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Distributed Algorithms for Constructing
Approximate Minimum Spanning Trees
In Wireless Networks
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Abstract— While there are distributed algorithms for the Min-  There are distributed algorithms that find the MST [3], [4Han
imum Spanning Tree (MST) problem, these algorithms require are essentially optimal in terms of time complexity: they ru
relatively large number of messages and time, and are fairly iy O(Diam(G) + n'/2polylog(n)) time, and there are (almost)
involved, making them impractical for resource-constraired net- matching lower bounds. However, these time-optimal algors

works such as wireless sensor networks. In such networks, . | lot of ¢ ¢ h than GHS). E
a sensor has very limited power, and any algorithm needs NVolve & lot of message transfers (much more than ). Even

to be simple, local, and energy efficient. Motivated by these for a wireless network modeled by a unit disk graph or even
considerations, we design and analyze a class of simple anda ring, any distributed algorithm to construct an MST needs
local distributed algorithms called Nearest Neighbor Tree(NNT)  Q(nlnn) messages [5], [6]. Despite their theoretical optimality,
algorithms for energy-efficient construction of an approximate these algorithms are fairly involved, require synchrotiaraand
MST in wireless networks. Assuming that the nodes are unifanly 5 |t of book keeping; such algorithms are impractical fohad

distributed, we show provable bounds on both thequality of the .
spanning tree produced and thesnergy needed to construct them. and sensor networks [5]. For example, consider sensor netwo

We show that while NNT produces a close approximation to the — @n @d hoc network formed by large numbers of small, battery-
MST, it consumes asymptotically less energy than the classil powered, wireless sensors. In many applications, the se@se
message-optimal distributed MST algorithm due to Gallager typically “sprinkled” liberally in the region of interestna the
Humblet, and Spira. Further, the NNTs can be maintained network is formed in an ad hoc fashion by local self-configjora
dynamically with polylogarithmic rearrangements under node  gince each sensor usually knows only its neighbors, thearktw
insertions/deletions. We also perform extensive simulains, which management and communication has to be done liscal and

show that the bounds are much better in practice. Our results - . - L
to the best of our knowledge, demonstrate the first tradeoff distributed fashion. Additionally, because of battery limitations,

between the quality of approximation and the energy requirel €Nergy is a very crucial resource. A distributed algorithimiol .
for building spanning trees on wireless networks, and motiate €xchanges a large number of messages can consume a rglativel
similar considerations for other important problems. large amount of energy (and also time) is not suitable in an

Index Terms— Distributed Algorithms, Randomized Approx- €nerdy-constrained sensor network. This is especially mua
imation Algorithms, Energy-Efficient Algorithms, Minimum  dynamicsetting — when the network needs to be reconfigured
Spanning Tree, Wireless Networks, Sensor Network. (e.g., due to mobility or failures) frequently and quickiRe-
configuration is also necessary to evenly distribute thegsne
consumption among all nodes and thus, to increase the retwor
lifetime [7].

A. Introduction and Motivation Thus it is necessary to develop simple, local, distributed a
HE Minimum Spanning Tree (MST) problem is an imporgorithms which are energy-efficient, and preferably alsoeti
tant and commonly occurring primitive in the design anefficient, even at the cost of beingub-optimal (see e.g., [5],
operation of data and communication networks. For instaimce [8], [9] for such algorithms in the context of wireless semso
ad hoc sensor networks, MST is the optimal routing tree faetworks — discussed more below). This adds a new dimension
data aggregation [2]. Traditionally, the efficiency of disited to the design of distributed algorithms for such networksus
algorithms is measured by the running time and the numbee can potentiallytradeoff optimality of the solution to work
of messages exchanged among the computing nodes, and adgte by the algorithm. In a sensor network, the total eneegy r
of research has gone into the design of algorithms that axgired (energy complexity) in a distributed algorithm typically
optimal with respect to such criteria. The classical alfponi depends on the time needed, the number of messages exchanged
due to Gallager, Humblet, and Spira (henceforth referredsto and the radiation energy needed to transmit the messages ove
the GHS algorithm) [1] use®(nlnn + |E|) messages, and certain distance [9], [10]. The radiation energy neededaosmit
is essentially optimal with respect to the message comntylexia message is typically proportional to somerk function f
(typically square or some small power) of the distance betwe
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little work on localized construction of exact or approxima energyis proportional tor®, where typicallya is 2 and can
MSTs, especially in the context of wireless ad hoc networksange up to 4 in environments with multiple-path interfeen
A structure islow weight if its total edge length is within or local noise [7], [11]. In this paper, we mainly focus en= 2.
a small factor of the total edge length of the MST, but th&hus, given a spanning trég& the cost (or quality)of a spanning
structure may have cycles. It is easy to show that MST caneottbee T is defined byQa(T) = > .o le|*, wheree denotes an
constructed in a purely localized manner, i.e., each nodaata edge ofT’, and our goal is to find a tree that minimizes the cost
determine which edge is in the defined structure by using orfigr a givena. Notice that whenn = 1, this problem becomes
the information of the nodes within some constant hops. Fdre traditional MST problem. It can easily be shown (e.gingis
example, Li, Hou, and Shia [8] proposed a method to buildruskal’s algorithmic construction [16]) that the MST whic
what they call alocal minimum spanning tree (LMSTyvhich minimizes >, ,ycrd(u,v) also minimizes}_, ,)cp d*(u,v)
is guaranteed to be connected and has bounded degree,noiit ior any « > 0. In the rest of the paper, we use the termestand
a low-weight structure. In fact, X. Li et al. [5] demonstratee quality interchangeably.
difficulty in constructing an MST and gives a localized algon Two important applications of an MST in wireless networks
to construct a low-weight connected subgraph (that can haaee broadcasting and data aggregation. An MST can be used as
cycles) for topology control in wireless ad hoc networks. broadcast tree to minimize energy consumption since itmizes
In this paper, we study a class efmple, local, distributed, Z(W)eT d®(u,v). It was shown in [17]-[19] that broadcasting
approximationalgorithms called th&learest Neighbor Tree (NNT) based on MST consumes energy within a constant factor of the
algorithmsthat are provably good: they build slightly sub-optimabptimum. In data aggregation, the idea is to combine the data
trees with low energy complexity and are easy to maintatoming from different sources enroute to eliminate redagga
dynamically. A fundamental step in all existing algorithds and minimize the number of transmissions and thus savingygne
the MST problem iycle detectiongiven an edge, one needs taSome common aggregate functions are minimum, maximum,
determine whether the edge would form a cycle with the edgasgerage, etc. [2]. One popular paradigm for computing agges
already chosen. This deceptively simple operation leads i@ is to construct a tree rooted at the sink where each node fdswva
overhead: a significant amount of book keeping and messatge(locally) aggregateddata collected from its subtree to its parent
passing needs to be done in order to maintain the componeii2§]. For such cases, MST is the optimal data aggregatian tre
and answer such queries. The NNT algorithms bypass such &ince energy is an important constraint in the setting ofsen
step completely by a very simple idea: each node choosesatworks, a lot of work has focused on constructing low eyperg
unique rank, a quantity from a totally ordered set, and a nodsubgraphs [6], [9]. However, it is counterproductive to adet of
connects to thenearestnode of higher rank. Observe that thisesources (e.g., time and energy) in order to compute a l®t co
immediately precludes cycles, and the only information tleeds subgraph, e.g., an MST, the enengsedby the algorithm is also
to be exchanged is the rank; also, this information does eetln an important measure. Motivated by this considerationdilitaon
to be updated continuously over the course of the algorithm. to the traditional time and message complexity of distebut
The NNT scheme is closely related to the approximatioalgorithms, we consider a complexity term calledrk complexity
algorithm for the traveling salesman problenfcoincidentally defined asw '
called Nearest Neighbor algorithm) analyzed in a classiepay i=1
Rosenkrantz, Lewis, and Stearns [14]. Imase and Waxman [{8] message and M is the number of messages exchanged by
also used a scheme based on [14], which can also be considdRggnodes to run the algorithm/protocol (this is implicitrimany
a variant of the NNT scheme, to show that it can maintaiP@Pers, see e.g., the survey of [6]). Thus total radiatieerggnis
an O(In n)-approximate Steiner tree dynamically assuming onfirectly proportional to the work done by the algorithm.
node additions, but not deletions. These results can dasilysed
to show that NNT withanyranking of the nodes gives @Inn)- C. Network Model
approximation to MST on a metric graph, i.e., a complete grap \ye consider a wireless network composedrofodes dis-
with edge weights satisfying the triangle inequality. ImBast, yjteq uniformly at random in a unit square (a popular prob
in this paper, we consider a different graph model (moreqblﬁt abilistic model for wireless ad hoc networks, e.g., see )[2af
to model wireless ?d _hOC netvv_orks): a random g_eomemc graHqume that the nodes have distinct identifiers, each nosle ha
where nodes are distributed urpforr_nly at random In a uniaseu an omni-directional antenna, and a single transmission bean
and show an expected approximation ratiocuft). received byany node within the transmission radius (calledal
broadcasting. (We assume a directional antenna only for dynamic
B. MST and Work Complexity algorithm given in Section VII.) We utilize this broadcamgi
property to reduce the communications needed in our algorit
Each node can adjust its transmission radius (power leeel) t
any value up to a given maximum level. When the maximum
transmission power of the nodes is large enough so that amy tw
nodes can communicate directly with each other, we call it a
complete graph modelOtherwise, we model it as anit disk
graph (UDG) where two nodes andv communicate directly if
and only ifd(u,v) < R for some givenR; that is, there is an edge
betweenu andwv if and only if d(u,v) < R. In this paper, we also
1E.g., the nodes may represent sensors. We assume that tumehave efer the UDG model asiultihop settingThis model is a popular
distinct identifiers. graph model for multihop wireless networks [6]. When thee®d

M
= > r¥ wherer; is the transmission distance

Formally, our focus is the following geometric weighted min
mum spanning tree problem: given a $étof points (nodes)in
a plane, find a treg" spanningN such thaty- ,, ,\c7 d(u,v)
is minimized whered(u,v) is the length of edggu,v), the
Euclidean distance betweanand v, and a is a small positive
number. The motivation for this objective function comesnir
the energy requirements in a wireless communication pgmadi
to transmit a signal over a distanee the requiredradiation
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TABLE |
PERFORMANCE OFGHSAND NNT ALGORITHMS

Expected quality| Expected quality| Expected work| Expected Time
ElQa], a=1 E[Qa], a =2 EW], a=2 | msgs,E[M] T
Co-NNT O(v/n) 0o(1) 0o(1) O(n) O(In® n) WHP
Rnd-NNT O(v/n) O(Inn) O(Inn) O(n) O(In® n) WHP
UDG-NNT | O(y/7n-VInn) O(Inn) O(Inn) O(n) O(y/n - 1032 n) WHP
GHS O(yv/n) o(1) Q(In” n) Q(nlnn) O(nlnn)

are uniformly distributed in a unit square, to have a corggectan algorithm/protocol. The NNT algorithms perform sigrafitly
graph with high probability, it is necessary and sufficidmtt?  better in all three: the number of messages, work, and time.
be © ( /1n_n> [21]. Thus, we assume thdt = © ( Although most of our analysis are generalized to anywe
" mainly focus ono = 2 for the purpose of discussion. For quality,
the casea = 1 is also interesting by the fact that in this case,
the problem becomes the traditional MST problem. Thus, we
Our main contribution is a detailed theoretical and experital emphasize quality fore = 1 and 2, and the work complexity
study of the NNT algorithms in the context of wireless ad hotor a = 2.
and sensor networks for the above network models. First @uality bounds: We show that with respect to the expected
present NNT algorithms for the complete graph model wheguality (or cost) of the tree, Random-NNT gives axil) and
the maximum transmission range of the nodes are large enougfinn) approximation to MST for the case af = 1 and
so that any pair of nodes can communicate directly with each = 2, respectively; and UDG-NNT gives a@(vInn) and
other (cf. Section IlI). Depending on how the ranks are chpseO(Inn) approximation, respectively. In contrast, Co-NNT gives
we study two NNT algorithms: Random-NNT (ranks are chosean O(1) approximation for bothv = 1 and o = 2. Thus, NNT
randomly) and Coordinate-NNT (Co-NNT in short; ranks aralgorithms give good bounds on the cost of the trees, with Co-
based on coordinates of the nodesfFor multihop wireless NNT being better than Random-NNT — this shows that at a cost
networks modeled by a unit disk graph (UDG), we present amottof increased information (i.e., about the coordinates) cam get
NNT algorithm, which we refer to as UDG-NNT. Given thebetter approximations.
simple and local nature of this construction, it is quitepsising Message, time, and work complexity:NNT algorithms have
to have trees of reasonable properties. We show that the NNSignificantly lower message, time, and work complexity caned
have some properties that can make them attractive for thead to the message-optimal GHS algorithm which computes the
networks. Our main results are: (i) The tree produced by such exact MST. We show that the average work complexities of
algorithm, called the NNT, has low cost, (ii) The NNT paradig Co-NNT, Random-NNT, and UDG-NNT ar@(1), O(Inn), and
can be used to designsemple dynamic algorithrfor maintaining O(lnn), respectively, forx = 2, whereas the work complexity of
a low cost spanning tree, and (iii) THene messagendwork GHS algorithm isQ(In?»). For all of the NNT algorithms, the
complexities of the NNT algorithms are close to the optinmal iexpected message complexity G§n), which is essentially the
several settings. best possible, while GHS takes expecf&@ In n) messages. The
Our performance analysis is with respect to the followingme complexity of both Random-NNT and Co-NNT @¥1n® n)
metrics: thequality of the spanning tree producdsy the NNT with high probability (WHP), while the running time of GHS
algorithm, and themessage, timeand work needed by the is O(nInn). The running time of UDG-NNT i€)(,/n - In®/2 n)
algorithm to construct the tree. The results are summarized WHP, which is time-optimal up to a polylogarithmic factoeés
Table 1. Quality, work, and the number of messages are eggecSection 1V).
(average) values for all of the algorithms (including GHS8)d the Simulation results: We also performed extensive simulations
time complexity is the worst-case bound for all algorithéile of our algorithms. We tested our algorithms on both unifgrml
the NNTs are a close approximation to MST, NNT algorithmsandom distributions of points, and on realistic distribns of
consume much less energy compared to the message-optipmhts in an urban setting obtained from TRANSIMS [22].
GHS algorithm. The radiation energy to transmit messages Experimental results show that the work and number of messag
directly proportional to the work complexity. Some energy ifor NNT algorithms are significantly smaller than that for an
consumed to process the messages by the electronic devimgtimal MST algorithm, while the quality of the NNT trees are
at the nodes. Energy consumption in electronic devices algery close to MST. For example, for the TRANSIMS data, we
depends on running time — longer the running time, more tlieund that the cost of the trees found by the NNT algorithnes ar
energy consumption. Thus, the number of messages, work, avithin a factor of 2 of the MST, but there is more than a terfol
time together determines the total energy (energy consampt saving on the work and about a five-fold saving on the number
transceiver electronics plus radiation energy) consumedrining of messages.
Maintaining a low cost tree dynamically: We show that the
degree of a node in NNT i®(Inn) with high probability. This
property of low node degree can be used to design a simple

Inn

D. Our Contributions and Results

2Both are well motivated: when nodes don’t know their geoieatoordi-
nates, Random-NNT is natural (in contrast most previouskwem., [5], [6]
assume that nodes know their coordinates or their relatieations) but if
nodes know their coordinate location (say, using GPS), @@NNT is more

suitable. 3i.e., with probability at least — 1/n(1).
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dynamic algorithm for maintaining a Random-NNT. We showtlgorithm 1 Basic NNT Scheme

that the expected number afarrangementsi.e., the number of All nodes have distincids from a totally ordered set.

nodes whose outgoing edge must change, as a result of a nGdggput: A spanning tree.

insertion or deletion i®)(Inn). This dynamic algorithm does not Every nodev executes the following steps independently:
require any complicated data structures or severe conttran 1) Choose a unique rankank(v).

the sensors. The dynamic aspect of the NNT scheme makes ther®) Connect to the nearest node such thatrank(w) >

very useful in a sensor network setting, where it is very camm rank(v), i.e., add the edgév, w) to the NNT.
for nodes to fail, or become alive asynchronously. We consider the following two rankings of the nodes:
Random-NNT:
E. Other Related Work 1) v chooses(v), a uniform random numbet [0, 1].
X. Li et al. [5] give a local algorithm to construct a low- 2) rank(w) > rank(v) if p(w) > p(v) or if p(w) = p(v) and
weight subgraph that has many desirable properties: ctinityec id(w) > id(v).

(but may have cycles), sparseness, spanner, bounded dagdee Coordinate-NNT:
planarity. They assume that the nodes need to know cooedarat 1) Assume thafi” is a set of points in a plane.ank(v) =

at least relative positions, whereas for Random-NNT, nadieo (z(v),y(v)), i.e., the coordinates af.
nate information is needed. Their algorithm tak&s:) messages, 2) For two node® andw, rank(w) > rank(v) if z(w) > z(v)
which is asymptotically optimal, in the worst case for awdniy or if z(w) = z(v) andy(w) > y(v).

node distribution. However, their low-weight structurea a tree
and can not be used for applications where a tree is needgd, e.
data aggregation. Moreover, their structure is low-weighiy if

the weight of an edge is interpreted as the distance between

nodes (and not asth power of the distance, for some > 1). Lemma 1: In the case of a random-NNT, for any nodethe

. . . Oé*l . .
Quality of th,'s structure. IS0 (n ) in the w.orst.cz.ise. N. Li probability thatv connects to theth nearest neighbor (NN) is
et al. [8] devised a localized algorithm to build similarustiure
and E[NE(v)] = ©(lnn).

called local minimum spanning tree (LMST). They use only oné(”lproof Let 2, be the random number generated dbynd
hop ne|ghbor information to build LMST. However LMST is notmi the random number generated by tiie NN of v. Then, the

a low-weight structure even for = 1 [5]. Both [5] and [8] probability thaty connects to thé" NN is equal to the probability
legssrz?;ma:g'Zg%gggf;’fg;}%ﬁgg&;Ergzil?;;'n[ﬁ]s_rp'm(a s'nsznm that z; and zo are the largest and second largest, respectively,
uniform node distribution) using spatial gossip mechanigmere among(z +1) random numbersm?xl, s This probability
they use a ranking of the nodes, similar to our Random-NNiE 1(z+1) Now, E[NE(v)] = Z i z+1) = Hn —1=0(lnn).
This algorithm achieves an expect@din n) approximation to the m
MST for o = 1, where our NNTSs gives an expectédl) approx-
imation. They did not show any approximation factor for> 1 m
in which case approximation ratio can be significantly large

of ranks, the average neighborhood size could¥e); but it
Yecreases significantly for Random-NNT.

. DISTRIBUTED IMPLEMENTATION OF THENNT SCHEME

thanO(In n). The expected message complexitpigf(n) Inn), In these section, we describe an algorithm lto construct.a-spa
where f(n) is some poly-logarithmic function, which can even b&ing tree based on the NNT scheme. In this implementation, We
|arger than the number of messages in GHS a|gorithm_ assume that each nodan communicate d|reCt|y with all other

nodes by suitably increasing its transmission radius. Rewet
turns out that most of the nodes need to communicate withanly
small number of nearby neighbors, but some nodes may need to
communicate with distant nodes. For the case where the nuaxim

In this SeCtion, we describe the NNT scheme to COﬂStrUCtp@WQr level of the nodes is not |arge enough to reach anothd® n

low cost spanning tree, where each node chooses a rank, af¢hat distance, we provide an alternative implementatiothe
connects to the closest node of higher rank. An abstract folQNT scheme in Section IV.

of the scheme is given in Algorithm 1. For a nodelet nnt(v)
denote the node thatconnects to, if it exists. It has the highest ]
rank, nnt(v) is not defined. Ifant(v) is defined, it must be the A The NNT Algorithm
case thatrank(nnt(v)) > rank(v) andrank(v) > rank(w), for The algorithm consists of exchanging three types of message
each nodew that is closer tov thannnt(v). If we think of the request availablg and connectamong the nodes. Each node
edges(v, nnt(v)) as being directed from to nnt(v), it is clear begins with broadcasting requestfor connection message. Each
that each edge is directed from a low rank node to a higher ran@&de broadcastaequestmessages successivaty phasesto the
node — this immediately rules out cycles, and gives a spgnmdlstances— , = ..., until it finds a node with higher rank.
tree. Thus, the NNT algorithm is extremely simple, locatjuiees The hlghest ranked node among all the nodes, can never find
no complex synchronization among the nodes, and is naturadl node with higher rank. This node stops transmittiequest
robust. message when it reaches the maximum possible distancedsetwe
For a given choice of ranks, |e¥FE(v) denotes the size of any two nodes. Considering a unit square, the maximum distan
the neighborhood that needs to look for in order to find the between any two nodes ig2. A Requesimessage carries rank
connecting edgeN E(v) is a measure of the locality, and has anformation (coordinates or random number). The other aode
bearing on the time and message complexity. For arbitrasices who can hear the message send backaeailable message if

II. ALOCAL DISTRIBUTED ALGORITHM FORCONSTRUCTION
OF APPROXIMATEMST
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their rank is higher. The sender of treguestmessage selects theO(Inn) and O(1), respectively. For both NNT algorithms, the

nearest node from the sendersawhilablemessages if more than expected number of message®)ig:) and the time complexity is

one available message is received, and thus it finds the nearestin® n) WHP. The following lemmas and theorems prove these

higher ranked node. claims. We prove the bounds on work and message complexity
We assume that these phases are synchronized; i.e., ab nagEsuming that each message is transmitted successfullpein o

begin Phase, for eachi, simultaneously. The phases can easilgttempt. Then we provide a protocol for scheduling messagds

be synchronized by making all nodes wait f6r time in Phase resolving conflicts, and show that with this protocol, theihds

i, where T; is the time required to complete exchanging thean only be increased by a constant factor.

messages of Phase In the proof of Theorem 6 and 10, 1) Analysis of Random-NNT:

for Random-NNT and Co-NNT, respectively, we show h@yw Theorem 2: E[Q.(Random-NNT] is O(lnn) for a = 2,

can be calculated. If there is a node of higher rank within the(n'=%/2) for a < 2, andO(1) for a > 2.

transmission radius of Phagehe reply from that node is received Proof: Consider an arbitrary node, and concentric circles

by the end of the Phase centered ai; with radiusr; = 2—n for i =1,2,...,m. Consider-
When coordinates are not available (e.g., for Random-NNThg 5 unit square, the maximum distance between any two nodes

senders include the transmission power levels in alailable s /3. Thus,r,, 1 < v2 < 7m, i.e., the maximum number of
messages and the recipient determine the relative distaridbe cjrclesm < Llgn+ 3. Let C; be the set of nodes in the circle
senders from these power levels and the signal-strengttiseof vith radiusr;, R; = C; — C;_; for i > 2, andR; = C; for i = 1.
received messages. Finally, the node sendsreectmessage t0 For a nodev € R;, distanced(u, v) < r,.

the nearest higher ranked node, creating an edge betwesd the| et 4, be the event that connects to a node € R;. By
two nodes. The details are given in Algorithm 2. Lemma 1, the probability that connects to any node betwegth
nearest neighbor (NN) ang —1)st NN iszf;jl 1(1%1) =i-%
Algorithm 2 Distributed NNT algorithm for wireless networks wherej < k. Fori > 2, |C;_1| > 1 sinceC;_; contains at least
/* The algorithm is executed by each node indepen- ©One node, which is.. Probability that a particular node, other
dently and simultaneously. Messages are written in the dornfhanu, is in C;_y is p > gwri | = 357 (for a node at the
(msg name, sender, [recipient], [other infojvhen a message is CONer or next to the border, probabilitycan be_as low ag of
broadcasted, the recipient is not specifiédis the maximum the area of the circle with radius_,). Thus fori > 2,

possible distance between any two nodes.*/ "1
i1 Priad = 2 (-1 ) Prllcial=inial =k
Repeat , J=1k=j

Set transmission radius (power levef)«— NG < Z L pr{Cia| = j}

If r; > ¢, setr; «— £ = J

Broadcastrequestu, rankinfo)  // rankinfo is the random
/I numberp(u) & ID for Random-NNT =
/I and coordinate$z., yu) for Co-NNT

=
[y,

-
Il
—

/-~
<3
[
— =

)p“ (1-p)"’

t— 141 :i{l—(l—p)”}
until (receipt of anavailable message) or {; = ¢) np
For all v, upon receipt oflrequestv, rankin fo) do <1 16
if rank(v) > rank(u), ~ np T 2%g’
set transmission radius thstance(u, v)
send(available u, v) to v m
Upon receipt of “available” message(s): E[d*(u,v)] < Pr{Ai}r{ + Z Pr{A;}r{
Select the nearest nodefrom the senders i=2
Send{connectu, v) to v <o Z 21? o
=2
a2 e, 16X a2y
B. Analysis of the NNT Algorithms - {2 T ;2 2 } '

We measure the quality of the tree produ]%ed by N§I(T) = By linearity of expectation for nodes,

> d%(u,v), the work complexityw = > ¥, the number o
(u,v)€T i=1 E[Qa] = nE[d (u, 1))]
of messagesV/, and the time complexity of NNT algorithms.

Although our analysis generalizes to amyfor clarity we consider Whena =2,
a=1and2.

It is known that E[Q1(MST)] is asymptotically®(y/n) and
E|Q2(MST)] is asymptotically©(1) [24], [25]. We show that
for Co-NNT, E[Q1] = O(v/n) and E[Q2] = O(1) giving an
approximation factor oD (1) for both of them. For Random-NNT, EQa] < {2a B 92+2a }nl_a/g . gl+5a/2
E[Q1] = O(y/n) and E[Q2] = O(lnn) giving approximation o= (20 — 4) w(2% —4)
factors of O(1) and O(lnn), respectively. The expected work
complexities for Random-NNT and Co-NNT (far — 2) are FOr a <2, E[Qa] = O(n'~*/%); for a > 2, E[Qa] = O(1). ®

E[Qd] < §1gn+ b +4=0(lgn) = O(lnn).
™ ™

Whena # 2,
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Theorem 3: The expected work complexity of Random-NNT Theorem 5: The expected message complexity of Random-
algorithm E[W] is O(Inn) for a = 2, O(n'~%/?) for a < 2, and NNT algorithm isO(n).

0(1) for a > 2. Proof: If we consider work needed for every message is 1,

Proof: Again consider an arbitrary node First transmission i.€., whena = 0, the total work is simply the number of messages,

. . _ 1 ) M, exchanged in the algorithm. Thus, from Equation 3, putting
radius for request messagg isr; = 2\/5 and for theith o = 0 in the right hand side, we get
transmissiony; = 2r;,_1 = 21\/% Then, the maximum number 80 <&
of transmissionsm < $1gn + 3. Let C; be the set of nodes in E[M]<n {2(71’ +1)+ = Z 221} = 0(n).
the circle centered at with radiusr; and R; = C; — C;_1, T =
the set of nodes in théth ring. Let A(v,u,i) be the event n

that v replies tow in phase:i. Fori > 2, the eventA(v,u,1) ] . - .
occurs iffv ¢ R; and rank(v) > rank(w) > rank(s) for all Scheduling Messages and Resolving Collision€onsider an

s € C;_,. The probability that a particular node is @_; is arbitrary nodeu. Let k; be the number of messages (including
> 2% a4 Pr{v € R;} < 3p. Letting |C;_1| = k, we have the messages to be transmitted«jythat can potentially collide
b= Ton: iy = <P g|>i-a] = & We with «'s messages in Phaseof the algorithm. Note that may
Pr{Vsec,_, [rank(v) > rank(u) > rank(s)] v € Ri} = w2y -
Then for75 > 9 (*+1)"  have more than one among thesemessages. In the proof of
= the next theorem, we show howcan determine an upper bound
<3 "if 1 n—2\ 1 1 — pyrk-1 on k;. Let F; be a time frame containing at lealst time slots.
=P = k(k+1)\k—-1 (1-p) Each phase of the algorithm contain®(In ) such time frames
_3 48 F;. In the first time frame, for each messagechooses a slot
< n(n—1p < Tn—1)2%" uniformly at random. If a message is in collisian,again picks
a random slot in the next frame for this message, and so on.
Now, assumek; > 2. If k; < 1, there is no collision. In an
Pr{A(v,u, 1)} = Pr{v € C1,rank(v) > rank(u)} attempt, a particular message does not collide with prdibabi
< dm 1 _ 2_“. at least(1 — 1/l<:i)’“7‘_1 > 1, using the known inequality1 +
. -on 2 " t/k)* > (1—t2/k)e* with t = —1. Thus, the expected number of
l_Pote_nUaIIfy, there are, —hl nodes thgt Carll (rjeply g’- ';hUS,I_by retransmissions required for a message is at mosteaning the
tlgeuairslt)llegset)?l%%cgngnﬂél Gioexpecte work done by theeglies bounds on the expected message and work complexity increase
q by a factor of at most, a constant. Further, following Corollary
1 2T . e 48 o 7 in [26], with high probability (WHP), we have all; messages
(n—1) i+ 2 m(n—1)22 successfully transmitted withio(Inn) time frames, i.e., WHP,

Pr{A(v,u,7)}

n
the time to complete Phases given by,

—a/2 o4 g - i(a—2)
<n {271'2 +— ;2 } 1) T = Ok; Inn) @

Now we calculate the work done by ttequestand connect ~ Theorem 6: The time complexity of Random-NNT algorithm
messages. Lef; denotes the event thatneedsith transmission. Is O(In® n) with high probability.

Pr{T1} = 1. Fori > 2, u needsith transmission if and only if Proof: The radius of the first transmission by each node
rank of » is the largest among all nodes @y _;. Thus, isry = % The expected number of nodes within this radius,
" 11 16 E[|C1|] < mr?n = 4. Using the following standard Chernoff
= =, |pFra-pr< bound [27],
Pr{T}} kzﬂ’f(k—l)p (1-p)"" < o [27] o
- e
In each phase, there isréguestmessage, and at mostcbnnect Pri{z > (1+d)u} < ((1 + 5)1+5)
message bw. Thus expected work done hy for requestand
connectmessages is with @ = |C1|, = E[|C1]] ands = <22 — 1, we can show that
m m with high probability,|C| < clnn for sufficiently large constant
Z Pr{T;}2r <n=°/? {2 X 2% + 32 Z 21'(&2)} (2) ¢ and each node sends at mostin available messages. Thus,
i=1 T = the total number of message by the nodes within the ragius
From Eq. 1 and 2, the expected total work for nade k1 = (clnn)® = O(In® n) WHP. By Equation 4, time to complete
N the first phase is at mo§t;, = O(In®n) W.H.P.
E[W.] <n~/? 2(x +1)2° + @222'(&72) 2iNow consider anith transmission .phase to distaneg =
T NGE After the (i — 1)st phase, the distance between any two

unconnected nodes is at least ;; otherwise, one node has lower
rank than the other and would connect to that in some previous
_ 80 o= _i(a— hase. Thus, the maximum number of unconnected nodes in an
E[W] < ’I’Ll a/2 {2(7T-|— 1)2a + ? Zzl(a 2)} (3) p y
i=2

Expected work by the algorithn[W] = nE[W,]. Thus,

circle with radiusr; is O(1) (this is the maximum number of

nodes that can be packed in a circle with radids for any d,

such that distance between any two nodes is at l@¢aBtotice
Corollary 4: For i > 2, the expected number of nodes th

dsith t ission s Pr{T;} < Lo 8fhat there can be at most one node in any square withdsizje
needsith transmission isn Pr{T;} < 23

_ fat 1 and the expected Neyt we show that each such unconnected node receives at most
number of required transmissions by a node to find a hlghgr(lnn) available messages W.H.P

m
ranked node isy_ Pr{T;} <1+ 5=(1 — o) < 1+ 5= < 1.425. Consider an arbitrary node. Let C; = y. Assume that
i=1 y > 60lnn. (If y < 60lnn, thenw receivesO(Inn) available

This gives the desired result stated in the theorem. [ ]
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messages with probability 1.) Letdenotes the number of nodes [*Y[k*Lyk+2.y] |xy
in C;_,. For any nodev, Pr{v € C;_1|v € C;} > % (inequality,
instead of equality, comes from the fact thatcan be close to |3
the borders). ThusE[z] > y/4 > 15Inn. Since the position of
the nodes are independent and |dent|cally distributedhguttie
standard Chernoff bound with= J andu = E[z], we have kilktl, 1k+2, 1 |x 1

AT+
T'ZH
2'z

U [k+1, 2k+2, 2 [x 2

e d a 1 Fig. 1. The leftmost thick vertical line through node divides the unit
Pr{z < y/8} <Pr{z < (1 -d)u} < (m) < n23 sq%are into two rectangles. The right rectangle,gwhich @wshin the figure,
is subdivided into square cells with sidés= ﬁ by adding empty space
Let 2z = |R;| =y —x. ThenPr{z > 7y/8} = Pr{x < y/8} < to the rightmost column if necessary. Here< \/n andy = +/n. Then the
2 <. Sincew is at thesth transmission phase, it is known that cells are rearranged in a single row.
has the largest rank among thenodes inC;_;. Now, u receives
exactly ¢ available messages iff exactly out of z nodes inR;

have higher ranks tham. The probability of such event is We further rearrange the cells in these columns, along with
" the nodes in it, in a single row as shown in Fig. 1. The cells in

Z M < (E) the column containing:, Column k, are arranged in a different
3 y! “\Y way than the cells in the other columns. First, we put the cell

. . containingu, then one cell from above and one cell from below
Let A be the event that receives more thag0Inn available , "py interleaving them. Then we put the cells in Coluina- 1

messages, ang be the event that < 7y/8. Then, in their original order beginning from the bottommost cellthe

2 ‘ 201lnm topmost cells, then the cells in Colunin+ 2 in the same order,

Pr{A} < Z (i) <_Y (f) and so on. In this new arrangement, we are moving the nodes
- y) T y—z\y further away and increasing the distances among the nodds; a
t=[20Inn] thus, increasing the length of the edges comparing to thygnati
] Co-NNT. As a result, the expected quality of the original ISNT
Pr{A|B} < —55 is less than that of the Co-NNT in this new arrangement. Node
connects to a node in th¢h next cell, if the next — 1 cells are
Pr{A} < Pr{A|B} + Pr{B} < 213 + 286 empty and there is a node in tkth next cell. The probability that

. n—1
the nexti — 1 cells are empty i 1 — % . Let P’ be the

Excluding the first phase, there are at mgstgn + 1) phases. probability that there is a node in thith céll given that the first
By the union bound (i.e., Boole's inequality [27]), the patility ; — 1 cells are empty, and®; be the probability that. connects
that some of then nodes receives more thadInn replies in  to a nodev in the ith cell.

some phase is less than

1 18 Pi=(1-5)" P (- E) T s T <o T
_ I — | = 1.2 n—1 n—1 o i—
2(1gn+1)n( +n26>—0(1/n ) E[da(u,v)]g Z (Zb)QPZS z ( i ) 21
=1 =1

Thus, to apply Equation 4, we havg = O(lnn) and T; = el i—1

O(In* n) WHP. Therefore, total time taken by all(lgn + 1) E[Qa] = nE[d*(u,v)] < n'~*/? ;1 i <ﬁ)

phases i9)(In> n). ] n-1 .

We note that only a very few nodes may need to go far to E[Q:] < vnye Z Z(%) =0(vn)

find a node of higher rank. Most of the nodes are connected to .

the closer neighbors. From Corollary 4, we see that the numbe ElQ2] < Ve Z (%) =0(1)

of nodes that need" transmission is decreasing exponentially

with i. The average number of transmissions by a node is at most ]

1.425. Thus, almost all of the nodes get connected after thie fi Theorem 8: The expected work complexity of Co-NNT algo-
few transmissions The radii for the first few transmissiame rithm, for o = 1 and 2 areO (/n) and O (1) , respectively.
2 4 etc., which are very small and decreasing withThis Proof: Again we subdivide the area into cells and consider

VRN the rearrangement of the cells in a single row as described in
shows that the proposed algorithm is highly scalable andl lioc the proof of Theorem 7. The transmission radius for phase

nature. ot 1 .
2) Analysis of Coordinate NNTNow, we show analogous s Vn' Length of each cell i$ = Vi Thus, a noda: needith
theorems for Co-NNT. transmission if the nex@’~* cells are empty. Let; be the event

Theorem 7: The expected quality of Co-NNT far = 1 and that v needsith transmissionPr{7;} = 1 and fori > 2,

2 areO (v/n) and O (1), respectively. gi—1 1 —
Proof: Consider an arbitrary node and a vertical line Pr{Ti} = (1 T ) se
throughw (the thick leftmost vertical line shown in Fig. 1). This

vertical line divides the given unit square into two rectasg number of nodes i’ — 21 — 21 cells that are covered by
The left rectangle is not shown in the figure. Nadeonnects to the transmission but not by transmission— 1. Fori > 2, the

the nearest node in the right rectangle, which is shown in Eig expected number of such nodes in these! cells, given that the

For the purpose of analysis, let us subdivide this rightamegle first 2i~1 cells are empty, is

into square cells, where each side of each ceb is Ln If

necessary, include empty space from the right hand sideeof th -z
. . . n— 2271

unit square to make the cells in the rightmost column squares "

ith si -1 R
with sidesb = . S2 T

The number ofavailable messages receives in phaseis the

2 -1
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— gi-1 (1+L11> Casea; < 172%1”: Then, E[n;] < 12lnn. By Chernoff
n—2 bound [27] withy = E[n,;] andé = 361% — 1, we have

< i—1 i—1

s2 (1 +2 ) Pr{n; > 36Ilnn} = Pr{n; > (1+6)u}

< (€2(1+ &)~ HOym

The expected number of replies in the first phase(is—1) < 2.
p p p 37%( ) < (e/(1+6))(1+6)“

In addition, in each phase, there are at most i@oggiestmessage

A

and oneconnectmessage by:.. Thus, the expected work hy, < 1/n’.
E[W.] < (2+2)(2b)* Pr{T}} The number of rephgg receives in phasecannot be more f[han
g n] n;. Thus, the probability that receives more thas6 Inn replies
. . . : 3
94 9i-1 (1 4 gi-1 2b) Pr{T} is at mostl/n”. .
+ ; { + < + >}( )" Prili} Caseq; > 12Inn: Then,q;_; > % > 311 n this case, the
9a ga & L\ probability thatu needsith transmission, i.e., the probability that
. 2\ . i I
=2 (1- ai,1)"71 < e (rhai1 o 1/n3.
The total work byn nodes,E[W] = nE[W.]. Thus, Thus, with probability at least — -1, eitheru does not need

phase: or the number of replies in phaseis O(Inn). This

= L oavae (1 statement holds simultaneously for all 6flnn) phases for all
i+ ;(2+Z+Z )i (\/E) } ©) n nodes with probability at least — % (by the union bound).
Thus, by Equation 4, the running time of each phase 2 is

Puttinga = 1 and 2, we have the desired result. m 7, =O(kiInn) = O(In®n) and the total time i©(In® n) WHP.

Theorem 9: The expected message complexity of Co-NNT .
algorithm isO(n).
Proof: Whena = 0, the total work is equal to the number
of messages\/. Thus, from Equation 5, using = 0, we have If the maximum power level of a node is not large enough
E[M] = O(n). m to communicate directly with the other nodes, i.e., for tmit u

Theorem 10: The time complexity of distributed Co-NNT disk graph (UDG) model, we propose the following algorithm
algorithm isO(1n3 n) with high probability. to construct an NNT, called UDG-NNT. Two nodesandv can

Proof: A part of the proof of this theorem is similar to communicate directly (i.e., there is an edge between thitad

H Inn 7
the proof of the Theorem 6. Using the same argument as QR if d(u,v) < R. We assumét = ©(,/ =*) (see Section I-C).

Theorem 6, (1) the running time for the first phase of Co-NNT TYPically, in a sensor network, a special node calkidk
algorithm isT; = O(In®n) W.H.P., (2) after(i — 1)st phase, the gathers data from the sensors and is the root of the tree. Thus

we assume that a special naglehe sink, is designated to be the
t of NNT.

E[W] < 2an1a/2{

IV. NNT ALGORITHM FORMULTIHOP WIRELESSNETWORKS

maximum number of unconnected nodes in any circle of radius
is constantO(1). Next we show that in phaseeach unconnected "0
node receive®)(Inn) available messages W.H.P. The number of
unconnected nodes ifi; and the number o@vailable messages A- The UDG-NNT Algorithm
received by an unconnected node jointly determine the ngnni The algorithm is executed in two phases. In the first phase,
time of «th phase. the nodes choose their ranks randomly as follows. This plsase
initiated by the sinks. The sink picks an arbitrary large number
p(s) and sends this number along with its ID to its neighbors in
one transmission. As soon as any other nadeceives the first
message from a neighbor it generates a random numbet.)
[p(v) — 1,p(v)), and transmitd»(u) and I D(u) to its neighbors.
If u receives another message later from another neighbar
simply storesp(v’) and ID(v'), and does nothing else. Notice
that at some point, every node in the graph, exeepeceives a
Fig. 2. Three cases for a nodein the unit square. In phagethe radius of message from at least One_ _Of its neighbors if the given usk di
the circle centered at is r; = 2/,/n; only the nodes in the shaded regiongraph is connected. IdentifiefD(u) and random numbep(u)
reply back tou. constitute the rank of.. It is easy to see that at the end of the
first phase, i) each node knows the ranks of all of its neighbor

Assume a vertical line through nodsgthe dotted line in Fig. 2), i) €ach nodeu, except the sinks, has at least one neighber
which divides the plane that contains the unit square intottalf-  Such thatrank(u) < rank(v), and iii) the sinks has the highest
planes. LetB; denotes the common region (the shaded region §anK-

Fig. 2) among the right half-plane, the disk with radiygentered [N the second phase, each nadeexcepts, selects the nearest
atw, and the unit square. Let be the area of the regiaB;. Using nodew among its neighbors such thaink(u) < rank(w) and
simple geometry, it can easily be shown thaf_; < a; < 4a;_; sends aonnectmessage ta to inform that(u, w) is an edge in
for any position ofu in the unit square. Let; be the number the NNT.

of nodes inB; excludingu. Now, we consider the following two 4 ng such node is designated, a leader election algorithmbeaexecuted
cases. before running the distributed NNT algorithm.

» ?
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B. Analysis

a) Quality of UDG-NNT: Since each node has at least one
neighbor with higher rank, the length of any edge of an NNTtis a
most R. HenceQo(NNT) < (n — 1)R® = O(n'~%/21n%/2 p);
that is, EF[Q1(NNT)] = O©(vnlnn) and E[Q2(NNT)] =
O(Inn). Since E[Q1(MST)] = O©(v/n) and E[Q2(MST)] =
©(1), we have approximation ratio @(+/Inn) and O(Inn) for Fig. 3.
a =1 and?2, respectively.

b) Message Complexityin each phase, each node transmits

exactly one message. Thus, the total number of messages ighat a node tests all of its neighbors by broadcasting a esingl

most2n = O(n). message to all of its neighbors, each neighbor must reply to
c) Work Complexity:Each node transmits a message t0 @yis test message individually. Thus, the number of message

distance of at mosk. Hence, he total work for transmitting atre|ated to testing the neighbors is still no less than thebarmof

most 2n messages 8V < 2nR* = O(n'~*/>In®/?n). Using neighbors. As a result, the best performance of the GHSittigor

a =2, we havelW’ = O(lnn). can be achieved by keeping radius of neighborhood as small

d) Time ComplexitylLet D be the diameter of the given unitaS possible; we choose( /ln_n), the minimum required for
disk graph. Using Chernoff bound, it can be shown that the'nur@onnectivity [21]. "

b(_ar of _nodes within distancé: from any po_mt 1sO(In n) WHP. The expected number of neighbors of a node, i.e., the exppecte
Since in each phase each node transmit at most one message, Lo TV : .
using Equation 4, a node needs to wait at moginn) time number of nodes within distang@(,/ =-2) is ©(lnn) (in fact it

n
to transmit its message. Further, the rank propagation agess

is true with high probability). Thus, each node exchangdsastt
from the sinks to any other node in the graph traverse at mo,&(ln n) messages; that is, the total expected number of messages
D links, leading to the running time ad(D1n?n) for the first

lllustration for Lemma 11.

IS Q(nlnn).

phase and)(In?n) for the second phase WHP. Thus, the total The fpllowing lemma is used to find the expected work
time is O(D In% n) WHP, which is optimal up to polylogarithmic COmMPlexity. o _
factor; because to build any spanning tree requirés) time. By Lemr_na 11: Let n nodes are distributed uniformly at random
a simple analysis with the help of Chernoff bound, it can lgasiln & unit square and; be the distance of thih nearest neighbor
be shown that for the unit disk graph model under considerati for any arbitrary node. TheniZ[r] = & = © <%) for some
D = ©(1/R) = ©(y/n/Inn) WHP, which implies a running time constantc where1 < ¢ < 2.
of O(v/n- In3/2 n) WHP. Proof: To get the lower bound, consider any arbitrary node
All of the above bounds hold even if a nodgicks an arbitrary « in the unit square. Now consider a circle centered: avith
number (instead of a random numbg()) < p(v) after receiving unit area, i.e.xR? = 1 where R is the radius of the circle. Let
the first message from a neighbarHowever, as indicated by the A;. be the region that is common to both the unit square and
simulation results, the random choice may improve the bamd the circle (see Fig. 3)4, the region in the square but not in the
quality to O(1) and O(Inlnn) for « = 1 and 2, respectively. circle, andA. the region in the circle but not in the square. Since
Due to the dependencies among these random numbers, agalybbth the circle and the square have equal area (unit aresjyta
quality using this randomness seems to be difficult, which wef A, is equal to the area ofl.. Now consider a rearrangement
leave for future work. (repositioning) of the nodes: keep the nodesdin. as they are
and move all nodes inls to Ac; place the moved nodes in.
V. LOWERBOUNDS ONEXPECTEDWORK AND MESSAGE randomly following the uniform distribution. Now it is eagy see
COMPLEXITY OF GHS ALGORITHM that the distance to thah nearest neighbor af in the original
arrangement of the nodes (i.e., unit square) is greaterahaqual

We compare our NNT algorithm with a well-studied distriiiite , 51 jn the new arrangement (i.e., tith nearest neighbor in
MST algorithm, the GHS algorithm [1], which is messageqq circle centered at).

optimal. The upper bounds on the message and time complexit;Now’ the probability that a particular node (other thanis

of this algorithm have been shown in [1]. Here we g_iV'%vithin distancer from « (in the new arrangement) 'glr:z _ %22.
lower bounds on the expected work and message complexityT¥en, the probability that there are at leasbdes within distance
implementing the GHS algorithm in our network model. We do,

not provide the details of the implementation of GHS aldwnit i )k b ko1
here; instead, we refer to [1] for a detailed descriptionreHge Ci(r)=1— Z n—1 (r_) (1 _ T_>
focus on what is essential to show lower bounds on the exgpecte =\ kK R? R?
work and message complexity.
We consider the radius of the neighborhood of each node tBhe probability density functiotP; (r) = 4 Ci(r), that is,

be ©(y/21). Since each node sends at least one message to N NP N F2\ kel
each of its neighbortést message — to check if the neighborP;(r) = —Z ( . )k’ﬁ (ﬁ) (1 - ﬁ)
is in the same fragment), work and the number of messages of k=0
GHS algorithm increases as the number of neighbors of thesnod Gk gy SR 2 [ r2\"” P2\ E2
increases. Here we note that the way GHS algorithm works, it +Z k (n—k— 1)ﬁ R? T R?
k=0

needs to test the neighbors sequentially. Thus, it canket ttze
advantage of local wireless broadcasting. Even if we cemsid Let T) be the first term inside the above sum, which is
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k—1 n—k—1
s ()" (1) e,
n—1 o [ r2\" P2\
T; = k+1)— | = 11— —
i <k+1>( D5 (R2> ( R2)

1 9 2 2\ n—k—2
- (" )eri () ()
Fig. 4. Construction of Yao graph. Each wedge$@$. Node v have an
edge with the nearest node in each wedge.

i—1
Now Ty = 0, thus P;(r) = — Y (Ty, — Tx41) = T3. Then,

kzo T T T T
R 70 |RND-NNT —+—
UDG-NNT
E[}] > / r? Py(r)dr - Co-NNT -
0 o 60r MST
R 2 2\ n—i—1 0 L ¥
=R (" ! / 2_2 . - dr §’ %0 o i
1 0 R R2 R2 $ 40 b =) 4
=
, n—1\ <= (1 e 1 5 30|
=R 2:()04)————f £
( 7 )k—o k k+n—1 3 20t
. _ . on ko —1 10 ﬁ
Sincen—i > 0, using the identity>" (}}) % =z (")
k:() 0 1 1 1 1 1 1 1 1 1
(page 188 in [28]), 0 5 10 15 20 25 30 35 40 45 50
) . B2 ) n (x 100)
Epf > iR (" | = e = -
i (n—1) (7;) n ™m Elg.GSNNium c(j)féhe,\lllt\elr%gths of the edge3; (T'), for MST, Random-NNT,
- , an O- .

To get the upper bound, we consider a nad@ a corner of the
unit square and a circle centereckatnd with radiusk®’ = v/2, the
length of a diagonal of the square. If we redistribute theesodedge betweem and the nearest node (if any) in each wedge is
in this circle uniformly, the average distance to thk nearest included in the Yao graph. A Yao graph is sparse (each node

neighbor can only increase. Thug[r?] < % =2 m has degree at most 6) and contains the MST [29]. Running GHS
Theorem 12: The expected work complexity of GHS algo-On Yao graph reduces its message complexitp{e Inn). Note
rithm is Q(In? n). that GHS-Yao should be compared with Co-NNT only as both

Proof: We analyze the work complexity faest acceptand Of them use coordinate information. On the other hand, Rardo
rejectmessages only [1]. By the end of execution of the algorithfNNT and UGD-NNT, which do not use coordinate information,
each node tests all of its adjacent edges by using testtaegept Must be compared with GHS without Yao graph.
messages through these edges one by one. The expected numigrour simulations, we ignore the effects of the MAC layerrOu
of neighbors of each node islnn, for some constant. Thus, main results are summarized below, which validate our ttexd
each node sends test messages to or receives reply messagesfesults in earlier sections: (1) The Co-NNT algorithm alway
thesecInn neighbors. Using Lemma 11, the expected work by @utperforms the Random-NNT algorithm, with respect to the
node is at |eaSEflnl" # - Q(#). For n nodes, by linearity quality, number of messages, and work. (2) kot 1, all NNTs
of expectation, the total workV’ = n x Q(@) —Q@n2n). m give a very good approximation to the MST; in particular, tost

" of Co-NNT is always within about0% of that of the MST. (3) For
a = 2, Random-NNT does not give a very good approximation,
) ) ) ) but UDG-NNT and Co-NNT remains within a factor of 2. (4) The
We performed extensive simulations of our algorithms to Uy,mper of messages and the work done by both NNT algorithms

derstand their empirical performance. Our experimentals& e significantly smaller than that by GHS algorithm.
the following:

Number of Nodes: Varying from 50 to 5000. . .

Node distributions: Uniform random distributions in the unit A Quality of the Spanning Trees

square and several realistic distributions of points in aman We present the simulation results of qualiy, (7") for o = 1

setting obtained from TRANSIMS [22]. and 2. As Fig. 5 shows, all NNTs compare very well with the

Number of Runs: 50 MST. As shown earlier, the MST cost &(,/n) for a = 1, and

Measures: We compare the NNTs and the MST, with respect tthe NNTs seems to be within a small constant factor of thisejal

the quality Qa(T") = > (, v)er d*(u,v) for o = 1 and 2 and Fig. 6 demonstrates this by showing the values as a fraction o

the performance of the algorithms with respect to the fallgyv +/n, and the plot for the NNTs are straight lines.

measures: (i) Number of messages, and (ii) Work= Zj‘il re Fig. 7 showsQ2(T), the sum of squares of the edge lengths,

for a = 2. for the NNTs and MST. Quality)- for both the MST and Co-
To be fair to GHS which does not exploit geometry per se (fdNT are constant, and)(Co-NNT) is within a factor of 2 of

compare with Co-NNT, which uses coordinate informationhef t Q2 (M ST) . However,Q2(Random-NNT increases with: as the

nodes) we run the GHS algorithm on the Yao graph [29]. Yamsymptotic bound i$(Ilnn)— this becomes clear from Fig. 8.

graph is constructed as follows: tle angle around each nodeln Section IV, we showed tha2(UDG-NNT) = O(Inn). Fig.

u is divided into six wedges of equal size (see Fig. 4), and thifeshows thatQ, for UDG-NNT is almost constant. In fact, by

VI. SIMULATION RESULTS
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Fig. 9. Number of messages needed to construétig. 10. Work done by the algorithms. In the Fig. 11. Slope of the lines indicate the powers
the spanning trees. figure, the lines for Random-NNT and UDG- of log in work complexity.
NNT almost merged together.

looking at the numerical data, we found that it is increadingy GHS without Yao graph, as expected. However, it is still much

at a very slow rate (which is not visible in the figure). Thigada less efficient than the Co-NNT algorithm.

indicates that a tighter bound fay2(UDG-NNT) may exist. Analytically, we know that fora. = 2, the work complexities
for Co-NNT, Random-NNT, UDG-NNT, and GHS algorithms

are O(1), O(Inn), O(Inn), and Q(In? n), respectively. We can
B. Work and Message Complexities to Construct the Spannig@l, opserve these results from experimental data. Let work

Trees w = cln®n. Then,Inw = Inc + alnlnn. Thus, if we plotin w

In this section, we compare work/ for o = 2 and the Vs.Inlnn, the graph is an straight line and the slope of the line
number of messages needed by the algorithms. The inputisa:, the power oflog. In Fig. 11, the slope for GHS is greater
GHS algorithm must be a connected graph to obtain a MSthan2 and for both Random-NNT and UDG-NNT, it is about
We consider the radius of the neighborhood tolth%lnn the For Co-NNT, the slope is 0, which indicates the workdsl),
minimum required for connectivity. To determine the neigisy Whereas for GHS-Yao, the slope is more than 1.

each node can broadcast a message to distmgém—” and
consider another node as a neighbor if the node can hear theExperiments on Real Data

message from the other node. However, we did not incur arty cosWe consider a distribution of points in a section of downtown

on GHS algorithm to find the neighbors (thus favoring GHS) —Portland, OR, measuring.9KM x 2.95KM approximately9

for GHS algorithm, we assume that each node knows its neighbgquare KM. The distribution of points, corresponding toscan

and their distances. In addition, we also simulate GHS orvéfee the roadway, was obtained from the TRANSIMS simulation [22]

graph. Each node finds its Yao neighbors first, then executss Gwhich does a very detailed modeling of urban traffic, congini

algorithm. a variety of data sources ranging from census data to activit
Fig. 9 depicts the number of messages needed to constructsheveys to land use data. We use three snapshots, at oneeminut

trees. We see that the number of messages for NNT algorithmsnitervals. The distribution of nodes at one of the snapshots

significantly smaller than that for GHS algorithm. Moregwitre  is shown in Fig. 12. The experimental results on these three

number of messages for NNT algorithms increases lineanty. Gnapshots are given in Table II. The work is computedofer 2.

the other hand, the number of messages for GHS increases at e see that the number of messages and work are significantly

slightly higher rate. In fact, the message complexity forSsid larger for GHS algorithm. The work is about times larger and

Q(nlnn). the number of messages is abdutimes larger than those of
The required work for NNT algorithms is also significantlyNNT algorithms. On the other hand, bot), and Q- for Co-

less than that of GHS algorithm (Fig. 10). In addition, witlet NNT is within 2-approximation. Although approximation f@y

number of nodes, work for NNT algorithms increases in a lowén Random-NNT is large, fof;, Random-NNT also provides a

rate than that of GHS algorithm. In terms of both the number afose approximation. In these experiments, we only consitithe

messages and work, GHS with Yao graph is more efficient th¥ao graph assuming that the nodes know their coordinateke If




IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

12

TABLE Il
EXPERIMENT RESULTS FORSNAPSHOT1, 2,AND 3

Snapshot 1 Snapshot 2 Snapshot 3
Q1 Q2 Work Msg Q1 Q2 Work Msg Q1 Q2 Work Msg
Co-NNT | 38.72 6.77 90.54 4832 | 39.39 8.18 92.28 4647 | 38.32 6.25 83.42 4668
Rnd-NNT | 50.75 | 14.13 131.42 5241 | 52.97 | 20.12 137.91 5250 | 52.57 | 18.47 148.88 5229
GHS-Yao | 33.16 | 3.73 | 1271.11 | 20592 | 33.52 3.82 | 1083.99 | 20417 | 33.27 | 3.78 | 1083.99 | 20417

Fig. 12. The distribution of nodes in one of the snapshots.

coordinates are not available, for GHS algorithm, the inpeed

nodew just joined the network, and consider a partitioning of the
27 angle around into 6 equal wedges as shown in Fig. 13. Let
wi,ws, ..., ws be the closest nodes in these wedges; these nodes
can be determined, for instance, by using directional awtgn
(such an assumption is made in several papers, e.g., [16igU

the triangle inequality, it is easy to see that only the noites
L(w;) can be affected. The details are given in Algorithm 3.

Algorithm 3 Dynamic Random-NNT
e If a nodev is added:

1) Nodewv chooses a random rank, and creates two lists of
nodes,Q(v) and L(v), which are initially empty.

Node v checks its neighborsq, ve,... in non-decreasing
order of d(v,v;), till it finds the closest neighbop; of
higher rank. Therw adds each such;, i < j, in Q(v)

2)

to be a complete graph (each node is a neighbor of the others)
to make sure connectivity since the points does not folloy an 3)
particular (say, uniform) distribution. Thus, GHS algbnit would

incur much larger work and messages. In that case, Randoin-NN
can still be a good choice over GHS, by sacrificing quality.

VIlI. DYNAMIC ALGORITHM FORNNT

The local nature of the NNT algorithms naturally allows for
simple dynamic versions, where the goal is to maintain a tree
of good quality, as nodes are added or deleted. As long as we
maintain an NNT, the cost remains within the bounds proven in
the previous theorems. The measure we focus on, in the dgnami
setting, is the expected number of rearrangements, whedeaigo

and sends a message«pto add it in L(v;).
Nodew finds the closest node in each of the 6 wedges. For
each of these closest nodesv sends aruPDATE message
to eachu € L(w). Nodew, upon receipt of this message,
does the following:
a) Letui,us,...be the neighbors af in non-decreasing
order ofd(u,u;), anduy be nnt(u).
b) If d(u,v) < d(u,ug) and rank(v) > rank(u), u
removesu, from Q(u) and itself from L(u,), Vj <
£ < k, wherev = u;. Furtheru connects ta, instead
of ug, and addw to Q(u) and itself toL(v).
c) If d(u,v) < d(u,uy) andrank(v) < rank(u), v adds
v to Q(u) and itself toL(v).

added or deleted. We define the tenmmber of rearrangements e If a nodewv is deleted:

to be the number of the edges to be deleted from the tree anq)
added to the tree, to maintain NNT, due to addition or datetio

of a node. 2)

v sends a message to eack Q(v). Nodew, after receiving
this message, removesfrom L(u).
v also sends a message to eack L(v). Nodew, upon

Fig. 13. Each wedge around nodeis 60°. vy, v2,v3 ... are the nodes in
one wedge in increasing order of distance fram

For the dynamic Random-NNT algorithm, each nadmain-
tains two listsQ(v) and L(v), whereQ(v) is the set of nodes in
closed ballB(v, d(v, nnt(v))) and L(v) = {ulv € Q(u)}. After a
nodev is added to the network, there can be some nadssch
thatrank(v) > rank(u) andd(u,v) < d(u,nnt(u)). In that case,
u must change its connection from previoust(u) to v, the new
nnt(u), and we say. is “affected” byv. The data structure@(v)

receipt of this message, remove$rom Q(u). If nnit(u) =

v, u checks the neighbors beginning from distancé(u, v)
onward until it finds the new nearest node of higher rank,
adds each such; in Q(v), and sends a message#pto
addwu in L(v;).

It is also easy to see that the list$.) and Q(.) of the nodes
are correctly updated after addition and deletion of a n&iece
u € L(v) iff v € Q(u), and the algorithm always updateév) and
Q(u) or L(u) andQ(v) in pairs, it is sufficient to show that(v)
andQ(v) are updated correctly when nodds added or deleted.
Whenv is added(Q(v) is created in Step 2 following its definition
straight-forwardly. ForL(v), notice that ifu € L(v), thenu €
L(w;) for somew;, by the triangle inequality. Thus, Step 3b-c
correctly updated.(v). Whenw is deleted, again, the consistency
of L(v) and Q(v) follows directly from their definitions. Thus,

and L(v) facilitate an efficient way to find the affected nodes. Leflgorithm Dynamic Random-NNT works correctly.
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Next we analyze the number of rearrangements needed fifisr connection. For any other node ¢ L(v), d(w,nnt(w)) <
each insertion and deletion. The complexity of a rearrargem d(w,v) and such nodev does not need to change its connecting
depends on the model of the network and communication. feor thdge. Thus, due to addition of the number of rearrangements
purpose of analysis, For any nodewe say that a charge afis is at most2|L(v)| = O(lnn) W.H.P. by Lemma 13. ]
placed on every node in closed ballB(v,d(v, nnt(v))). First,
we show the following lemma, which bounds the charge placed v/|||. C oNCLUDING REMARKS AND FURTHER WORK

on any node. The NNT digm i imple and local sch f
Lemma 13: For any sequence of node insertions and dele- . € paracigm Is a simple anclocal scneme for construct-

tions, the total charge on any nodes O(inn) WHP ing and maintaining low cost trees in an ad hoc network ggttin
Proof: Consider any pointu, and partition the2r angle It does not require any complex s_ynchronization, a_nd Isradju
aroundw into 6 cones, each of angle/3. Consider one such robust. We study various properties, such as quality, gegrel

cone. We prove that the total charge from points in this came 8Iynam|c complexity for different NNTs where the nodes are

u is O(Inn), with high probability. Order the points in the cone agnifor.mly distributed in two-dimensipnal plane, and it aisovery
1. v based on increasing distance from(Fig. 13). Node promising results. Among the questions for further work, thost

v; places a charge om only if rank(v;) > rank(v;), for all int.eresFing. ones are: 0] Analyze the NNT algorithms foritasloy
1 < j < i. The probability of occurring this event is at mast point dls_tnbutlon_s, (i) Quantify the trade(_)f'f betweerethmount
(the probability that a particular number is the largest ago of local information needed and the quality of the tree posdi)

identical random numbers ig/7). Thus, the total expected charge('") Obt_am a tlghtel_r _bound _for quallty_ of UPG'_NNT’ and (v)
on  from these points is at moi}?;ll(l/i) < Inn. In order Determme vyhether itis possible to d¢S|gn adlstrlbuted:eMEST
to bound the maximum charge on any node, we use a Vari%gorlthm with better work complexny than GHS, and obtain a
of Chernoff bound (Lemma 14) that holds in the presence wer bound on work complexity.
dependencies among the variables.

Lemma 14: ( [30]) Let Xy, X,,...,X; € {0,1} be random ACKNOWLEDGMENT

variables such that for all, and for anyS C {Xi,..., X}, We are grateful to the referees for their careful readinghef t
PriXit1 = HAjesX; = 1] < PriXipn = 51]- Then, for paper and detailed comments which helped greatly in impgpvi
any § > 0, Pr[>°; X; > p(l +9)] < (W)M’ where the paper.
p=22 BIX].
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