaller than x nodes. For the ease of discussion, assume that for u ≥ n, wu = 0 and
consequently eu = 0. Now, Vi = {ix, ix+ 1, . . . , (i+ 1)x− 1}. Using Equation 3, we have:

4

0.0 × 100

5.0 × 108

1.0 × 109

1.5 × 109

2.0 × 109

0 100 200 300 400 500
Processor Rank

C
os

t

(a) Computational Cost

0

100

200

300

400

0 100 200 300 400 500
Processor Rank

T
im

e
(s

ec
on

ds
)

(b) Runtime

Networks

ER

PL

Figure 1: Computational cost and runtime in näıve CP scheme

c(Vi)− c(Vi+1) =
∑

u∈Vi
(eu + 1)−

∑

u∈Vi+1

(eu + 1)

≥
(i+1)x−1∑

u=ix

(eu + 1)−
(i+2)x−1∑

u=(i+1)x

(eu + 1)

=

(i+1)x−1∑

u=ix

(eu − eu+x)

=

(i+1)x−1∑

u=ix

(
wu
S

n−1∑

v=u+1

wv −
wu+x
S

n−1∑

v=u+x+1

wv

)

≥
(i+1)x−1∑

u=ix

wu
S

u+x∑

v=u+1

wv ≥
(i+1)x−1∑

u=ix

wu
S
xW i+1

=
xW i+1

S
· xW i =

n2

SP 2
W iW i+1

Thus c(Vi) gradually decreases with i by a large amount leading to a very imbalanced distribution of the
computational cost.

To demonstrate that näıve CP scheme leads to imbalanced distribution of computational cost, we gener-
ated two networks, both with one billion nodes: i) Erdős–Rényi network with an average degree of 500, and
ii) Power–Law network with an average degree of 49.72. We used 512 processors, which is good enough for
this experiment. Figure 1 shows the computational cost and runtime per processor. In both cases, the cost is
not well-balanced. For power-law network the imbalance of computational cost is more prominent. Observe
that the runtime is almost directly proportional to the cost, which justifies our choice of cost function. That
is balancing the cost would also balance the runtime.

We need to find the partitions Vi such that each partition has equal cost, i.e., c(Vi) ≈ Z, where Z = (m+n)
P

is the average cost per processor. We refer such partitioning scheme as uniform cost partitioning (UCP).
Although determining the partition boundaries in the näıve scheme is very easy, finding the boundaries in
UCP scheme is a non trivial problem and requires: (i) computing the cost cu for each node u ∈ V and
(ii) finding the boundaries of the partitions such that every partition has a cost of Z. Näıvely computing
costs for all nodes takes O

(
n2
)

time as each node independently requires O (n) time using Equation 1 and

2. A trivial parallelization achieves O
(
n2

P

)
time. Our algorithm performs this computation in parallel in

O
(
n
P + logP

)
time.

Finding the partition boundaries such that the maximum cost of a partition is minimized is a well-known
problem named chains-on-chains partitioning (CCP) problem [18]. In CCP, a sequence of P − 1 separators
are determined to divide a chain of n tasks with associated non-negative weights (cu) into P partitions
so that the maximum cost in the partitions is minimized. Sequential algorithms for CCP are studied quite

5

0 n1 ni − 1 ni ni+1 − 1 ni+1 n − 1

Partition 0 Partition i

n2 − 1

Partition 1

n2 nP−1nP−1 − 1

Partition P − 1

i(m+n)
P

(P−1)(m+n)
P

n1 − 1

Nodes

CniCni−1 Cni+1−1

2(m+n)
P

m+n
P

C0 Cn1−1 Cn1 Cn2−1

(i+1)(m+n)
P

Cn2

(m + n)Cost Boundaries

Cummulative
Cost

Cni−1 <
i(m+n)

P
≤ Cni

0

Cn−1· · ·

Figure 2: Uniform cost partitioning (UCP) scheme

extensively [15, 17, 18]. Since these algorithms take at least Ω(n+P log n) time, using any of these sequential
algorithms to find the partitions, along with the parallel algorithm for the CL model, does not scale well.
To the best of our knowledge, there is no parallel algorithm for CCP problem. We present a novel parallel
algorithm for determining the partition boundaries which takes O

(
n
P + P

)
time in the worst case.

To determine the partition boundaries, instead of using cu directly, we use the cumulative cost Cu =∑u
v=0 cv. We call a partition Vi a balanced partition if the computational cost of Vi is c(Vi) =

∑ni+1−1
u=ni

cu =

Cni+1−1 − Cni−1 ≈ Z. Also note that for lower boundary ni of partition Vi we have, Cni−1 < iZ ≤ Cni for
0 < i ≤ P − 1. Thus, we have:

ni = arg min
u

(
Cu ≥ iZ

)
(5)

In other words, a node u with cumulative cost Cu belongs to partition Vi such that i =
⌊
Cu
Z

⌋
. The partition

scheme is shown visually in Figure 2.

Computing Cu in Parallel. Computing Cu has two difficulties: i) for a node u, computing cu by using
Equation 1 and 2 directly is inefficient and ii) Cu is dependent on Cu−1. To overcome the first difficulty, we
use the following form of eu to calculate cu. From Equation 1 we have:

eu =
wu
S

n−1∑

v=u+1

wv

=
wu
S

(
n−1∑

v=0

wv −
u∑

v=0

wv

)

=
wu
S

(
n−1∑

v=0

wv −
u−1∑

v=0

wv − wu
)

cu = eu + 1 =
wu
S

(S − σu − wu) + 1

[
where σu =

u−1∑

v=0

wv

]
(6)

Therefore, cu can be computed by successively updating σu = σu−1 + wu−1.
To deal with the second difficulty, we compute Cu in several steps using procedure Calc–Cost as shown

in Algorithm 3.1 (see Figure 3 for a visual representation of the algorithm). In each processor, the partitioning
algorithm starts with procedure UCP that calculates the cumulative costs using procedure Calc–Cost.
Then procedure Make–Partition is used to compute the partitioning boundaries. At the beginning of the
Calc–Cost procedure, the task of computing costs for the n nodes are distributed among the P processors
equally, i.e., processor Pi is responsible for computing costs for the nodes from i nP to (i + 1) nP − 1. Note
that these are the nodes that processor Pi works with while executing the partitioning algorithm to find the
boundaries of the partitions.

In Step 1 (Line 6), Pi computes a partial sum si =
∑ (i+1)n

P −1
u= in

P

wu independently of other processors. In

Step 2 (Line 7), exclusive prefix sum Si =
∑i−1
j=0 sj is calculated for all si where 0 ≤ i ≤ P − 1 and S0 = 0.

6

sP−1 =
n−1∑

v=n−n/P
wvs0 =

n/P−1∑

v=0

wv s1 =

2n/P−1∑

v=n/P

wv

Processor 0 Processor 1 Processor P-1

Exclusive Prefix Sum on si

S0 = 0 S1 =
∑0
i=0 si SP−1 =

∑P−2
i=0 si

σu ← Su

Cu ← eu + 1 = wu(S−σu−wu)
S + 1

for v = u+ 1 to (i+1)n
P − 1

σv ← σv−1 + wv

ev ← wv(S−σv−wv)
S

Cv ← Cv−1 + ev + 1

zi = C (i+1)n
P −1

Exclusive Prefix Sum on zi

Z0 = 0 Z1 =
∑0
i=0 zi ZP−1 =

∑P−2
i=0 zi

for v = u to (i+1)n
P − 1

Cv ← Cv + Zi

Steps

1

2

3

4

5

u← in
P

5

Processor Pi

Figure 3: Steps for determining cumulative cost in UCP

This exclusive prefix sum can be computed in parallel in O (logP) time [21]. We have:

Si =

i−1∑

j=0

sj =

i−1∑

j=0

(j+1)n
P −1∑

u= jn
P

wu =

in
P −1∑

u=0

wu = σ in
P

In Step 3, Pi partially computes Cu, where in
P ≤ u < (i+1)n

P . By assigning σ in
P

= Si, C in
P

is determined

partially using Equation 6 in constant time (Line 10). For each u, values of σu , eu and Cu are also determined

in constant time (Line 11–14), where in
P + 1 ≤ u ≤ (i+1)n

P − 1. After Step 3, we have Cu =
∑u
v= in

P
cv. To

get the final value of Cu =
∑u
v=0 cv, the value

∑v= in
P −1

v=0 cv needs to be added. For a processor Pi, let

zi = C (i+1)n
P −1 =

∑ (i+1)n
P −1

v= in
P

cv. In Step 4 (Line 16), another exclusive parallel prefix sum operation is

performed on zi so that

Zi =

i−1∑

j=0

zj =

i−1∑

j=0

(j+1)n
P −1∑

v= jn
P

cv =

in
P −1∑

v=0

cv.

Note that Zi is exactly the value required to get the final cumulative cost Cu. In Step 5 (Lines 17–18), Zi
is added to Cu for in

P ≤ u ≤
(i+1)n
P − 1.

7

Finding Partition Boundaries in Parallel. The partition boundaries are determined using Equation 5.
The procedure Make–Partition generates the partition boundaries. In Line 20, parallel sum is performed
on zi to determine Z =

∑P−1
0 zi =

∑n−1
0 cu = n + m, the total cost and Z = Z

P , the average cost per
processor (Line 21). Find–Boundaries is called to determine the boundaries (Line 22). From Equation 5,
it is easy to show that a partition boundary is found between two consecutive nodes u and u + 1, such

that
⌊
Cu
Z

⌋
6=
⌊
Cu+1

Z

⌋
. Node u + 1 is the lower boundary of partition Vi, where i =

⌊
Cu+1

Z

⌋
. Pi executes

Find–Boundaries from nodes in
P to (i+1)n

P − 1. Find–Boundaries is a divide & conquer based algorithm
to find all the boundaries in that range efficiently using the cumulative costs. All the found boundaries are
stored in a local list. In Line 28, it is determined whether the range contains any boundary. If the range does

not have any boundary, i.e., if
⌊
Cs
Z

⌋
=
⌊
Ce
Z

⌋
, the algorithm returns immediately. Otherwise, it determines

the middle of the range m in Line 29. In Line 30, the existence of a boundary between m and m + 1 is
evaluated. If m + 1 is indeed a lower partition boundary, it is stored in local list in Line 31. In Line 32
and 33, Find–Boundaries is called with the ranges [s,m] and [m+ 1, e] respectively. Note that the range[
in
P ,

(i+1)n
P − 1

]
may contain none, one or more boundaries. Let Bi be the set of those boundaries. Once the

set of boundaries Bi, for all i, are determined, the processors exchange these boundaries with each other as
follows. Node nk, in some Bi, is the boundary between the partitions Vk and Vk+1, i.e., nk − 1 is the upper

boundary of Vk, and nk is the lower boundary of Vk+1. In Line 23, for each nk in the range
[
in
P ,

(i+1)n
P − 1

]
,

processor Pi sends a boundary message containing nk to processors Pk and Pk+1. Notice that each processor
i receives exactly two boundary messages from other processors (Line 25), and these two messages determine
the lower and upper boundary of the i-th partition Vi. That is, now each processor i has partition Vi and is
ready to execute the parallel algorithm for the CL model with UCP scheme.

The runtime of parallel Algorithm 3.1 is O
(
n
P + P

)
as shown in Theorem 3.3.

Theorem 3.3. The parallel algorithm for determining the partition boundaries of the UCP scheme runs in
O
(
n
P + P

)
time, where n and P are the number of nodes and processors, respectively.

Proof. The parallel algorithm for determining the partition boundaries is shown in Algorithm 3.1. For each
processor, Line 6 takes O

(
n
P

)
time. The exclusive parallel prefix sum operation requires O (logP) time in

Line 7. Lines 8–10 take constant time. The for loop at Line 11 iterates n
P − 1 times. Each execution of the

Algorithm 3.1 Uniform Consecutive Partition

1: procedure UCP(V , w, S)
2: Calc–Cost(w, V , S)
3: Make–Partition(w, V , S)

4: procedure Calc–Cost(w, V , S)
5: i← processor id

6: si ←
∑(i+1) nP −1
u=i nP

wu

7: In Parallel: Si ←
∑i−1
j=0 sj

8: u← in
P

9: σu ← Si
10: Cu ← eu + 1 = wu

S (S − σu − wu) + 1

11: for u = in
P + 1 to (i+1)n

P − 1 do
12: σu ← σu + wu
13: eu ← wu

S (S − σu − wu)
14: Cu ← Cu−1 + eu + 1

15: zi ← C (i+1)n
P −1

16: In Parallel: Zi ←
∑i−1
j=0 zj

17: for u = in
P to (i+1)n

P − 1 do
18: Cu = Cu + Zi

8

19: procedure Make–Partition(w, V , S)

20: In Parallel: Z ←∑P−1
i=0 zi

21: Z ← Z
P

22: Find–Boundaries(inP , (i+1)n
P − 1, C, Z)

23: for all nk ∈ Bi do
24: Send nk to Pk and Pk+1

25: Receive boundaries ni and ni+1

26: return Vi = [ni, ni+1 − 1]

27: procedure Find–Boundaries(s, e, C, Z)

28: if
⌊
Cs
Z

⌋
=
⌊
Ce
Z

⌋
then return

29: m← (e+s)
2

30: if
⌊
Cm
Z

⌋
6=
⌊
Cm+1

Z

⌋
then

31: n⌊Cm+1

Z

⌋ ← m+ 1

32: Find–Boundaries(s,m,C,Z)
33: Find–Boundaries(m+ 1, e, C, Z)

for loop takes constant time for Lines 12–14. Hence, the for loop at Line 11 takes O
(
n
P

)
time. The prefix

sum in Line 16 takes O (logP) time. The for loop at Line 17 takes O
(
n
P

)
time.

The parallel sum operation in Line 20 takes O (logP) time using MPI Reduce function. For each processor

Pi, nk’s are determined in Find–Boundaries on the range of
[
in
P ,

(i+1)n
P − 1

]
. Finding a single partition

boundary on these n
P nodes require O

(
log n

P

)
time. If the range contains x partition boundaries, then it takes

O
(
min

{
n
P , x log n

P

})
time. For each partition boundary nk, processor i sends exactly two messages to the

processors Pk and Pk−1. Thus each processor receives exactly two messages. There are at most P boundaries

in
[
in
P ,

(i+1)n
P − 1

]
. Thus, in the worst case, a processor may need to send at most 2P messages, which takes

O (P) time. Therefore, the total time in the worst case is O
(
n
P + min

{
n
P , P log n

P

}
+ P

)
= O

(
n
P + P

)
.

Theorem 3.3 shows the worst case runtime of O
(
n
P + P

)
. Notice that this bound on time is obtained

considering the case that all P partition boundaries nk can be in a single processor. However, in most
real-world networks, it is an unlikely event, especially when the number of processors P is large. Thus it
is safe to say that for most practical cases, this algorithm will scale to a larger number of processors than
the runtime analysis suggests. Now we experimentally show the number of partition boundaries found in
the first partition for some popular networks. For the ER networks, the maximum number of boundaries in
a processor is 2, regardless of the number of processors. Even for the power–law networks, which has very
skewed degree distribution, the maximum number of boundaries in a single processor is very small. Figure 4
shows the maximum number of boundaries found in a single processor. Two fitted plots of log2 P and logP is
added in the figure for comparison. From the trend, it appears the maximum number of partition boundaries

●

●

●

●

●

●

●

●
●

● ● ●

0

10

20

30

40

0 1000 2000 3000 4000 5000
of Processors

P
ar

tit
io

ns ● PL

log2(P)

log(P)

ER

Figure 4: Maximum number of boundaries in a single processor

9

in a processor is somewhere between O (logP) and O
(
log2 P

)
. Since power–law has one of the most skewed

degree distribution among real-world networks, we can expect the runtime to find partition boundaries to
be approximately O

(
n
P + log2 P

)
time.

Using the UCP scheme, our parallel algorithm for generating random networks with the CL model runs
in O

(
m+n
P + P

)
time as shown in Theorem 3.5. To prove Theorem 3.5, we need a bound on computation

cost which is shown in Theorem 3.4.

Theorem 3.4. The computational cost in each processor is O
(
m+n
P

)
w.h.p.

Proof. For each u ∈ Vi and v > u, (u, v) is a potential edge in processor Pi, and Pi creates the edge
with probability pu,v = wuwv

S where S =
∑
v∈V wv. Let x be the number of potential edges in Pi, and

these potential edges are denoted by f1, f2, . . . , fx (in any arbitrary order). Let Xk be an indicator random
variable such that Xk = 1 if Pi creates fk and Xk = 0 otherwise. Then the number of edges created by Pi
is X =

∑x
k=1Xk.

As discussed in Section 2, generating the edges efficiently by applying the edge skipping technique is
stochastically equivalent to generating each edge (u, v) independently with probability pu,v = wuwv

S . Let ξe
be the event that edge e is generated. Regardless of the occurrence of any event ξe with e 6= (u, v), we always
have Pr{ξ(u,v)} = pu,v = wuwv

S . Thus, the events ξe for all edges e are mutually independent. Following the
definitions and formalism given in Section 3.1, we have the expected number of edges created by Pi, denoted
by µ, as

µ = E[X] =
∑

u∈Vi
eu = mi.

Now we use the following standard Chernoff bound for independent indicator random variables and for any
0 < δ < 1,

Pr {X ≥ (1 + δ)µ} ≤ e−δ2 µ3 .
Using this Chernoff bound with δ = 1

2 , we have

Pr

{
X ≥ 3

2
mi

}
≤ e−

mi
12 ≤ 1

m3
i

for any mi ≥ 189. We assume m� P and consequently mi > P for all i. Now using the union bound,

Pr

{
X ≥ 3

2
mi

}
≤ mi

1

m3
i

=
1

m2
i

for all i simultaneously. Then with probability at least 1 − 1
m2
i
, the computation cost X + |Vi| is bounded

by 3
2mi + |Vi| = O (mi + |Vi|). By construction of the partitions by our algorithm, we have O (mi + |Vi|) =

O
(
m+n
P

)
. Thus the computation cost in all processors is O

(
m+n
P

)
w.h.p.

Theorem 3.5. Our parallel algorithm with UCP scheme for generating random networks with the CL model
runs in O

(
m+n
P + P

)
time w.h.p.

Proof. Computing the sum S in parallel takes O
(
n
P + logP

)
time. Using the UCP scheme, node partitioning

takes O
(
n
P + P

)
time (Theorem 3.3). In the UCP scheme, each partition has O

(
m+n
P

)
computation cost

w.h.p. (Theorem 3.4). Thus creating edges using procedure Create–Edges requires O
(
m+n
P

)
time, and

the total time is O
(
n
P + P + m+n

P

)
= O

(
m+n
P + P

)
w.h.p.

3.2 Round-Robin Partitioning (RRP)

In RRP scheme nodes are distributed in a round robin fashion. Partition Vi has the nodes 〈i, i + P, i +
2P, . . . , i+ kP 〉 such that i+ kP ≤ n < i+ (k + 1)P ; i.e., Vi = {j|j mod P = i}. In other words node i is
assigned to Vi mod P . The number of nodes in each partition is almost equal, either b nP c or d nP e.

In order to compare the computational cost, consider two partitions Vi and Vj with i < j. Now, for
the x-th nodes in these two partitions, we have: ci+(x−1)P ≥ cj+(x−1)P as i + (x − 1)P < j + (x − 1)P
(see Lemma 3.1). Therefore, c(Vi) =

∑
u∈Vi cu ≥ c(Vj) =

∑
u∈Vj cu and by the definition of RRP scheme,

|Vi| ≥ |Vj |. The difference in cost between any two partitions is at most w0, the maximum weight as shown
in Lemma 3.6.

10

Lemma 3.6. In Round Robin Partitioning (RRP) scheme, for any i < j, we have c(Vi)− c(Vj) ≤ wi.

Proof. The difference in cost between two partitions Vi and Vj is given by:

c(Vi)− c(Vj) =
∑

u∈Vi
cu −

∑

u∈Vj
cu =

k∑

x=0

(ci+xP − cj+xP)

= ci −
k−1∑

x=0

(
cj+xP − ci+(x+1)P

)
− cj+kP

≤ ci − cj+kP
[
cj+xp ≥ ci+(x+1)P

]

≤ ei =
wi
S

n−1∑

v=i+1

wv <
wi
S
S = wi

Thus RRP scheme provides quite good load balancing. However, it is not as good as the UCP scheme. It is
easy to see that in the RRP scheme, for any two partitions Vi and Vj such that i < j, we have c(Vi) > c(Vj).
But, by design, the UCP scheme makes the partition such that cost are equally distributed among the
processors. Furthermore, although the RRP scheme is simple to implement and provides quite good load
balancing, it has another subtle problem. In this scheme, the nodes of a partition are not consecutive and
are scattered in the entire range leading to some serious efficiency issues in accessing these nodes. One major
issue is that the locality of reference is not maintained leading to a very high rate of cache miss during the
execution of the algorithm. This contrast of performance between UCP and RRP is even more prominent
when the goal is to generate massive networks as shown by experimental results in Section 4.

4 Experimental Results

In this section, we experimentally show the accuracy and performance of our algorithm. The accuracy of
our parallel algorithms is demonstrated by showing that the generated degree distributions closely match
the input degree distribution. The strong scaling of our algorithm shows that it scales very well to a large
number of processors. We also present experimental results showing the impact of the partitioning schemes
on load balancing and performance of the algorithm.

Experimental Setup. We used a 81-node HPC cluster for the experiments. Each node is powered
by two octa-core SandyBridge E5-2670 2.60GHz (3.3GHz Turbo) processors with 64 GB memory. The
algorithm is developed with MPICH2 (v1.7), optimized for QLogic InfiniBand cards. In the experiments,
degree distributions of real-world and artificial random networks were considered. The list of networks is
shown in Table 1. The runtime does not include the I/O time to write the graph into the disk.

Table 1: Networks used in the experiments

Network Type Nodes Edges
PL Power Law Network 1B 249B
ER Erdős–Rényi Network 1M 200M
Miami [2] Contact Network 2.1M 51.4B
Twitter [24] Real–World Social Network 41.65M 1.37B
Friendster [25] Real–World Social Network 65.61M 1.81B

Degree Distribution of Generated Networks. Figure 5 shows the input and generated degree
distributions for ER, PL, Miami, Twitter, and Friendster networks. As observed from the plots, the generated
degree distributions closely follow the input degree distributions reassuring that our parallel algorithms
generate random networks with given expected degree sequences accurately.

Effect of Partitioning Schemes. As discussed in Section 3.1, partitioning significantly affects load
balancing and performance of the algorithm. We demonstrate the effects of the partitioning schemes in

11

●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●●●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0

10000

20000

0 100 200 300 400
Degree

of

 N
od

es
●● Input

Output

(a) ER

●

●

●
●

●
●

●
● ● ● ● ● ●●

●●●
●●

●●100

102

104

106

100 101 102 103

Degree

of

 N
od

es

●● Input

Output

(b) PL

●

●

●

●
●●
●
●●
●●●●●●

●
●●
●
●
●
●

●

●
●

●
●

●
●●●

●
●●
●●
●
●
●
●
●
●
●●
●●
●●●●

●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●● ● ●●0

10000

20000

30000

0 100 200 300 400
Degree

of

 N
od

es

●● Input

Output

(c) Miami

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●
●

●●●●●

●●

●●●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●
●

●●●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●●●

●

●

●

●●●●●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●
●

●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●

●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●●●

●●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●●

●●●

●

●●●●●●●●

●●

●

●

●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●●

●

●●●●●●

●

●●●●●●

●
●●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●●●

●●●●

●

●●

●

●●●●

●

●

●

●●●●●

●

●●●●●●●●●●

●

●●●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●
●
●

●●●

●

●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●

●

●●

●

●●●●●●●●●●

●

●●

●

●●●●

●●●

●●●●●●

●

●●●●

●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●

●●

●●●●●

●

●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●●

●●●●

●●

●●●●●●●●

●

●●●●

●●

●●

●

●

●
●

●

●

●●●●●

●

●●●

●

●●●●●●●

●●

●●●●●●

●

●●●

●

●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●

●●

●●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●●

●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●

●●●

●●

●

●●●●

●

●●●●●

●●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●

●

●●

●●●
●

●●●●●●●●●●●

●

●●●

●

●●

●

●●●●

●

●

●●

●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●

●

●

●●

●●●●●●●●

●●●

●●

●
●

●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●

●

●●●

●●●

●●●●

●

●

●

●

●

●●●

●●●

●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●

●
●

●●●●●●●●●

●

●●●

●

●●

●●●●

●

●●●●●●●●●

●

●●●●

●●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●●●

●

●●●

●

●●●●●●●●

●

●●●

●●

●

●

●●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●

●●

●

●●●

●

●●●●●●●

●●

●●●●●●●●●

●

●●

●

●●

●
●

●●

●●

●●●●●

●

●●●●●●●●

●

●●●

●●●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●

●●

●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●●

●●●
●
●

●●●

●

●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●

●●●

●●●●

●●●

●●●●●●●●●●●●

●●

●

●

●●●●●●

●

●

●

●●●●

●

●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●
●
●

●●●●●●●

●

●

●●

●●●●●●●●●●

●

●

●

●●●●●●

●●

●●●●

●

●●

●

●●●●●●●●●●●●

●●

●

●

●

●

●●●●●●●●●

●

●●

●
●

●

●●●●

●●●●

●

●●●

●

●●●●●●●●

●●

●●●●●●

●

●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●

●

●

●

●●

●

●

●

●●

●●

●●●●

●

●●●

●

●●●●●●●●●●●●

●●

●●●●

●●

●●●●●

●●●

●●●

●●

●●●●●●●●●●●

●

●●

●

●●●●●

●●

●●●

●●

●

●

●●

●

●●●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●●●●●●

●

●●●●

●●●

●●●●

●●

●●●●●

●
●●
●
●

●●

●
●

●●●●●●●

●

●

●

●●●●●●

●

●

●●

●

●

●●●●

●

●●

●

●●●●

●●●●●●●

●●

●
●

●●

●

●●●●

●●
●
●●●

●●●●●

●
●
●

●●●●●●●

●●

●●

●

●●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●●●

●●●●

●

●●●

●

●●

●●

●●

●

●

●●●

●●●●●●●

●

●●●●●

●●●
●

●●●●●●●●●●

●

●●●

●

●●●●

●

●●

●

●●●●●●

●

●

●

●●●

●●

●●

●

●●●●●●●●●●●

●

●●●●●

●

●●

●

●●●

●

●●

●

●●

●
●

●●

●

●●●●●●●●●●●

●

●

●

●

●●

●●

●

●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●●●

●

●

●

●●●●●●

●
●

●

●

●●●

●

●●●●

●

●●●●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●●●

●

●●●●●●●●

●●

●●●●

●

●

●

●●●●●●

●

●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●●●●

●

●●●

●

●●

●

●●

●●●

●●

●

●●●●●●

●●●

●●●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●

●●

●

●

●●●●

●

●

●

●●●●

●●●

●

●

●●

●

●

●

●●

●●

●●

●●●●●

●●●●●

●●●

●●●

●

●●

●●●

●●

●

●

●●

●

●●●

●●

●●

●●

●

●

●●

●

●●

●●

●●●●●●●●●●●●

●

●●

●

●●●●●●●

●
●
●

●

●

●●●●●●●

●

●●●●●

●

●●●

●●

●●●●●●

●

●●

●

●●●●

●

●●

●

●●●

●
●

●●●

●

●

●

●

●

●●●●●

●

●●

●

●

●●

●●●

●

●●●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●

●

●●●●●

●

●

●●

●●●

●
●

●

●

●●●●

●●

●●●●

●●●●●

●

●

●●

●

●●●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●●

●

●
●●●

●●

●
●

●●●●

●

●●●●

●

●●

●

●●●

●

●

●

●●●●

●

●●●●●●

●

●●●●●●●

●●●●

●●●●●

●●

●●

●●

●●●

●

●●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●

●●
●

●

●

●

●

●●

●
●

●

●●
●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●
●

●

●

●●●

●

●●

●●

●●

●

●●●●●●●●●●

●

●

●

●●

●●

●●●●●●●●●

●
●

●●●●●●

●

●●●

●
●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●
●

●●●●

●

●●

●

●●

●

●

●

●●●●●

●●

●

●

●

●

●

●●

●●●

●

●

●

●●●

●●

●

●

●●●●

●

●●●

●

●

●

●●●

●●

●●●●●●

●●

●

●●●●

●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●

●
●

●●

●

●

●●

●

●
●

●

●
●

●●

●

●●●

●
●

●●●

●
●

●●●●

●

●●●●●●

●

●●●

●

●●●

●

●●●●●●

●
●●●●

●●●

●
●
●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●●

●●●●

●

●●●●●●●●●●●●●

●●●

●

●
●

●●

●

●●●●

●●●

●●

●

●

●●●

●

●

●●

●

●●

●
●

●●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●
●●
●

●●●

●
●

●

●
●

●

●●

●●

●

●●●●●

●

●

●●●

●●

●

●●

●

●●

●●●●●●●●

●
●

●●●●

●

●

●

●●

●
●●

●●●

●
●

●

●

●●●●●

●●

●●●

●

●

●

●

●

●●

●

●●●●

●
●
●
●

●

●

●●●●●

●

●●●

●

●●●●●●

●

●●●●●●●

●

●●

●●●

●●●●●●●

●

●●●

●

●

●

●●

●●●

●

●
●●

●●

●●●

●●●●●

●●

●●

●
●

●

●●

●●●●

●

●●●●●●

●

●
●

●●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●●

●

●●

●
●

●●

●●

●

●●

●

●●

●●●

●

●●

●

●

●

●

●●●●

●

●●

●●●●●●●●

●

●●

●●

●●●●●

●

●●●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●●

●

●●●●●●

●

●●

●●

●
●

●●

●

●●

●●●●●

●●●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●●●●

●●

●●

●

●●

●

●●●●●●

●

●●

●

●●●●

●
●●

●

●●

●
●

●●●

●●

●●

●

●●

●

●●●●●●

●

●●

●

●

●

●●●●●●●

●●
●
●

●●

●

●

●

●●●●●●●

●
●
●

●●

●●

●●●●●●

●
●

●●

●

●

●●

●

●
●●

●●●

●●●

●●

●

●●●●

●
●
●

●

●

●●●

●

●

●
●

●

●

●●

●

●●●●●●

●●●

●

●
●
●

●●

●

●●●●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●●●

●

●●

●

●●

●

●

●

●

●

●●●

●
●●
●
●●

●

●●
●●
●

●●●●

●

●

●

●●

●●

●●●●●●

●
●

●

●●●●

●●●●●●●

●

●●●

●
●

●

●

●●●●●

●

●●

●

●

●●

●●

●

●●●●

●
●

●●

●
●

●●●●

●

●●●●

●

●

●●

●●●●●

●

●●●●●

●

●

●●●

●●

●

●●

●
●

●

●

●●

●●

●

●

●
●

●●

●
●

●

●

●

●

●●●●●●

●
●
●

●●●

●

●●●●

●

●

●●●
●
●

●

●

●

●

●●

●

●

●

●●●

●
●●●

●●

●

●●●●●

●

●●

●

●

●●●

●●

●

●●●

●

●●●●●

●
●

●●●●●

●

●

●●

●

●●
●

●

●

●●

●

●●

●
●

●●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●●●

●●●
●
●●

●●

●

●●●

●
●
●

●●●

●

●

●●

●●

●

●
●

●●

●●●●

●

●●

●

●

●●

●

●

●
●

●●●

●

●●

●●●
●

●●●●

●

●●

●

●

●●

●

●

●●●●●

●

●

●
●
●

●●●●

●

●

●

●●●●●

●●

●

●●
●●●

●●

●
●
●

●●●

●

●●

●

●●

●

●●●●

●

●●●

●●●●●

●●●●

●

●●●

●

●●●●●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●●●

●

●

●●●

●

●

●

●

●

●●●●

●●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●●●

●
●

●●●●

●●

●●●

●

●●

●

●●

●●

●

●●

●●●●

●

●

●

●●●

●●●

●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●
●

●●●

●

●

●●●

●

●●●●

●

●
●
●

●●

●

●●

●

●●

●

●●●●

●
●
●
●
●

●

●●

●●●

●
●

●●●

●

●

●
●

●

●

●●●●

●●

●

●●

●

●

●

●
●

●

●●

●

●
●

●●●

●

●

●
●

●●

●
●

●

●

●●●

●●●

●

●●●●

●

●
●
●
●
●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●
●●
●

●●

●

●●

●

●

●
●

●

●

●

●
●●

●●

●●

●●●●

●

●●

●

●

●

●

●●●

●

●
●●●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●●●

●

●●●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●●●

●●●●

●

●

●

●

●

●

●●●

●

●●

●●●

●●

●

●●
●
●

●

●
●

●●

●
●

●

●
●
●●

●●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●●●●
●

●

●
●

●

●

●

●

●●●●

●

●

●
●
●

●●

●

●●●●

●

●

●●

●●●

●

●●●

●

●

●
●

●●

●

●

●

●●

●●●
●

●●●

●
●●●●
●
●

●

●

●●●

●

●●

●

●●●

●
●●

●●●●

●●

●

●
●●

●

●

●

●
●

●●●●

●

●●●

●●
●
●●

●

●

●

●

●●

●

●

●●

●●●●●

●●

●

●

●

●
●

●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●●

●

●

●●●●●

●●
●

●

●
●

●●●●

●
●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●●●
●
●

●●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●●●●

●●

●

●

●●●

●

●
●

●●●●

●
●●

●

●
●
●

●

●

●

●●●

●●
●

●

●

●
●
●●●

●

●
●

●●●●●

●

●

●●
●

●

●●●

●

●
●
●

●

●
●

●●

●

●●

●
●

●●●

●
●●

●●●●●

●

●●●●●

●

●

●

●

●

●

●●●

●
●

●●

●

●
●

●●●

●

●●

●●

●

●

●●

●

●●

●

●●

●●
●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●●●

●

●●

●

●

●●

●●

●

●
●

●●

●
●●

●●●●●●●●●●●

●

●●

●
●

●

●●●●

●
●

●●

●●

●

●●

●●●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●
●

●●

●●

●

●●
●

●

●

●

●

●
●

●●

●
●●●●
●
●
●

●

●

●●●●●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●●

●

●●●

●
●
●●●
●

●●●●

●

●

●

●●

●

●●●●

●

●●●●

●
●

●●

●

●

●

●

●

●●●●

●
●●

●●

●

●

●
●

●

●
●●
●
●

●

●●

●

●●

●●

●
●

●●●

●●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●

●

●
●

●

●
●

●

●
●●●

●

●

●●●●●●

●
●●

●

●

●

●
●

●●

●●

●●

●●
●

●

●
●●
●

●

●●

●●
●
●●
●

●

●

●●●●

●

●●

●

●

●●

●●
●

●●

●
●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●●

●

●●

●●●●●

●
●

●

●

●●●

●
●

●

●●

●●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●

●

●●●

●
●
●

●

●●●

●●●

●

●

●

●●

●

●

●

●

●●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●●

●●

●

●

●

●
●
●●●●●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●

●●

●●●●

●

●●●●●

●●●

●

●
●

●

●

●

●●●●
●●
●●●

●

●

●

●
●

●

●
●●●

●

●●●

●●

●●

●

●

●●

●
●
●
●
●●

●

●

●

●●
●
●●

●●●

●

●

●●

●
●
●
●
●
●

●

●
●

●

●●
●●
●●
●
●●

●
●
●

●●

●●●●●●
●●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●●●●●●

●
●●
●

●

●

●●●

●●
●
●
●
●

●●●

●
●

●

●
●●●●
●
●

●●

●
●

●●●

●

●

●
●

●
●●

●●

●
●

●●
●
●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●●●●●

●

●

●

●

●
●
●●
●
●

●●●●

●●
●●

●●

●●●

●

●

●

●
●

●●

●●●

●

●

●

●●

●
●

●●

●●

●

●
●
●

●●●●●

●

●

●●

●

●

●

●

●

●●●
●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●●●●

●●●

●

●
●

●

●

●●●●●

●
●●

●●●●

●●
●

●●

●●●

●

●
●
●
●
●

●

●

●

●●
●●
●

●●●

●

●

●
●
●●

●

●●●

●

●●

●●●

●

●

●

●
●
●
●
●●
●
●

●●●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●
●
●

●●

●
●●

●

●
●●●

●●

●
●
●

●

●

●

●●
●●
●●

●●

●

●●●

●●
●●

●

●
●
●

●

●●

●●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●●

●
●

●

●

●●

●

●●●
●
●
●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●
●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●
●
●
●

●

●
●
●
●
●

●●●●●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●●

●

●
●
●●●
●

●●

●●●

●●●

●

●
●
●

●

●

●

●
●

●

●
●●●
●

●

●

●

●
●
●●
●
●●

●●
●●
●

●

●●●●●●

●

●●●

●●●

●

●

●●●

●

●

●
●

●

●●

●

●
●
●●●

●

●●

●●●●●●

●●
●

●

●
●
●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●●●

●

●

●

●
●●
●

●●

●●
●

●

●●

●

●
●●
●

●

●

●

●●

●

●

●
●

●
●●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●
●●

●●

●●
●

●

●
●
●

●

●●●●●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●●

●●

●
●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●●●●●

●

●

●●●

●●●

●●
●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●
●

●

●
●

●

●●●●
●●

●

●
●

●

●●

●

●

●
●
●●
●
●

●

●

●

●●●

●●

●
●●
●●●

●

●●

●

●

●

●●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●●

●●
●●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●●
●
●

●●

●

●

●
●

●●

●

●

●
●

●

●

●●

●
●
●●

●
●
●

●●

●●●●

●
●

●

●

●

●

●

●●●

●●●

●

●

●

●
●●

●●

●●

●●

●

●

●●

●

●
●
●

●

●●

●

●
●

●

●●
●●
●
●●
●

●

●

●

●●

●
●●●

●

●●
●●
●

●●●●

●

●●

●
●

●

●
●

●
●

●●

●
●
●
●●
●
●●

●

●
●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●

●●

●●●

●

●

●●

●

●●

●●

●

●

●●●●●●

●

●●

●
●

●

●
●●

●●

●

●

●

●

●●

●
●

●●

●

●

●●●●●

●

●

●●

●

●
●
●
●

●

●
●
●

●

●●

●

●●
●

●

●
●●
●●●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●●

●●●

●
●●

●●
●●●
●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●
●
●
●

●

●●

●●
●
●

●

●
●●●●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●●
●●
●
●
●
●
●

●

●

●●●

●
●
●
●●

●
●●
●

●

●

●●
●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●
●
●●●

●●

●
●
●●

●
●

●●●●

●●

●

●●●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●
●

●

●●
●

●

●

●
●

●

●

●
●

●

●●●

●●

●
●
●
●
●

●●●

●
●

●

●

●●

●

●

●

●

●
●●
●
●●●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●
●
●
●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●●

●
●●●
●●

●

●
●
●●●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●●●

●●●
●

●

●

●

●

●

●

●
●
●

●●

●
●●

●

●
●●
●
●

●

●

●

●

●

●●

●
●

●

●

●●
●●

●●●

●

●

●

●●●

●

●

●

●

●
●
●●

●

●●

●
●
●

●●

●

●

●

●

●
●
●●

●●

●

●
●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●●

●

●

●●

●
●

●●●

●

●●
●●●
●●
●
●●

●

●

●●
●
●

●
●

●

●

●

●

●
●
●●●
●

●●

●

●

●

●

●

●

●

●

●●
●
●●
●●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●●

●
●
●●
●
●

●

●
●

●

●●●
●●
●●
●
●
●

●

●

●
●

●

●●●●
●
●

●

●

●

●●●

●
●

●●

●
●●●●

●

●

●

●
●

●

●

●

●
●
●●
●●●
●●
●

●

●
●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●●●

●

●●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●

●●

●●

●●

●●

●

●

●

●●●

●●

●
●●

●

●●
●●

●

●
●
●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●
●●●
●●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●
●
●
●
●●
●
●
●

●

●

●

●●●

●

●

●●

●

●●

●
●
●●●●●
●
●

●

●●

●

●

●

●

●

●
●●●●
●

●

●●

●●●●
●●
●
●
●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●
●
●

●

●

●●

●

●

●

●●
●
●

●

●●

●

●
●
●
●
●
●●

●

●

●
●
●

●

●●●
●
●●
●

●

●
●●●

●

●

●●

●

●

●
●
●●
●

●●

●

●

●●

●●●

●

●●

●

●●

●●●

●

●

●

●●

●
●
●
●

●

●

●●
●●●
●
●●
●

●●●
●
●
●
●●

●●

●

●●

●

●
●

●●●

●●

●●

●●
●

●

●

●●

●

●●●
●●

●●

●●

●

●●
●
●

●

●

●

●

●

●

●

●●

●●●

●
●
●●
●
●●

●●

●

●

●

●

●

●●
●●
●
●
●
●

●

●

●

●

●●

●●

●●
●
●

●

●

●
●
●

●

●

●

●

●●●●●
●●

●

●

●

●

●

●
●
●
●
●●●●
●●

●

●●●

●

●

●●

●

●

●
●●
●
●

●

●

●

●
●
●

●

●

●●

●

●
●
●

●

●●

●

●

●●

●●

●
●●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●●

●●
●

●●

●
●
●

●

●
●

●
●
●
●
●
●
●
●

●●

●
●
●

●
●

●

●

●

●
●
●

●
●●
●

●

●

●

●
●
●●

●

●
●●
●
●●
●
●
●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●
●●
●

●

●●
●●

●

●

●
●●

●●

●●
●
●
●●●

●

●

●

●

●

●

●
●
●

●

●●●

●

●
●

●
●
●
●

●

●●●●

●

●

●●
●●
●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●●●

●
●●
●
●

●●
●●

●

●

●

●●

●

●
●

●

●

●

●●●
●

●●●

●
●
●

●

●

●

●

●

●●
●●●

●

●

●●
●
●
●

●

●

●
●●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●
●
●

●

●
●
●

●
●●

●●

●●
●

●

●
●

●●●
●●

●

●
●
●
●●
●

●

●●
●
●
●

●

●●
●
●

●

●●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●
●●

●

●
●●●

●
●●

●
●
●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●●

●●

●

●

●
●●

●

●
●●
●

●

●

●

●●
●
●●

●
●

●

●
●
●
●
●●●
●

●

●

●

●●
●
●
●

●●

●
●
●

●

●
●
●●

●

●●

●
●●

●

●●●
●
●
●
●
●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●●
●

●

●●

●

●●

●
●●
●
●
●●●

●

●●

●●

●

●

●●

●
●
●
●
●
●●
●●

●
●
●

●

●

●

●●●
●

●
●

●

●
●

●●
●

●

●●
●
●
●
●
●

●●
●●

●●

●●

●
●

●

●

●

●

●●
●
●

●

●●●
●
●●●●

●●

●

●

●●
●
●

●

●

●

●
●
●

●

●●●●●
●●
●

●

●

●

●

●●●
●
●●

●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●●

●

●

●
●

●

●

●●
●●
●
●

●

●

●

●
●●
●

●

●

●

●●

●
●
●

●

●●

●
●

●

●

●
●●●●●●●
●

●

●

●●

●

●
●

●●

●

●

●●

●

●

●

●
●
●

●

●●

●

●
●
●
●
●

●●

●
●●

●

●●
●

●

●
●
●
●
●●

●

●

●
●

●

●●

●

●

●
●●●

●●

●●
●●●●●

●
●

●

●

●

●

●

●
●●
●

●

●●

●●

●●
●●
●
●

●●●
●●
●
●●●●
●
●

●
●
●●
●
●

●
●
●●
●

●
●

●

●
●

●●
●

●
●

●

●
●
●●

●●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●
●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●●●●
●●
●●
●
●●

●
●
●●
●
●●●
●
●●

●●

●

●
●
●●●●●●

●

●
●

●
●
●
●●●

●

●
●●●
●
●
●
●●
●
●●

●

●
●●●●●

●
●
●●●●
●●●●
●

●

●
●

●

●●
●

●

●

●
●
●

●

●●

●

●
●

●
●

●●●
●

●

●●
●

●
●
●
●
●
●●●●
●●
●
●

●

●●
●
●●
●

●
●
●

●

●

●
●
●●

●●●
●●●
●

●

●
●
●
●

●

●
●●
●

●●●

●

●

●

●

●
●
●

●

●

●
●
●

●

●
●
●●

●
●

●
●
●
●
●●
●

●
●●●

●●●

●
●
●●●

●

●
●
●
●●

●

●

●
●

●●

●

●●
●
●

●

●●●
●●●
●

●●
●

●
●

●

●

●

●●

●●●

●
●
●
●●
●

●

●

●

●
●
●●●●●
●

●

●

●

●
●
●●●
●

●

●●

●●●
●●

●

●
●

●

●

●

●
●●●

●

●

●
●
●

●
●

●
●

●

●●

●

●●

●

●●●
●●
●

●

●
●●

●

●

●
●
●●

●
●

●●

●●●
●●

●●●

●

●

●

●●●
●
●●●●

●

●
●

●

●●
●
●
●●
●
●
●●●●
●●

●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●●●●
●

●
●

●●●

●

●●●

●

●●●●
●
●●

●

●

●

●●
●●
●

●

●

●

●●

●

●
●
●
●●●
●

●

●

●

●
●●●●●
●

●

●●

●

●
●●●

●

●●●●
●
●●

●●●●●
●●

●
●

●●
●●

●

●

●

●
●
●

●

●
●

●

●●●
●

●

●

●●●
●
●●
●
●

●

●●

●
●

●

●

●●

●
●

●

●

●●

●
●

●●

●

●
●
●●
●

●
●
●●
●
●

●

●

●
●

●●

●

●
●
●

●
●
●
●
●
●
●●
●

●●

●

●●

●

●
●

●

●

●

●●●●●

●

●

●
●●●●●
●●

●

●

●

●

●●

●●

●
●●

●
●

●

●
●
●
●●●
●
●
●
●●
●

●●
●
●

●

●

●

●

●
●●
●
●
●
●
●
●
●●●
●

●
●
●
●

●●●●
●●●●●●

●
●

●

●●

●

●●
●

●

●
●

●
●
●●
●●
●
●

●

●

●●

●
●●●
●

●●●
●

●

●

●
●
●

●

●

●

●●
●
●
●●●●

●

●●●
●

●
●●
●
●
●

●

●
●
●●
●

●

●

●●
●
●

●
●
●

●

●●
●
●●●●
●●●
●
●●
●

●●●
●
●

●
●

●

●

●●●
●
●●

●
●
●

●

●
●
●

●

●
●
●

●●

●
●●
●
●
●●●●●

●

●

●
●

●

●

●●
●●
●
●
●●
●
●

●

●●●
●

●
●

●●

●●

●

●

●●
●
●
●
●●

●
●
●
●●
●
●
●●●
●

●
●
●

●●
●●●
●●

●
●
●
●

●
●●

●

●

●
●
●

●
●

●

●
●●
●
●
●
●●

●
●

●

●●●
●
●
●
●●●
●
●
●
●●
●●●●

●

●
●

●

●

●●
●

●●

●

●●

●
●
●

●

●●
●

●

●●

●

●
●

●

●
●

●●
●
●
●
●
●●●
●●

●

●

●●

●●●
●

●

●

●●

●

●
●

●

●
●
●
●
●

●
●

●●
●

●

●

●

●

●●
●

●●●
●
●●
●●
●
●

●

●

●

●

●●●●●●●

●

●

●

●●
●●

●
●●●●
●●
●
●
●●●
●

●
●

●

●

●

●●

●

●●
●●
●
●●●
●

●

●

●
●

●
●

●
●

●

●
●
●
●●●
●
●

●
●
●

●●

●

●●

●

●●
●

●●

●
●●●●

●

●
●

●
●

●
●

●

●
●
●

●

●

●
●
●
●●
●
●

●

●●

●

●
●
●

●

●

●
●●●●
●

●
●●
●

●

●●●
●

●

●
●
●

●

●

●

●●
●
●●●

●
●
●

●

●
●
●

●

●●●
●●

●●
●●
●●
●●
●●

●

●
●
●●
●

●

●

●
●

●
●●
●

●

●

●
●●
●

●

●

●

●
●
●

●
●●
●
●●

●●
●
●●●
●
●●
●●●

●●

●

●
●●●
●

●
●

●

●

●
●●
●

●●
●

●

●
●

●

●●
●

●

●●
●

●

●
●
●

●
●
●
●
●
●●

●●

●●
●
●
●

●
●
●●●

●

●

●●
●
●

●

●
●
●
●

●

●●●●
●
●
●●●

●

●
●
●

●

●●●

●

●

●
●●●●

●

●●
●

●
●●
●●●

●

●●

●

●

●
●
●●●●
●●
●●●

●

●●
●

●

●
●

●●●
●
●

●

●●●

●

●
●
●●●
●

●

●

●

●●

●

●●
●●●
●

●

●

●

●

●

●

●

●●

●●

●

●
●●●●●

●

●●

●
●

●
●●

●

●
●
●●

●
●
●●
●
●

●●

●

●●

●
●●
●
●●
●
●
●

●

●●●
●

●●
●

●
●
●
●
●
●

●
●●●●●
●
●●●●●
●●
●
●

●●
●●

●●

●
●

●
●
●
●

●

●

●
●
●
●
●
●

●●

●
●●
●
●

●

●
●

●
●

●
●
●

●
●

●
●
●

●

●
●
●

●●
●
●
●
●
●

●
●●●
●

●●
●
●

●

●

●
●
●
●
●

●●●●

●

●●

●
●
●●●●●

●

●
●
●
●●
●
●
●
●●●

●

●●

●
●●
●

●
●

●

●

●
●
●
●

●
●
●
●
●
●
●●

●

●

●

●
●
●●

●●

●

●
●

●
●
●
●
●
●●

●
●●●

●

●

●

●

●

●

●●
●
●●
●

●

●●
●

●

●

●

●
●
●
●●

●
●●●●

●

●

●

●
●

●

●●

●●●

●

●
●●●●
●●
●●

●
●

●

●
●
●

●
●

●

●●●
●●
●
●
●●

●
●
●●

●

●

●
●●●

●
●
●

●

●
●

●

●

●
●

●

●
●
●●
●

●

●
●

●

●
●●●

●
●●

●●
●●
●●

●

●●

●

●●

●
●

●●

●

●

●
●

●
●
●

●●
●

●

●

●

●

●
●

●●

●

●●●●

●

●
●

●
●●●●●●
●
●●●●●●●
●
●●
●●
●
●●●
●
●
●●●
●
●
●
●
●
●
●
●●
●
●●

●

●●●●

●
●●

●

●

●

●●
●
●

●

●
●●●●
●●
●●

●●
●

●

●
●●
●
●
●

●

●●

●
●
●

●

●

●

●●●●●●
●

●
●●
●

●

●●
●
●●
●●

●

●
●

●
●
●
●
●
●

●

●●

●
●●●●
●

●

●

●
●
●

●

●

●
●
●
●●●
●●●

●

●●
●

●
●

●

●
●●
●●

●

●

●

●

●
●

●●
●●●

●

●●
●●
●
●●
●

●●

●
●
●●
●

●

●

●
●

●

●●
●●
●
●

●

●
●
●
●

●
●●●

●
●
●●

●●●
●
●
●●●●●
●
●

●

●

●
●

●

●
●●

●

●●●

●

●

●

●

●

●
●●

●

●●
●
●
●

●
●●●
●
●
●

●
●●
●

●

●
●
●●●
●●●●●●
●●

●●●
●●

●

●
●
●

●

●●●
●

●

●
●
●●●●●●●
●
●●

●

●
●
●
●
●●
●

●

●

●●

●●
●
●

●
●
●
●●●●●
●

●●
●●●●
●

●
●

●
●●
●

●

●●●●●●

●
●

●

●
●
●
●●
●●●
●

●

●
●
●●
●
●
●●
●●
●
●●

●●●

●

●

●

●
●
●
●●●●
●

●
●
●

●●
●
●●●●●

●
●
●●

●

●●
●

●

●

●

●
●

●

●
●
●●

●●

●●
●
●
●
●
●
●

●●●●●●
●

●
●●●
●
●●●
●
●●
●●

●●

●

●
●
●●
●

●

●●

●

●●
●
●

●

●
●●
●●
●
●

●

●
●

●●●●
●

●
●●●●●●●
●●
●
●
●
●
●
●●●
●
●●●●
●
●

●
●

●
●●
●

●
●
●●●●

●
●
●
●

●
●
●
●
●●
●

●

●
●

●

●●
●
●

●
●

●●

●

●

●

●●●●●
●

●

●
●
●●

●

●●●
●
●●●
●●●●
●

●

●●●●

●

●
●●●
●
●●
●
●●●

●

●

●

●●

●
●●

●
●
●
●●
●
●

●●●●●
●●
●

●

●●

●
●●●●
●
●
●●●
●

●

●
●●
●●●
●
●
●●
●

●
●

●

●

●

●
●

●
●
●●
●
●

●

●

●
●

●
●

●

●
●
●
●
●
●●
●
●●
●

●

●

●

●

●●

●

●●●
●
●
●
●
●
●
●
●●●●
●
●

●
●●●●●●
●

●

●●

●

●●
●
●●●●●
●

●●
●

●

●
●

●
●
●

●

●●
●

●

●

●●●

●

●
●
●

●

●
●
●●●●
●
●
●
●
●●

●

●

●

●●●●●
●●●
●●
●●●●
●
●
●
●
●
●
●●●
●
●●

●

●

●●

●

●●
●
●●
●
●
●

●

●
●
●
●●

●

●
●●
●

●●

●
●
●●●●
●

●
●
●●●
●
●
●
●●●●●
●

●

●●
●
●
●
●●
●●●

●

●●●●●●

●

●
●
●
●
●●
●

●

●
●

●●

●

●

●

●●

●
●
●

●
●
●●

●
●
●

●
●
●

●●
●●
●●●

●

●

●●●
●
●

●

●

●

●
●
●
●●●
●●●
●●
●
●
●
●●
●

●
●●●●
●●●

●●●●●●●●●
●

●
●
●
●●●
●

●

●●
●●
●●●●
●●
●
●

●

●●
●
●

●

●

●
●
●
●

●

●●●
●●
●●
●
●
●●
●
●●●

●
●

●
●
●
●●●
●
●
●
●
●●
●●

●

●
●
●
●●
●●
●●
●

●

●●●

●

●●
●
●
●
●●
●
●●●●●
●
●
●

●●
●●●
●
●
●●

●

●
●
●
●
●●

●
●●●●
●●

●

●

●
●●
●
●
●●
●●●
●

●

●
●
●
●
●
●
●
●●

●
●

●

●●●
●
●
●
●

●
●
●
●

●●
●
●●
●●
●●●●●●
●
●
●
●●●
●
●●
●
●●
●●●
●●
●●●●●
●
●
●
●●
●
●●
●

●●

●
●
●
●
●
●

●
●●
●●●●
●
●
●●●
●●
●●
●●

●●
●●
●●●●

●

●
●●
●

●

●●
●
●
●●●
●
●
●

●
●
●●●

●

●

●
●●●
●
●
●

●

●

●●●●●
●
●●
●●

●
●

●

●

●●●
●●
●
●
●
●

●●

●●
●●●●●

●

●●
●

●
●

●

●
●
●
●●●
●
●
●
●

●

●
●

●

●

●●
●●

●

●
●
●

●
●
●

●
●
●

●

●
●●

●
●
●●
●●
●
●●●●
●●
●
●
●●
●
●●
●●
●
●●
●

●●●●●
●●●●●
●
●●
●●●
●
●●●
●●●
●●●

●●●●●●●

●

●

●

●
●
●●●
●
●●
●

●
●
●●●
●
●●●
●●●
●
●
●

●
●●●●●
●●●●●
●●●

●

●●●●●
●
●●
●●●

●
●

●

●

●
●

●

●●●
●
●
●
●
●
●

●

●●
●●
●
●
●●●
●●
●

●
●
●

●

●
●●
●●●

●

●●
●

●

●●●
●●●●●

●

●
●

●
●

●

●
●
●●
●●●
●
●
●
●●●●●●●
●
●●
●
●●●
●●●●●●
●

●

●
●●
●●●
●●
●

●

●●
●●●
●●
●
●

●●
●

●●●
●
●●●●

●

●
●

●●
●●
●

●●●●●
●
●

●
●●
●●●
●

●
●●
●

●
●
●●●●
●●
●●●●
●
●

●

●
●
●
●
●
●
●
●●
●
●●●●●●
●●●

●

●
●●●●●
●
●
●●●●●

●
●
●●
●
●●●●●
●●●●●
●
●
●●
●
●●

●
●●
●
●
●
●●
●
●●●●
●

●●
●

●●
●●●●●●
●●
●●
●●
●
●
●●
●●
●●●
●

●
●●●
●●
●
●●
●

●
●●●
●●
●●●
●●●●●
●●
●
●●
●
●●
●
●●●
●

●●
●●●●
●

●
●
●●
●
●●
●●
●
●●●
●
●●●●
●●

●
●●
●●●●
●
●●●

●

●●
●●
●
●●●●●●●●
●
●●
●

●●
●
●
●
●●●
●
●●
●
●
●●●●●●●
●
●●

●
●
●●●

●
●
●●●●●●
●
●
●●

●●
●
●●●

●

●
●●●●●●●●
●●
●●
●●
●
●
●●
●●
●●●
●●●●
●
●
●
●●●
●●●
●
●●●●
●
●

●

●
●
●
●●
●
●●
●
●
●●●●

●

●●●

●
●●
●
●●●●●
●●

●

●
●
●

●●
●●●●●
●
●
●
●

●●●●●●

●●
●●●●
●
●●
●
●●●
●●●●●
●
●

●●
●
●
●
●●
●●●
●
●
●●●
●
●
●
●●
●
●

●●●●●
●●●●●●●●
●

●

●
●
●●

●●●●●●●●●
●
●●

●

●●
●●
●

●

●
●
●
●
●●
●
●●●●●
●●
●●●
●
●●●●
●
●●
●●●
●●

●●
●●●●●
●
●●
●
●
●●
●

●

●

●

●
●
●
●●●●
●●●
●
●●
●
●●●●●●●
●

●
●●●
●●●●
●
●●
●
●
●●
●
●●●
●
●●●
●
●
●
●
●
●●●
●●●

●●
●●●●●●●●●●
●
●
●●●●
●
●
●●
●
●●
●●
●●
●

●
●●
●
●
●●●●●●
●●
●●
●●●
●●●●
●
●
●
●●●●●●●
●●●●
●●
●
●●●●●●●
●●●●●
●●
●
●●●
●
●●●●●●●●●
●●
●

●
●●●
●

●

●
●●●●
●
●
●●●
●●●●
●

●
●●●
●●●●
●
●●●●
●
●●
●●●●●
●
●
●
●●
●●
●

●
●●
●

●
●●●●●
●●●
●●●
●●●
●
●
●●
●●●
●●●●
●●
●●●
●
●●
●●●●●
●●●
●●●●●●●●●●
●
●●●●●
●●●●●●●●
●●
●
●
●
●●●
●●
●●●●
●●●●●
●●●
●
●●●●●●●●
●●●
●●●●●
●●●●●
●●●●
●
●
●
●●●●
●
●●●●●●
●

●
●
●●
●●●●
●●

●
●●●●●

●
●●●●
●●●●●●●
●●●●●●●●●●
●●●●
●●
●●●●
●●●●
●
●●●
●
●
●●●●●●●●●●
●●●●
●
●●
●●●
●●●●
●
●●●●●●
●●●●●●
●●
●●●●●●
●
●
●
●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●
●●
●●●●●●●●●
●●●●●
●●
●
●●●●
●
●●●●
●●
●●●●
●
●●
●●●
●●
●●
●●
●
●●
●
●●
●●
●●●●●●●
●
●
●●
●
●
●●
●●●●●●●●●●
●
●●●
●●●●●●
●●●●
●
●
●●
●
●●●
●
●
●●●●●●●●
●
●●
●●●
●●●●
●
●●
●●●●●
●●●●●●
●●●●
●●
●
●●●●●●●●●
●●●●
●●●●●●●●●
●
●●
●●
●●
●
●
●●●●●●●
●●●●●●●
●●●●●●
●●
●●
●●
●●●●●●
●
●●●●●●●●
●●●●●●●
●
●●●●●●●●
●●●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●
●●●●
●●
●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●
●●●
●●●●●
●●●●●●
●
●●●
●●●●
●
●●●●●
●
●●●●●●●
●●●●●●
●
●●●
●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●
●
●
●●●●●
●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●
●
●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●
●●●●●●●●●
●
●●●●●
●●●●●
●●
●
●●●●●●
●●●●●●●
●
●●
●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●
●●●●
●●●
●●●●●●
●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●●
●●
●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●
●●●●
●●●●●●●
●●
●●●
●●
●
●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●
●●●
●
●●●
●
●●
●●●●
●●
●●●●●
●
●●●●●●●●●●
●●●●●
●●●●●●
●
●●●●●
●
●
●●●●●●●
●●●●●●●
●●●
●
●●●●●●
●●●●●●●●●
●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●
●
●●●●●
●●●●●●●●
●●●●●●●●
●
●●●
●●●●●●●
●●●●
●●●●●●●●●●●
●
●●●●●●●
●●●●●
●●●●
●
●●●●●●●●●●●
●●

●
●●●●●●●
●
●●
●
●
●●●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●
●
●●●●
●●●●●
●
●
●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●
●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●

●●●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●

100

102

104

106

100 101 102 103 104 105 106

Degree

of

 N
od

es

●● Input

Output

(d) Twitter

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●

●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●
●

●●●●

●
●
●
●

●

●

●

●
●

●

●
●

●●

●
●
●

●●●

●
●
●

●●●

●

●●

●

●●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●
●

●●●●●●●●●
●●
●●
●●●●
●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●●●●
●●●
●●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●
●●●●
●●●
●
●
●●●●●●
●
●
●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●
●

●
●●●●●●●●●
●●●●●●
●
●●●●
●
●
●

●●

●
●●●
●●
●
●●
●
●●●●
●
●●●
●●
●●
●●●

●
●●
●●
●●
●
●
●
●●
●
●●●●●●●●
●●
●●●
●●
●

●●●●●●
●●●●●●●●●
●
●
●
●
●
●
●●●●●●
●
●●●●●●●●●
●●●

●
●●●
●
●●●
●●
●●
●
●●
●
●●●
●●
●
●●
●
●
●●
●●●●
●●
●●●
●
●
●
●●●

●
●●
●●●
●●●

●

●●
●
●●●
●●
●●●●

●

●●●●●
●
●
●●●
●
●
●●●●
●●●
●

●
●●
●●
●●●●●
●
●

●●

●

●
●
●
●●●
●
●●
●●●
●

●●
●●●

●

●●●●
●

●
●●●
●●●●●
●

●
●●●●●●●●●●●●●
●
●●●●●
●●
●

●●●
●
●●●
●●
●●●●
●●●●●●
●●●

●
●●●●●●●●●●●●
●●●
●

●
●●
●
●●●●
●
●●●●●●●
●●●
●

●●
●●
●
●●●
●●
●
●●●●
●

●●
●●●●●●●
●●
●
●●●
●●●●
●
●●●
●

●
●●●
●●
●

●

●●●●●
●
●
●
●●●●●●
●●
●
●●●
●
●●●●●
●●
●
●●●●●●
●●●●●●●●●
●●●
●
●●●●●●●●●●●●●
●

●
●●●●●●●●●●●
●●●●
●●●
●
●●●●●●●●
●●●●
●●
●
●●●●●●●●●●
●
●●●
●●●●●●●
●●●
●●
●●
●
●
●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●
●●●●
●●
●●●
●●●●
●
●●●
●
●●●
●
●

●●●●●
●
●●
●
●
●●●
●●●●●●●
●
●●●●●
●
●●●●●
●
●●●
●●●●●
●

●
●●●●
●●
●●●
●●
●●●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●●●
●
●
●
●●●
●●●●●●●
●
●●●
●●
●
●
●●●
●●●●●
●
●●
●●
●●●
●●●●●
●●●●●
●●●
●●●
●
●
●●●
●●●●●
●
●
●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●
●
●●●●●
●
●
●●●●
●
●●●●●●●
●●●●
●●
●
●●●●●
●
●●
●●●●
●
●
●
●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●
●●●●●●
●●●●
●●●●●
●●●●●
●
●
●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●
●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●
●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●●
●●

●●
●●●

●●
●●●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●
●

●

100

102

104

106

108

100 101 102 103

Degree

of

 N
od

es

●● Input

Output

(e) Friendster

Figure 5: Degree distributions of input and generated degree sequences

terms of computing time in each processor as shown in Figure 6 using ER, Twitter, and PL networks.
Computational time fo näıve scheme is skewed. For all the networks, the computational times for UCP
and RRP stay almost constant in all processors, indicating good load-balancing. RRP is little slower than
UCP because the locality of references is not maintained in RRP, leading to high cache miss as discussed in
Section 3.2.

Strong and Weak Scaling. Strong scaling of a parallel algorithm shows its performance with the
increasing number of processors while keeping the problem size fixed. Figure 7 shows the speedup of näıve,
UCP, and RRP partitioning schemes using PL and Twitter networks. Speedups are measured as Ts

Tp
, where

Ts and Tp are the running time of the sequential and the parallel algorithm, respectively. The number of
processors were varied from 1 to 1024. As Figure 7 shows, UCP and RRP achieve excellent linear speedups.
Näıve scheme performs the worst as expected. The speedup of PL is greater than that of Twitter network.
As Twitter is smaller than the PL network, the impact of the parallel communication overheads is higher
contributing to decreased speedup. Still the algorithm to generate Twitter network has a speedup of 400
using 1024 processors.

The weak scaling measures the performance of a parallel algorithm when the input size per processor
remains constant. For this experiment, we varied the number of processors from 16 to 1024. For P processors,
a PL network with 106P nodes and 108P edges is generated. Note that weak scaling can only be performed
on artificial networks. Figure 7(c) shows the weak scaling for UCP and RRP schemes using PL networks.
Both RRP and UCP show very good weak scaling with almost constant runtime.

Generating Large Networks. The primary objective of the parallel algorithm is to generate massive
random networks. Using the algorithm with UCP scheme, we have generated power law networks with one
billion nodes and 249 billion edges in one minute using 1024 processors with a speedup of about 800.

12

0

2

4

6

0 250 500 750 1000
Processor Rank

T
im

e
(s

ec
) Scheme

UCP

RRP

Naive

(a) ER

0.0

0.5

1.0

1.5

2.0

2.5

0 250 500 750 1000
Processor Rank

T
im

e
(s

ec
) Scheme

UCP

RRP

Naive

(b) Twitter

0

50

100

150

200

0 250 500 750 1000
Processor Rank

T
im

e
(s

ec
) Scheme

UCP

RRP

Naive

(c) PL

Figure 6: Comparison of partitioning schemes

5 Conclusion

We have developed an efficient parallel algorithm for generating massive networks with a given degree
sequence using the Chung–Lu model. The main challenge in developing this algorithm is load balancing.
To overcome this challenge, we have developed a novel parallel algorithm for balancing computational loads
that results in a significant improvement in efficiency. We believe that the presented parallel algorithm for
the Chung–Lu model will prove useful for modeling and analyzing emerging massive complex systems and
uncovering patterns that emerges only in massive networks. As the algorithm can generate networks from
any given degree sequence, its application will encompass a wide range of complex systems.

Acknowledgements

This work has been partially supported by DTRA Grant HDTRA1-11-1-0016, DTRA CNIMS Contract
HDTRA1-11-D-0016-0001, NSF NetSE Grant CNS-1011769, NSF SDCI Grant OCI-1032677, and NSF
DIBBs Grant ACI-1443054.

13

●
●

●

●

●

●

0

200

400

600

800

0 250 500 750 1000
Processor Rank

S
pe

ed
up

Scheme

●

Naive

UCP

RRP

(a) Strong Scaling (PL)

●

●

●
●

●

0

100

200

300

400

0 250 500 750 1000
Processor Rank

S
pe

ed
up

Scheme

●

Naive

UCP

RRP

(b) Strong Scaling (Twitter)

●

● ●
●

●

0

20

40

60

250 500 750 1000
Processor Rank

R
un

tim
e

(s
ec

.)

Scheme

● UCP

RRP

(c) Weak Scaling (PL)

Figure 7: Strong and weak scaling of the parallel algorithms

References

[1] Albert Barabási and Reka Albert. Emergence of scaling in random networks. Science, 286(5439):
509–512, 1999.

[2] C. Barrett, R. Beckman, M. Khan, V. Kumar, M. Marathe, P. Stretz, T. Dutta, and B. Lewis. Gener-
ation and analysis of large synthetic social contact networks. In Proc. of the Winter Sim. Conf., pages
1003–1014, 2009.

[3] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Physical Review
E, 71(3):036113, 2005.

[4] J. Carlson and J. Doyle. Highly optimized tolerance: a mechanism for power laws in designed systems.
Physical Review E, 60(2):1412–1427, 1999.

[5] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for graph
mining. In Fourth SIAM International Conference on Data Mining, volume 4, pages 442–446, 2004.

14

[6] David Chassin and Christian Posse. Evaluating north american electric grid reliability using the
Barabasi-Albert network model. Physica A: Statistical Mechanics and its Applications, 355(2):667–
677, 2005.

[7] F. Chung and L. Lu. Connected components in random graphs with given expected degree sequences.
Annals of Combinatorics, 6(2):125–145, 2002.

[8] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. In Publications of the Mathematical
Institute of the Hungarian Academy of Sciences, volume 5, pages 17–61, 1960.

[9] M. Girvan and M. Newman. Community structure in social and biological networks. Proceedings of the
National Academy of Sciences, 99(12):7821–7826, 2002.

[10] Graph500. Graph 500. http://www.graph500.org/, 2010.

[11] Vito Latora and Massimo Marchiori. Vulnerability and protection of infrastructure networks. Physical
Review E, 71(1):015103, 2005.

[12] Jure Leskovec. Dynamics of large networks. PhD thesis, Carnegie Mellon University, 2008.

[13] Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker multiplication.
In Proc. of the 24th Intl. Conf. on Machine Learning, pages 497–504, 2007.

[14] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: An approach to modeling networks. Journal of Machine Learning Research, 11:
985–1042, 2010.

[15] Fredrik Manne and Tor Sørevik. Optimal partitioning of sequences. Journal of Algorithms, 19(2):
235–249, 1995.

[16] Joel Miller and Aric Hagberg. Efficient generation of networks with given expected degrees. In Proceed-
ings of Algorithms and Models for the Web-Graph, volume 6732, pages 115–126, 2011.

[17] B. Olstad and Fredrik Manne. Efficient partitioning of sequences. IEEE Transactions on Computers,
44(11):1322–1326, 1995.

[18] Ali Pinar and Cevdet Aykanat. Fast optimal load balancing algorithms for 1D partitioning. Journal of
Parallel and Distributed Computing, 64(8):974–996, 2004.

[19] Ali Pinar, Comandur Seshadhri, and Tamara Kolda. The similarity between stochastic Kronecker and
Chung–Lu graph models. In Proceedings of the Twelfth SIAM International Conference on Data Mining,
volume 12, pages 1071–1082, 2012.

[20] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduction to exponential random
graph (p*) models for social networks. Social Networks, 29(2):173–191, 2007.

[21] Peter Sanders and Jesper Träff. Parallel prefix (scan) algorithms for MPI. In Proceedings of the 13th
European PVM/MPI User’s Group Conference on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 4192, pages 49–57, 2006.

[22] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. Power laws and the
AS-level internet topology. IEEE/ACM Transactions on Networking, 11(4):514–524, 2003.

[23] Duncan Watts and Steven Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):
409–410, 1998.

[24] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in online media. In Proc. of the 4th
ACM Intel. Conf. on Web Search and Data Mining, pages 177–186, 2011.

[25] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, number 3, pages 1–8, 2012.

15

http://www.graph500.org/

	Introduction
	Chung–Lu Model and Efficient Sequential Algorithm
	Parallel Algorithm for the CL Model
	Consecutive Partitioning (CP)
	Round-Robin Partitioning (RRP)

	Experimental Results
	Conclusion

