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Abstract. Random networks are widely used for modeling and analyz-
ing complex processes. Many mathematical models have been proposed
to capture diverse real-world networks. One of the most important as-
pects of these models is degree distribution. Chung–Lu (CL) model is a
random network model, which can produce networks with any given ar-
bitrary degree distribution. The complex systems we deal with nowadays
are growing larger and more diverse than ever. Generating random net-
works with any given degree distribution consisting of billions of nodes
and edges or more has become a necessity, which requires efficient and
parallel algorithms. We present an MPI-based distributed memory par-
allel algorithm for generating massive random networks using CL model,
which takes O(m+n

P
+P ) time w.h.p. and O(n) space per processor, where

n, m, and P are the number of nodes, edges and processors, respectively.
The time efficiency is achieved by using a novel load-balancing algorithm.
Our algorithms scale very well to a large number of processors and can
generate massive power–law networks with one billion nodes and 250
billion edges in one minute using 1024 processors.
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1 Introduction

The advancements of modern technologies are causing a rapid growth of complex
systems. These systems, such as the Internet [1], biological networks [2], social
networks [3,4], and various infrastructure networks [5,6] are sometimes mod-
eled by random graphs for the purpose of studying their behavior. The study of
these complex systems have significantly increased the interest in various ran-
dom graph models such as Erdős–Rényi (ER) [7], small-world [8], Barabási–
Albert (BA) [9], Chung-Lu (CL) [10], HOT [11], exponential random graph
(ERGM) [12], recursive matrix (R-MAT)[13], and stochastic Kronecker graph
(SKG) [14,15] models. Among those models, the SKG model has been included
in Graph500 supercomputer benchmark [16] due to its simple parallel imple-
mentation. The CL model exhibits the similar properties of the SKG model and
further has the ability to generate a wider range of degree distributions [17]. To
the best of our knowledge, there is no parallel algorithm for the CL model.



Analyzing a very large complex system requires generating massive random
networks efficiently. As the interactions in a larger network lead to complex col-
lective behavior, a smaller network may not exhibit the same behavior, even
if both networks are generated using the same model. In [18], by experimental
analysis, it was shown that the structure of larger networks is fundamentally dif-
ferent from small networks and many patterns emerge only in massive datasets.
Demand for large random networks necessitates efficient algorithms to generate
such networks. However, even efficient sequential algorithms for generating such
graphs were nonexistent until recently. Sequential algorithms are sometimes ac-
ceptable in network analysis with tens of thousands of nodes, but they are not
appropriate for generating large graphs [19]. Although, recently some efficient se-
quential algorithms have been developed [13,19,14,20], these algorithms can gen-
erate networks with only millions of nodes in a reasonable time. But, generating
networks with billions of nodes can take an undesirably longer amount of time.
Further, a large memory requirement may even prohibit generating such large
networks using these sequential algorithms. Thus, distributed-memory parallel
algorithms are desirable in dealing with these problems. Shared-memory parallel
algorithms also suffer from the memory restriction as these algorithms use the
memory of a single machine. Also, most shared-memory systems are limited to
only a few parallel processors whereas distributed-memory parallel systems are
available with hundreds or thousands of processors.

In this paper, we present a time-efficient MPI–based distributed memory
parallel algorithm for generating random networks from a given sequence of
expected degrees using the CL model. To the best of our knowledge, it is the first
parallel algorithm for the CL model. The most challenging part of this algorithm
is load-balancing. Partitioning the nodes with a balanced computational load
is a non trivial problem. In a sequential setting, many algorithms for the load-
balancing problem were studied [21,22,23]. Some of them are exact and some are
approximate. These algorithms uses many different techniques such as heuristic,
iterative refinement, dynamic programming, and parametric search. All of these
algorithms require at least Ω(n + P log n) time, where n, P are the number
of nodes and processors respectively. To the best of our knowledge, there is
no parallel algorithm for this problem. In this paper, we present a novel and
efficient parallel algorithm for computing the balanced partitions in O( nP + P )
time. The parallel algorithm for load balancing can be of independent interest
and probably could be used in many other problems. Using this load balancing
algorithm, the parallel algorithm for the CL model takes an overall runtime
of O(n+mP + P ) w.h.p.. The algorithm requires O(n) space per processor. Our
algorithm scales very well to a large number of processors and can generate a
power-law networks with a billion nodes and 250 billion edges in memory in
less than a minute using 1024 processors. The rest of the paper is organized
as follows. In Section 2 we describe the problem and the efficient sequential
algorithm. In Section 3, we present the parallel algorithm along with analysis of
partitioning and load balancing. Experimental results showing the performance
of our parallel algorithms are presented in Section 4. We conclude in Section 5.



Algorithm 2.1 Sequential Chung–Lu Algorithm

1: proc Serial–CL(w)
2: S ←

∑
k wk

3: E ← Create–Edges(w, S, V )

4: proc Create–Edges(w, S, V )
5: E ← ∅
6: for all i ∈ V do
7: j ← i+ 1, p← min(wiwj/S, 1)
8: while j < n and p > 0 do
9: if p 6= 1 then

10: choose a random r ∈ (0, 1)
11: δ ← blog(r)/ log(1− p)c

12: else
13: δ ← 0
14: v ← j + δ . skip δ edges
15: if v < n then
16: q ← min(wiwv/S, 1)
17: choose a random r ∈ (0, 1)
18: if r < q/p then
19: E ← E ∪ {i, v}
20: p← q, j ← v + 1

21: return E

2 Chung–Lu Model and Efficient Sequential Algorithm

Chung–Lu (CL) model [10] generates random networks from a given sequence
of expected degrees. We are given n nodes and a set of non-negative weights
w = (w0, . . . wn−1) assuming maxi w

2
i < S, where S =

∑
k wk [10]. For every pair

of nodes i and j, edge (i, j) is added to the graph with probability pi,j = wiwj/S.
If no self loop is allowed, i.e., i 6= j, the expected degree of node i is given by∑
j wiwj/S = wi−w2

i /S. For massive graphs, where n is very large, the average
degree converges to wi, thus wi represents the expected degree of node i [20].

The näıve algorithm of CL model for an undirected graph with n nodes
takes each of the n(n− 1)/2 possible node pairs {i, j} and creates the edge with
probability pi,j , therefore requiring O(n2) time. An O(n + m) algorithm was
proposed in [20] to generate networks assuming w is sorted in non-increasing
order, where m is the number of edges. It is easy to see that O(n + m) is the
best possible runtime to generate m edges. The algorithm is based on the edge
skipping technique introduced in [19] for Erdős–Rényi model. Adaptation of that
technique leads to the efficient sequential algorithm in [20]. The pseudocode of
the algorithm is given in Algorithm 2.1, consisting of two procedures Serial–
CL and Create–Edges. Note that we restructured Algorithm 2.1 by defining
procedure Create–Edges to use it without any changes later in our parallel
algorithm. Below we provide an overview and a brief description of the algorithm
(for complete explanation and correctness see [20]).

The algorithm starts at Serial–CL, which computes the sum S and calls
procedure Create–Edges(w, S, V ), where V is the entire set of nodes. For each
node i ∈ V , the algorithm selects some random nodes v from [i+ 1, n− 1], and
creates the edges (i, v). A näıve way to select the nodes v from [i+ 1, n− 1] is:
for each j ∈ [i+ 1, n− 1], select j independently with probability pi,j = wiwj/S,
leading to an algorithm with run time O(n2). Instead, the algorithm skips the
nodes that are not selected by a random skip length δ as follows. For each
i ∈ V (Line 6), the algorithm starts with j = i + 1 and computes a random

skip length δ ←
⌊

log(r)
log(1−p)

⌋
, where r is a real number in (0, 1) chosen uniformly

at random and p = pi,j = wiwj/S. Then node v is selected by skipping the



next δ nodes (Line 14), and edge (i, v) is selected with probability q/p, where
q = pi,v = wiwv/S (Line 16–19). Then from the next node j + v, this cycle of
skipping and selecting edges is repeated (while loop in Line 8–20). As we always
have i < j and no edge (i, j) can be selected more than once, this algorithm
does not create any self-loop or parallel edges. As the set of weights w is sorted
in non-increasing order, for any node i, the probability pi,j = wiwj/S decreases
monotonically with the increase of j. It is shown in [20] that for any i, j, edge
(i, j) is included in E with probability exactly wiwj/S, as desired, and that the
algorithm runs in O(n+m) time.

3 Parallel Algorithm for the CL Model

Next we present our distributed memory parallel algorithm for the CL model.
Although our algorithm generates undirected edges, for the ease of discussion we
consider u as the source node and v as the destination node for any edge (u, v)
generated by the procedure Create–Edges. Let Tu be the task of generating
the edges from source node u (Lines 6–20 in Algorithm 2.1). It is easy to see
that for any u 6= u′ tasks Tu and Tu′ are independent, i.e., tasks Tu and Tu′

can be executed independently by two different processors. Now execution of
procedure Create–Edges(w, S, V ) is equivalent to executing the set of tasks
{Tu : u ∈ V }. Efficient parallelization of Algorithm 2.1 requires:

– Computing the sum S =
∑n−1
k=0 wk in parallel

– Dividing the task of executing Create–Edges into independent subtasks
– Accurately estimating the computational cost for each task
– Balancing load among the processors

To compute the sum S efficiently, a parallel sum operation is performed
on w using P processors, which takes O( nP + logP ) time. To divide the task of
executing procedure Create–Edges into independent subtasks, the set of nodes
V is divided into P disjoint subsets V1, V2, . . . , VP ; that is, Vi ⊂ V , such that for
any i 6= j, Vi∩Vj = ∅ and

⋃
i Vi = V . Then Vi is assigned to processor Pi, and Pi

execute the tasks {Tu : u ∈ Vi}; that is, Pi executes Create–Edges(w, S, Vi).
Estimating and balancing computational loads accurately are the most chal-

lenging tasks. To achieve good speedup of the parallel algorithm, both tasks must
also be done in parallel, which is a non-trivial problem. A good load balancing
is achieved by properly partitioning the set of nodes V such that the computa-
tional loads are equally distributed among the processors. We use two classes of
partitioning schemes named consecutive partitioning (CP) and round-robin par-
titioning (RRP). In CP scheme consecutive nodes are assigned to each partition,
whereas in RRP scheme nodes are assigned to the partitions in a round-robin
fashion. The use of various partitioning schemes is not only interesting for un-
derstanding the performance of the algorithm, but also useful in analyzing the
generated networks. It is sometimes desirable to generate networks on the fly
and analyze it without performing disk I/O. Different partitioning schemes can
be useful for different network analysis algorithms. Many network analysis algo-
rithms require partitioning the graph into an equal number of nodes (or edges)



per processor. Some algorithms also require the consecutive nodes to be stored
in the same processor. Before discussing the partitioning schemes in detail, we
describe some formulations that are applicable to all of these schemes.

Let eu be the expected number of edges produced and cu be the computa-
tional cost in task Tu for a source node u. For the sake of simplicity, we assign
one unit of time to process a node or an edge. With S =

∑n−1
v=0 wv, we have:

eu =
∑n−1
v=u+1 pu,v =

∑n−1
v=u+1

wuwv

S = wu

S

∑n−1
v=u+1 wv (1)

cu = eu + 1 (2)

For two nodes u, v ∈ V such that u < v, we have cu ≥ cv (see Lemma 1
in Appendix A). The expected number of edges generated by the tasks {Tu :
u ∈ Vi} is given by mi =

∑
u∈Vi

eu. Note that the expected number of edges
in the generated graph, i.e., the expected total number of edges generated by
all processors is m = |E| =

∑P−1
i=0 mi =

∑n−1
u=0 eu. The computational cost

for processor Pi is given by: c(Vi) =
∑
u∈Vi

cu =
∑
u∈Vi

(eu + 1) = mi + |Vi|.
Therefore, the total cost for all processors is given by:

∑P−1
i=0 c(Vi) =

∑P−1
i=0 (mi + |Vi|) = m+ n (3)

3.1 Consecutive Partitioning (CP)

Let partition Vi starts at node ni and ends at node ni+1 − 1, where n0 = 0
and nP = n, i.e., Vi = {ni, ni + 1, . . . , ni+1 − 1} for all i. We say ni is the
lower boundary of partition Vi. A näıve way for partitioning V is where each
partition consists of an equal number of nodes, i.e., |Vi| =

⌈
n
P

⌉
for all i. To

keep the discussion neat, we simply use n
P . Although the number of nodes in

each partition is equal, the computational cost among the processors is very
imbalanced. For two consecutive partitions Vi and Vi+1, c(Vi) > c(Vi+1) for all

i and the difference is at least n2

SP 2W iW i+1, where W i = 1
|Vi|
∑
u∈Vi

wu, the

average weight (degree) of the nodes in Vi (see Lemma 2 in Appendix A). Thus
c(Vi) gradually decreases with i by a large amount leading to a very imbalanced
distribution of the computational cost.

To demonstrate that näıve CP scheme leads to imbalanced distribution of
computational cost, we generated two networks, both with one billion nodes: i)
Erdős–Rényi network with an average degree of 500, and ii) Power–Law network
with an average degree of 49.72. We used 512 processors, which is good enough for
this experiment. Fig. 1 shows the computational cost and runtime per processor.
In both cases, the cost is not balanced. For power-law network the imbalance
of computational cost is more prominent. Observe that the runtime is almost
directly proportional to the cost, which justifies our choice of cost function.
That is balancing the cost would also balance the runtime.

We need to find the partitions Vi such that each partition has equal cost, i.e.,
c(Vi) ≈ Z, where Z = (m+n)/P is the average cost per processor. We refer such
partitioning scheme as uniform cost partitioning (UCP). Although determining
the partition boundaries in the näıve scheme is very easy, finding the boundaries
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Fig. 2: Uniform cost partitioning (UCP) scheme

in UCP scheme is a non trivial problem and requires: (i) computing the cost
cu for each node u ∈ V and (ii) finding the boundaries of the partitions such
that every partition has a cost of Z. Näıvely computing costs for all nodes takes
O(n2) as each node independently requires O(n) time using Equation 2 and 1. A
trivial parallelization achieves O(n2/P ) time. However, our goal is to parallelize
the computation of the costs in O(n/P + logP ) time.

Finding the partition boundaries such that the maximum cost of a partition is
minimized is a well-known problem named chains-on-chains partitioning (CCP)
problem [23]. In CCP, a sequence of P − 1 separators are determined to divide
a chain of n tasks with associated non-negative weights (cu) into P partitions
so that the maximum cost in the partitions is minimized. Sequential algorithms
for CCP are studied quite extensively [21,22,23]. Since these algorithms take
at least Ω(n + P log n) time, using any of these sequential algorithms to find
the partitions, along with the parallel algorithm for the CL model, does not
scale well. To the best of our knowledge, there is no parallel algorithm for CCP
problem. We present a novel parallel algorithm for determining the partition
boundaries which takes O(n/P + P ) time in the worst case.

To determine the partition boundaries, instead of using cu directly, we use
the cumulative cost Cu =

∑u
v=0 cv. We call a partition Vi a balanced partition

if the computational cost of Vi is c(Vi) =
∑ni+1−1
u=ni

cu = Cni+1−1 − Cni−1 ≈ Z.

Also note that for lower boundary ni of partition Vi we have, Cni−1 < iZ ≤ Cni

for 0 < i ≤ P − 1. Thus, we have:

ni = arg minu
(
Cu ≥ iZ

)
(4)

In other words, a node u with cumulative cost Cu belongs to partition Vi such
that i =

⌊
Cu/Z

⌋
. The partition scheme is shown visually in Fig. 2.

Computing Cu in Parallel. Computing Cu has two difficulties: i) for a node
u, computing cu by using Equation 1 and 2 directly is inefficient and ii) Cu is



Algorithm 3.1 Uniform Consecutive Partition

1: proc UCP(V , w, S)
2: Calc–Cost(w, V , S)
3: Make–Partition(w, V , S)

4: proc Calc–Cost(w, V , S)
5: i← processor id

6: si ←
∑(i+1) n

P
−1

u=i n
P

wu

7: In Parallel: Si ←
∑i−1

j=0 sj

8: u← in
P

9: σu ← Si

10: Cu ← eu + 1 = wu
S

(S − σu − wu) + 1

11: for u = in
P

+ 1 to (i+1)n
P
− 1 do

12: σu ← σu + wu

13: eu ← wu
S

(S − σu − wu)
14: Cu ← Cu−1 + eu + 1

15: zi ← C (i+1)n
P

−1

16: In Parallel: Zi ←
∑i−1

j=0 zj

17: for u = in
P

to (i+1)n
P
− 1 do

18: Cu = Cu + Zi

19: proc Make–Partition(w, V , S)
20: In Parallel: Z ←

∑P−1
i=0 zi

21: Z ← Z/P

22: Find–Boundaries( in
P
, (i+1)n

P
−

1, C, Z)
23: for all nk ∈ Bi do
24: Send nk to Pk and Pk+1

25: Receive boundaries ni and ni+1

26: return Vi = [ni, ni+1 − 1]

27: proc Find–Boundaries(s, e, C, Z)

28: if
⌊

Cs

Z

⌋
=

⌊
Ce

Z

⌋
then return

29: m← (e+s)
2

30: if
⌊

Cm

Z

⌋
6=

⌊
Cm+1

Z

⌋
then

31: n⌊
Cm+1

Z

⌋ ← m+ 1

32: Find–Boundaries(s,m,C,Z)
33: Find–Boundaries(m+ 1, e, C, Z)

dependent on Cu−1, which is hard to parallelize. To overcome the first difficulty,
we use the following form of eu to calculate cu. From Equation 1 we have:

eu =
wu
S

n−1∑

v=u+1

wv =
wu
S

(
n−1∑

v=0

wv −
u∑

v=0

wv

)
=
wu
S

(
n−1∑

v=0

wv −
u−1∑

v=0

wv − wu
)

cu = eu + 1 = wu

S (S − σu − wu) + 1
[
where σu =

∑u−1
v=0 wv

]
(5)

Therefore, cu can be computed by successively updating σu = σu−1 + wu−1.

To deal with the second difficulty, we compute Cu in several steps using
procedure Calc–Cost as shown in Algorithm 3.1 (see Fig. 7 in Appendix A
for a visual representation of the algorithm). In each processor, the partitioning
algorithm starts with procedure UCP that calculates the cumulative costs using
procedure Calc–Cost. Then procedure Make–Partition is used to compute
the partitioning boundaries. At the beginning of the Calc–Cost procedure, the
task of computing costs for the n nodes are distributed among the P processors
equally, i.e., processor Pi is responsible for computing costs for the nodes from i nP
to (i+1) nP −1. Note that these are the nodes that processor Pi works with while
executing the partitioning algorithm to find the boundaries of the partitions.

In Step 1 (Line 6), Pi computes a partial sum si =
∑ (i+1)n

P −1
u= in

P

wu indepen-

dently of other processors. In Step 2 (Line 7), exclusive prefix sum Si =
∑i−1
j=0 sj

is calculated for all si where 0 ≤ i ≤ P − 1 and S0 = 0. This exclusive prefix



sum can be computed in parallel in O(logP ) time [24]. We have:

Si =
∑i−1
j=0 sj =

∑i−1
j=0

∑ (j+1)n
P −1

u= jn
P

wu =
∑ in

P −1
u=0 wu = σ in

P

In Step 3, Pi partially computes Cu, where in
P ≤ u <

(i+1)n
P . By assigning σ in

P
=

Si, C in
P

is determined partially using Equation 5 in constant time (Line 10). For

each u, values of σu , eu and Cu are also determined in constant time (Line 11–

14), where in
P +1 ≤ u ≤ (i+1)n

P −1. After Step 3, we have Cu =
∑u
v= in

P
cv. To get

the final value of Cu =
∑u
v=0 cv, the value

∑v= in
P −1

v=0 cv needs to be added. For

a processor Pi, let zi = C (i+1)n
P −1 =

∑ (i+1)n
P −1

v= in
P

cv. In Step 4 (Line 16), another

exclusive parallel prefix sum operation is performed on zi so that

Zi =
∑i−1
j=0 zj =

∑i−1
j=0

∑ (j+1)n
P −1

v= jn
P

cv =
∑ in

P −1
v=0 cv.

Note that Zi is exactly the value required to get the final cumulative cost Cu.

In Step 5 (Lines 17–18), Zi is added to Cu for in
P ≤ u ≤

(i+1)n
P − 1.

Finding Partition Boundaries in Parallel. The partition boundaries are
determined using Equation 4. The procedure Make–Partition generates the
partition boundaries. In Line 20, parallel sum is performed on zi to determine
Z =

∑P−1
0 zi =

∑n−1
0 cu = n + m, the total cost and Z = Z

P be the av-
erage cost per processor (Line 21). Find–Boundaries is called to determine
the boundaries (Line 22). From Equation 4 it is easy to show that a par-
tition boundary is found between two consecutive nodes u and u + 1, such
that

⌊
Cu/Z

⌋
6=
⌊
Cu+1/Z

⌋
. Node u + 1 is the lower boundary of partition

Vi, where i =
⌊
Cu+1/Z

⌋
. Pi executes Find–Boundaries from nodes in/P to

(i+ 1)n/P−1. Find–Boundaries is a divide & conquer based algorithm to find
all the boundaries in that range efficiently using the cumulative costs . All the
found boundaries are stored in a local list. In Line 28, it is determined whether
the range contains any boundary. If the range does not have any boundary, i.e., if⌊
Cs/Z

⌋
=
⌊
Ce/Z

⌋
, the algorithm returns immediately. Otherwise, it determines

the middle of the range m in Line 29. In Line 30, the existence of a boundary
between m and m+ 1 is evaluated. If m+ 1 is indeed a lower partition bound-
ary, it is stored in local list in Line 31. In Line 32 and 33, Find–Boundaries
is called with the ranges [s,m] and [m + 1, e] respectively. Note that the range
[in/P, (i+ 1)n/P − 1] may contain none, one or more boundaries. Let Bi be the
set of those boundaries. Once the set of boundaries Bi, for all i, are determined,
the processors exchange these boundaries with each other as follows. Node nk,
in some Bi, is the boundary between the partitions Vk and Vk+1, i.e., nk − 1 is
the upper boundary of Vk, and nk is the lower boundary of Vk+1. In Line 23,
for each nk in the range [in/P, (i+ 1)n/P − 1], processor Pi sends a boundary
message containing nk to processors Pk and Pk+1. Notice that each processor
i receives exactly two boundary messages from other processors (Line 25), and
these two messages determine the lower and upper boundary of the i-th partition



Vi. That is, now each processor i has partition Vi and is ready to execute the
parallel algorithm for the CL model with UCP scheme.

The runtime of parallel Algorithm 3.1 is O( nP + P ) as shown in Theorem 1.

Theorem 1. The parallel algorithm for determining the partition boundaries of
the UCP scheme runs in O( nP +P ) time, where n and P are the number of nodes
and processors, respectively.

Proof. The parallel algorithm for determining the partition boundaries is shown
in Algorithm 3.1. For each processor, Line 6 takes O( nP ) time. The exclusive
parallel prefix sum operation requires O(logP ) time in Line 7. Lines 8–10 take
constant time. The for loop at Line 11 iterates n

P − 1 times. Each execution of
the for loop takes constant time for Lines 12–14. Hence, the for loop at Line 11
takes O( nP ) time. The prefix sum in Line 16 takes O(logP ) time. The for loop
at Line 17 takes O( nP ) time.

The parallel sum operation in Line 20 takes O(logP ) time using MPI Reduce

function. For each processor Pi, nk’s are determined in Find–Boundaries on
the range of [in/P, (i+ 1)n/P − 1]. Finding a single partition boundary on these
n
P nodes require O(log n

P ) time. If the range contains x partition boundaries, then
it takes O(min

{
n
P , x log n

P

}
) time. For each partition boundary nk, processor i

sends exactly two messages to the processors Pk and Pk−1. Thus each processor

receives exactly two messages. There are at most P boundaries in [ inP , (i+1)n
P −1].

Thus, in the worst case, a processor may need to send at most 2P messages,
which takes O(P ) time. Therefore, the total time in the worst case is O( nP +
min

{
n
P , P log n

P

}
+ P ) = O( nP + P ). ut

Theorem 1 shows the worst case runtime of O( nP +P ). Notice that this bound
on time is obtained considering the case that all P partition boundaries nk can
be in a single processor. However, in most real-world networks, it is an unlikely
event, especially when the number of processors P is large. Thus it is safe to
say that for most practical cases, this algorithm will scale to a larger number
of processors than the runtime analysis suggests. Now we experimentally show
the number of partition boundaries found in the first partition for some pop-
ular networks. For the ER networks, the maximum number of boundaries in a
processor is 2, regardless of the number of processors. Even for the power–law
networks, which has very skewed degree distribution, the maximum number of
boundaries in a single processor is very small. Fig. 3 shows the maximum number
of boundaries found in a single processor. Two fitted plots of log2 P and logP
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is added in the figure for comparison. From the trend, it appears the maximum
number of partition boundaries in a processor is somewhere between O(logP )
and O(log2 P ). Since power–law has one of the most skewed degree distribu-
tion among real-world networks, we can expect the runtime to find partition
boundaries to be approximately O( nP + log2 P ) time.

Using the UCP scheme, our parallel algorithm for generating random net-
works with the CL model runs in O(m+n

P + P ) time as shown in Theorem 3.
To prove Theorem 3, we need a bound on computation cost which is shown in
Theorem 2.

Theorem 2. The computational cost in each processor is O(m+n
P ) w.h.p.

Proof. For each u ∈ Vi and v > u, (u, v) is a potential edge in processor Pi, and
Pi creates the edge with probability pu,v = wuwv

S where S =
∑
v∈V wv. Let x be

the number of potential edges in Pi, and these potential edges are denoted by
f1, f2, . . . , fx (in any arbitrary order). Let Xk be an indicator random variable
such that Xk = 1 if Pi creates fk and Xk = 0 otherwise. Then the number of
edges created by Pi is X =

∑x
k=1Xk.

As discussed in Section 2, generating the edges efficiently by applying the
edge skipping technique is stochastically equivalent to generating each edge (u, v)
independently with probability pu,v = wuwv

S . Let ξe be the event that edge e is
generated. Regardless of the occurrence of any event ξe with e 6= (u, v), we always
have Pr{ξ(u,v)} = pu,v = wuwv

S . Thus, the events ξe for all edges e are mutually
independent. Following the definitions and formalism given in Section 3.1, we
have the expected number of edges created by Pi, denoted by µ, as

µ = E[X] =
∑
u∈Vi

eu = mi.

Now we use the following standard Chernoff bound for independent indicator
random variables and for any 0 < δ < 1,

Pr {X ≥ (1 + δ)µ} ≤ e−δ2µ/3.

Using this Chernoff bound with δ = 1
2 , we have

Pr
{
X ≥ 3

2mi

}
≤ e−mi/12 ≤ 1

m3
i

for any mi ≥ 270. We assume m � P and consequently mi > P for all i. Now
using the union bound,

Pr
{
X ≥ 3

2mi

}
≤ mi

1
m3

i
= 1

m2
i

for all i simultaneously. Then with probability at least 1− 1
m2

i
, the computation

cost X + |Vi| is bounded by 3
2mi + |Vi| = O(mi + |Vi|). By construction of

the partitions by our algorithm, we have O (mi + |Vi|) = O
(
m+n
P

)
. Thus the

computation cost in all processors is O
(
m+n
P

)
w.h.p. ut



Theorem 3. Our parallel algorithm with UCP scheme for generating random
networks with the CL model runs in O(m+n

P + P ) time w.h.p.

Proof. Computing the sum S in parallel takes O
(
n
P + logP

)
time. Using the

UCP scheme, node partitioning takes O
(
n
P + P

)
time (Theorem 1). In the UCP

scheme, each partition has O
(
m+n
P

)
computation cost w.h.p. (Theorem 2). Thus

creating edges using procedure Create–Edges requires O
(
m+n
P

)
time, and the

total time is O
(
n
P + P + m+n

P

)
= O

(
m+n
P + P

)
w.h.p. ut

3.2 Round-Robin Partitioning (RRP)

In RRP scheme nodes are distributed in a round robin fashion. Partition Vi has
the nodes 〈i, i + P, i + 2P, . . . , i + kP 〉 such that i + kP ≤ n < i + (k + 1)P ;
i.e., Vi = {j|j mod P = i}. In other words node i is assigned to Vi mod P . The
number of nodes in each partition is almost equal, either b nP c or d nP e.

In order to compare the computational cost, consider two partitions Vi and Vj
with i < j. Now, for the x-th nodes in these two partitions, we have: ci+(x−1)P ≥
cj+(x−1)P as i + (x − 1)P < j + (x − 1)P (see Lemma 1). Therefore, c(Vi) =∑
u∈Vi

cu ≥ c(Vj) =
∑
u∈Vj

cu and by the definition of RRP scheme, |Vi| ≥ |Vj |.
The difference in cost between any two partitions is at most w0, the maximum
weight (see Lemma 3 in Appendix A). Thus RRP scheme provides quite good
load balancing. However, it is not as good as the UCP scheme. It is easy to see
that in the RRP scheme, for any two partitions Vi and Vj such that i < j, we
have c(Vi) > c(Vj). But, by design, the UCP scheme makes the partition such
that cost are equally distributed among the processors. Furthermore, although
the RRP scheme is simple to implement and provides quite good load balancing,
it has another subtle problem. In this scheme, the nodes of a partition are not
consecutive and are scattered in the entire range leading to some serious efficiency
issues in accessing these nodes. One major issue is that the locality of reference
is not maintained leading to a very high rate of cache miss during the execution
of the algorithm. This contrast of performance between UCP and RRP is even
more prominent when the goal is to generate massive networks as shown by
experimental results in Section 4.

4 Experimental Results

In this section, we experimentally show the accuracy and performance of our
algorithm. The accuracy of our parallel algorithms is demonstrated by showing
that the generated degree distributions closely match the input degree distribu-
tion. The strong scaling of our algorithm shows that it scales very well to a large
number of processors. We also present experimental results showing the impact
of the partitioning schemes on load balancing and performance of the algorithm.

Experimental Setup. We used a 81-node HPC cluster for the experi-
ments. Each node is powered by two octa-core SandyBridge E5-2670 2.60GHz
(3.3GHz Turbo) processors with 64 GB memory. The algorithm is developed with



Table 1: Networks used in the experiments

Network Type Nodes Edges

PL Power Law Network 1B 249B
ER Erdős–Rényi Network 1M 200M
Miami [25] Contact Network 2.1M 51.4B
Twitter [3] Real–World Social Network 41.65M 1.37B
Friendster [4] Real–World Social Network 65.61M 1.81B
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Fig. 4: Degree distributions of input and generated degree sequences

MPICH2 (v1.7), optimized for QLogic InfiniBand cards. In the experiments, de-
gree distributions of real-world and artificial random networks were considered.
The list of networks is shown in Table 1. The runtime does not include the I/O
time to write the graph into the disk.

Degree Distribution of Generated Networks. Fig. 4 shows the input
and generated degree distributions for PL, Miami, and Twitter networks (see
Appendix A.2 for other networks). As observed from the plots, the generated
degree distributions closely follow the input degree distributions reassuring that
our parallel algorithms generate random networks with given expected degree
sequences accurately.

Effect of Partitioning Schemes. As discussed in Section 3.1, partitioning
significantly affects load balancing and performance of the algorithm. We demon-
strate the effects of the partitioning schemes in terms of computing time in each
processor as shown in Fig. 5 using ER, Twitter, and PL networks. Computa-
tional time fo näıve scheme is skewed. For all the networks, the computational
times for UCP and RRP stay almost constant in all processors, indicating good
load-balancing. RRP is little slower than UCP because the locality of references
is not maintained in RRP, leading to high cache miss as discussed in Section 3.2.

Strong and Weak Scaling. Strong scaling of a parallel algorithm shows it’s
performance with the increasing number of processors while keeping the problem
size fixed. Fig. 6 shows the speedup of näıve, UCP, and RRP partitioning schemes
using PL and Twitter networks. Speedups are measured as Ts

Tp
, where Ts and Tp

are the running time of the sequential and the parallel algorithm, respectively.
The number of processors were varied from 1 to 1024. As Fig. 6 shows, UCP
and RRP achieve excellent linear speedups. Näıve scheme performs the worst
as expected. The speedup of PL is greater than that of Twitter network. As
Twitter is smaller than the PL network, the impact of the parallel communication
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overheads is higher contributing to decreased speedup. Still the algorithm to
generate Twitter network has a speedup of 400 using 1024 processors.

The weak scaling measures the performance of a parallel algorithm when the
input size per processor remains constant. For this experiment, we varied the
number of processors from 16 to 1024. For P processors, a PL network with
106P nodes and 108P edges is generated. Note that weak scaling can only be
performed on artificial networks. Fig. 6(c) shows the weak scaling for UCP and
RRP schemes using PL networks. Both RRP and UCP show very good weak
scaling with almost constant runtime.

Generating Large Networks. The primary objective of the parallel algo-
rithm is to generate massive random networks. Using the algorithm with UCP
scheme, we have generated power law networks with one billion nodes and 249
billion edges in one minute using 1024 processors with a speedup of about 800.

5 Conclusion

We have developed an efficient parallel algorithm for generating massive net-
works with a given degree sequence using the Chung–Lu model. The main chal-
lenge in developing this algorithm is load balancing. To overcome this challenge,
we have developed a novel parallel algorithm for balancing computational loads
that results in a significant improvement in efficiency. We believe that the pre-
sented parallel algorithm for the Chung–Lu model will prove useful for modeling
and analyzing emerging massive complex systems and uncovering patterns that
emerges only in massive networks. As the algorithm can generate networks from
any given degree sequence, its application will encompass a wide range of com-
plex systems.
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A Appendix

Lemma 1. For any two nodes u, v ∈ V such that u < v, cu ≥ cv.

Proof. Proof omitted. The lemma follows immediately from Equation 2 and the
fact that, the weights are sorted in non-increasing order. ut
Lemma 2. Let c(Vi) be the computational cost for partition Vi. In the näıve

partitioning scheme, we have c(Vi) − c(Vi+1) ≥ n2

SP 2W iW i+1, where W i =
1
|Vi|
∑
u∈Vi

wu, the average weight of the nodes in Vi.

Proof. In the näıve partitioning scheme, each of the partitions has x = n
P nodes,

except the last partition which can have smaller than x nodes. For the ease
of discussion, assume that for u ≥ n, wu = 0 and consequently eu = 0. Now,
Vi = {ix, ix+ 1, . . . , (i+ 1)x− 1}. Using Equation 3, we have

c(Vi)− c(Vi+1) =
∑

u∈Vi

(eu + 1)−
∑

u∈Vi+1

(eu + 1)

≥
(i+1)x−1∑

u=ix

(eu + 1)−
(i+2)x−1∑

u=(i+1)x

(eu + 1)

=

(i+1)x−1∑

u=ix

(eu − eu+x)

=

(i+1)x−1∑

u=ix

(
wu
S

n−1∑

v=u+1

wv −
wu+x
S

n−1∑

v=u+x+1

wv

)

≥
(i+1)x−1∑

u=ix

wu
S

u+x∑

v=u+1

wv ≥
(i+1)x−1∑

u=ix

wu
S
xW i+1

=
xW i+1

S
· xW i =

n2

SP 2
W iW i+1

ut
Lemma 3. In Round Robin Partitioning (RRP) scheme, for any i < j, we have
c(Vi)− c(Vj) ≤ wi.
Proof. The difference in cost between two partitions Vi and Vj is given by:

c(Vi)− c(Vj) =
∑

u∈Vi

cu −
∑

u∈Vj

cu =

k∑

x=0

(ci+xP − cj+xP )

= ci −
k−1∑

x=0

(
cj+xP − ci+(x+1)P

)
− cj+kP

≤ ci − cj+kP
[
cj+xp ≥ ci+(x+1)P

]

≤ ei =
wi
S

n−1∑

v=i+1

wv <
wi
S
S = wi



sP−1 =
n−1∑

v=n−n/P
wvs0 =

n/P−1∑

v=0

wv s1 =

2n/P−1∑

v=n/P

wv

Processor 0 Processor 1 Processor P-1

Exclusive Prefix Sum on si

S0 = 0 S1 =
∑0
i=0 si SP−1 =

∑P−2
i=0 si

σu ← Su

Cu ← eu + 1 = wu(S−σu−wu)
S + 1

for v = u+ 1 to (i+1)n
P − 1

σv ← σv−1 + wv

ev ← wv(S−σv−wv)
S

Cv ← Cv−1 + ev + 1

zi = C (i+1)n
P −1

Exclusive Prefix Sum on zi

Z0 = 0 Z1 =
∑0
i=0 zi ZP−1 =

∑P−2
i=0 zi

for v = u to (i+1)n
P − 1

Cv ← Cv + Zi

Steps

1

2

3

4

5

u← in
P

5

Processor Pi

Fig. 7: Steps for determining cumulative cost in UCP
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Fig. 8: Input and generated degree distributions for other networks
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A.1 Visual Representation of Computing Cost in UCP

Fig. 7 shows the visual representation of Calc-Cost procedure of Algorithm 3.1.

A.2 Other Networks

Fig. 8 shows input and generated degree distributions for ER and Friendster
networks as shown in Table 1.
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