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Abstract— While there are distributed algorithms for the Min-
imum Spanning Tree (MST) problem, these algorithms require
relatively large number of messages and time, and are fairly
involved, making them impractical for resource-constrained net-
works such as wireless sensor networks. In such networks,
a sensor has very limited power, and any algorithm needs
to be simple, local, and energy efficient. Motivated by these
considerations, we design and analyze a class of simple and
local distributed algorithms called Nearest Neighbor Tree(NNT)
algorithms for energy-efficient construction of an approximate
MST in wireless networks. Assuming that the nodes are uniformly
distributed, we show provable bounds on both thequality of the
spanning tree produced and theenergy needed to construct them.
We show that while NNT produces a close approximation to the
MST, it consumes asymptotically less energy than the classical
message-optimal distributed MST algorithm due to Gallager,
Humblet, and Spira. Further, the NNTs can be maintained
dynamically with polylogarithmic rearrangements under node
insertions/deletions. We also perform extensive simulations, which
show that the bounds are much better in practice. Our results,
to the best of our knowledge, demonstrate the first tradeoff
between the quality of approximation and the energy required
for building spanning trees on wireless networks, and motivate
similar considerations for other important problems.

Index Terms— Distributed Algorithms, Randomized Approx-
imation Algorithms, Energy-Efficient Algorithms, Minimum
Spanning Tree, Wireless Networks, Sensor Network.

I. OVERVIEW

A. Introduction and Motivation

T HE Minimum Spanning Tree (MST) problem is an impor-
tant and commonly occurring primitive in the design and

operation of data and communication networks. For instance, in
ad hoc sensor networks, MST is the optimal routing tree for
data aggregation [2]. Traditionally, the efficiency of distributed
algorithms is measured by the running time and the number
of messages exchanged among the computing nodes, and a lot
of research has gone into the design of algorithms that are
optimal with respect to such criteria. The classical algorithm
due to Gallager, Humblet, and Spira (henceforth referred toas
the GHS algorithm) [1] usesΘ(n lnn + |E|) messages, and
is essentially optimal with respect to the message complexity.
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There are distributed algorithms that find the MST [3], [4] and
are essentially optimal in terms of time complexity: they run
in O(Diam(G) + n1/2polylog(n)) time, and there are (almost)
matching lower bounds. However, these time-optimal algorithms
involve a lot of message transfers (much more than GHS). Even
for a wireless network modeled by a unit disk graph or even
a ring, any distributed algorithm to construct an MST needs
Ω(n ln n) messages [5], [6]. Despite their theoretical optimality,
these algorithms are fairly involved, require synchronization and
a lot of book keeping; such algorithms are impractical for adhoc
and sensor networks [5]. For example, consider sensor networks
— an ad hoc network formed by large numbers of small, battery-
powered, wireless sensors. In many applications, the sensors are
typically “sprinkled” liberally in the region of interest and the
network is formed in an ad hoc fashion by local self-configuration.
Since each sensor usually knows only its neighbors, the network
management and communication has to be done in alocal and
distributed fashion. Additionally, because of battery limitations,
energy is a very crucial resource. A distributed algorithm which
exchanges a large number of messages can consume a relatively
large amount of energy (and also time) is not suitable in an
energy-constrained sensor network. This is especially true in a
dynamic setting – when the network needs to be reconfigured
(e.g., due to mobility or failures) frequently and quickly.Re-
configuration is also necessary to evenly distribute the energy
consumption among all nodes and thus, to increase the network
lifetime [7].

Thus it is necessary to develop simple, local, distributed al-
gorithms which are energy-efficient, and preferably also time-
efficient, even at the cost of beingsub-optimal (see e.g., [5],
[8], [9] for such algorithms in the context of wireless sensor
networks — discussed more below). This adds a new dimension
to the design of distributed algorithms for such networks. Thus
we can potentiallytradeoff optimality of the solution to work
done by the algorithm. In a sensor network, the total energy re-
quired (“energy complexity”) in a distributed algorithm typically
depends on the time needed, the number of messages exchanged,
and the radiation energy needed to transmit the messages over a
certain distance [9], [10]. The radiation energy needed to transmit
a message is typically proportional to somework function f

(typically square or some small power) of the distance between
the sender and the receiver [7], [11]. Thus it becomes important to
measure efficiency of a distributed algorithm in terms of energy,
besides the number of messages.

While there has been a lot of recent work on local algorithms
for construction oflow-weightconnected subgraphs in wireless ad
hoc networks (motivated by topology control and energy-efficient
routing) [12], [13], to the best of our knowledge, there has been
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little work on localized construction of exact or approximate
MSTs, especially in the context of wireless ad hoc networks.
A structure is low weight if its total edge length is within
a small factor of the total edge length of the MST, but the
structure may have cycles. It is easy to show that MST cannot be
constructed in a purely localized manner, i.e., each node cannot
determine which edge is in the defined structure by using only
the information of the nodes within some constant hops. For
example, Li, Hou, and Shia [8] proposed a method to build
what they call alocal minimum spanning tree (LMST), which
is guaranteed to be connected and has bounded degree, but isnot
a low-weight structure. In fact, X. Li et al. [5] demonstratethe
difficulty in constructing an MST and gives a localized algorithm
to construct a low-weight connected subgraph (that can have
cycles) for topology control in wireless ad hoc networks.

In this paper, we study a class ofsimple, local, distributed,
approximationalgorithms called theNearest Neighbor Tree (NNT)
algorithmsthat are provably good: they build slightly sub-optimal
trees with low energy complexity and are easy to maintain
dynamically. A fundamental step in all existing algorithmsfor
the MST problem iscycle detection: given an edge, one needs to
determine whether the edge would form a cycle with the edges
already chosen. This deceptively simple operation leads toa big
overhead: a significant amount of book keeping and message
passing needs to be done in order to maintain the components,
and answer such queries. The NNT algorithms bypass such a
step completely by a very simple idea: each node chooses a
unique rank, a quantity from a totally ordered set, and a node
connects to thenearestnode of higher rank. Observe that this
immediately precludes cycles, and the only information that needs
to be exchanged is the rank; also, this information does not need
to be updated continuously over the course of the algorithm.

The NNT scheme is closely related to the approximation
algorithm for the traveling salesman problem(coincidentally
called Nearest Neighbor algorithm) analyzed in a classic paper by
Rosenkrantz, Lewis, and Stearns [14]. Imase and Waxman [15]
also used a scheme based on [14], which can also be considered
a variant of the NNT scheme, to show that it can maintain
an O(ln n)-approximate Steiner tree dynamically assuming only
node additions, but not deletions. These results can easilybe used
to show that NNT withanyranking of the nodes gives anO(ln n)-
approximation to MST on a metric graph, i.e., a complete graph
with edge weights satisfying the triangle inequality. In contrast,
in this paper, we consider a different graph model (more suitable
to model wireless ad hoc networks): a random geometric graph
where nodes are distributed uniformly at random in a unit square
and show an expected approximation ratio ofO(1).

B. MST and Work Complexity

Formally, our focus is the following geometric weighted mini-
mum spanning tree problem: given a setN of points (nodes)1 in
a plane, find a treeT spanningN such that

∑

(u,v)∈T dα(u, v)

is minimized whered(u, v) is the length of edge(u, v), the
Euclidean distance betweenu and v, and α is a small positive
number. The motivation for this objective function comes from
the energy requirements in a wireless communication paradigm:
to transmit a signal over a distancer, the requiredradiation

1E.g., the nodes may represent sensors. We assume that these nodes have
distinct identifiers.

energy is proportional torα, where typicallyα is 2 and can
range up to 4 in environments with multiple-path interferences
or local noise [7], [11]. In this paper, we mainly focus onα = 2.
Thus, given a spanning treeT , thecost (or quality)of a spanning
tree T is defined byQα(T ) =

∑

e∈T |e|α, wheree denotes an
edge ofT , and our goal is to find a tree that minimizes the cost
for a given α. Notice that whenα = 1, this problem becomes
the traditional MST problem. It can easily be shown (e.g., using
Kruskal’s algorithmic construction [16]) that the MST which
minimizes

∑

(u,v)∈T d(u, v) also minimizes
∑

(u,v)∈T dα(u, v)

for anyα > 0. In the rest of the paper, we use the termscostand
quality interchangeably.

Two important applications of an MST in wireless networks
are broadcasting and data aggregation. An MST can be used as
broadcast tree to minimize energy consumption since it minimizes
∑

(u,v)∈T dα(u, v). It was shown in [17]–[19] that broadcasting
based on MST consumes energy within a constant factor of the
optimum. In data aggregation, the idea is to combine the data
coming from different sources enroute to eliminate redundancy
and minimize the number of transmissions and thus saving energy.
Some common aggregate functions are minimum, maximum,
average, etc. [2]. One popular paradigm for computing aggregates
is to construct a tree rooted at the sink where each node forwards
its (locally)aggregateddata collected from its subtree to its parent
[20]. For such cases, MST is the optimal data aggregation tree.

Since energy is an important constraint in the setting of sensor
networks, a lot of work has focused on constructing low energy
subgraphs [6], [9]. However, it is counterproductive to usea lot of
resources (e.g., time and energy) in order to compute a low cost
subgraph, e.g., an MST; the energyusedby the algorithm is also
an important measure. Motivated by this consideration, in addition
to the traditional time and message complexity of distributed
algorithms, we consider a complexity term calledwork complexity

defined asw =
M
∑

i=1
rα
i where ri is the transmission distance

for messagei and M is the number of messages exchanged by
the nodes to run the algorithm/protocol (this is implicit inmany
papers, see e.g., the survey of [6]). Thus total radiation energy is
directly proportional to the work done by the algorithm.

C. Network Model

We consider a wireless network composed ofn nodes dis-
tributed uniformly at random in a unit square (a popular prob-
abilistic model for wireless ad hoc networks, e.g., see [21]). We
assume that the nodes have distinct identifiers, each node has
an omni-directional antenna, and a single transmission canbe
received byany node within the transmission radius (calledlocal
broadcasting). (We assume a directional antenna only for dynamic
algorithm given in Section VII.) We utilize this broadcasting
property to reduce the communications needed in our algorithm.
Each node can adjust its transmission radius (power level) to
any value up to a given maximum level. When the maximum
transmission power of the nodes is large enough so that any two
nodes can communicate directly with each other, we call it a
complete graph model. Otherwise, we model it as aunit disk
graph (UDG), where two nodesu andv communicate directly if
and only ifd(u, v) ≤ R for some givenR; that is, there is an edge
betweenu andv if and only if d(u, v) ≤ R. In this paper, we also
refer the UDG model asmultihop setting. This model is a popular
graph model for multihop wireless networks [6]. When the nodes



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

TABLE I

PERFORMANCE OFGHSAND NNT ALGORITHMS

Expected quality Expected quality Expected work Expected Time
E[Qα], α = 1 E[Qα], α = 2 E[W ], α = 2 msgs,E[M ] T

Co-NNT O(
√

n) O(1) O(1) O(n) O(ln3 n) WHP
Rnd-NNT O(

√
n) O(ln n) O(ln n) O(n) O(ln3 n) WHP

UDG-NNT O(
√

n ·
√

lnn) O(ln n) O(ln n) O(n) O(
√

n · ln3/2 n) WHP
GHS Θ(

√
n) Θ(1) Ω(ln2 n) Ω(n ln n) O(n ln n)

are uniformly distributed in a unit square, to have a connected
graph with high probability, it is necessary and sufficient that R

be Θ

(

√

ln n
n

)

[21]. Thus, we assume thatR = Θ

(

√

ln n
n

)

.

D. Our Contributions and Results

Our main contribution is a detailed theoretical and experimental
study of the NNT algorithms in the context of wireless ad hoc
and sensor networks for the above network models. First we
present NNT algorithms for the complete graph model where
the maximum transmission range of the nodes are large enough
so that any pair of nodes can communicate directly with each
other (cf. Section III). Depending on how the ranks are chosen,
we study two NNT algorithms: Random-NNT (ranks are chosen
randomly) and Coordinate-NNT (Co-NNT in short; ranks are
based on coordinates of the nodes)2. For multihop wireless
networks modeled by a unit disk graph (UDG), we present another
NNT algorithm, which we refer to as UDG-NNT. Given the
simple and local nature of this construction, it is quite surprising
to have trees of reasonable properties. We show that the NNTs
have some properties that can make them attractive for the adhoc
networks. Our main results are: (i) The tree produced by suchan
algorithm, called the NNT, has low cost, (ii) The NNT paradigm
can be used to design asimple dynamic algorithmfor maintaining
a low cost spanning tree, and (iii) Thetime, messageand work
complexities of the NNT algorithms are close to the optimal in
several settings.

Our performance analysis is with respect to the following
metrics: thequality of the spanning tree producedby the NNT
algorithm, and themessage, time, and work needed by the
algorithm to construct the tree. The results are summarizedin
Table I. Quality, work, and the number of messages are expected
(average) values for all of the algorithms (including GHS),and the
time complexity is the worst-case bound for all algorithms.While
the NNTs are a close approximation to MST, NNT algorithms
consume much less energy compared to the message-optimal
GHS algorithm. The radiation energy to transmit messages is
directly proportional to the work complexity. Some energy is
consumed to process the messages by the electronic devices
at the nodes. Energy consumption in electronic devices also
depends on running time – longer the running time, more the
energy consumption. Thus, the number of messages, work, and
time together determines the total energy (energy consumption in
transceiver electronics plus radiation energy) consumed in running

2Both are well motivated: when nodes don’t know their geometric coordi-
nates, Random-NNT is natural (in contrast most previous work (e.g., [5], [6]
assume that nodes know their coordinates or their relative locations) but if
nodes know their coordinate location (say, using GPS), thenCo-NNT is more
suitable.

an algorithm/protocol. The NNT algorithms perform significantly
better in all three: the number of messages, work, and time.

Although most of our analysis are generalized to anyα, we
mainly focus onα = 2 for the purpose of discussion. For quality,
the caseα = 1 is also interesting by the fact that in this case,
the problem becomes the traditional MST problem. Thus, we
emphasize quality forα = 1 and 2, and the work complexity
for α = 2.
Quality bounds: We show that with respect to the expected
quality (or cost) of the tree, Random-NNT gives anO(1) and
O(ln n) approximation to MST for the case ofα = 1 and
α = 2, respectively; and UDG-NNT gives anO(

√
lnn) and

O(ln n) approximation, respectively. In contrast, Co-NNT gives
an O(1) approximation for bothα = 1 and α = 2. Thus, NNT
algorithms give good bounds on the cost of the trees, with Co-
NNT being better than Random-NNT — this shows that at a cost
of increased information (i.e., about the coordinates), wecan get
better approximations.
Message, time, and work complexity:NNT algorithms have
significantly lower message, time, and work complexity compared
to the message-optimal GHS algorithm which computes the
exact MST. We show that the average work complexities of
Co-NNT, Random-NNT, and UDG-NNT areO(1), O(ln n), and
O(ln n), respectively, forα = 2, whereas the work complexity of
GHS algorithm isΩ(ln2 n). For all of the NNT algorithms, the
expected message complexity isO(n), which is essentially the
best possible, while GHS takes expectedΩ(n ln n) messages. The
time complexity of both Random-NNT and Co-NNT isO(ln3 n)

with high probability (WHP3), while the running time of GHS
is O(n ln n). The running time of UDG-NNT isO(

√
n · ln3/2 n)

WHP, which is time-optimal up to a polylogarithmic factor (see
Section IV).
Simulation results: We also performed extensive simulations
of our algorithms. We tested our algorithms on both uniformly
random distributions of points, and on realistic distributions of
points in an urban setting obtained from TRANSIMS [22].
Experimental results show that the work and number of messages
for NNT algorithms are significantly smaller than that for an
optimal MST algorithm, while the quality of the NNT trees are
very close to MST. For example, for the TRANSIMS data, we
found that the cost of the trees found by the NNT algorithms are
within a factor of 2 of the MST, but there is more than a ten-fold
saving on the work and about a five-fold saving on the number
of messages.
Maintaining a low cost tree dynamically: We show that the
degree of a node in NNT isO(ln n) with high probability. This
property of low node degree can be used to design a simple

3i.e., with probability at least1 − 1/nΩ(1).
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dynamic algorithm for maintaining a Random-NNT. We show
that the expected number ofrearrangements, i.e., the number of
nodes whose outgoing edge must change, as a result of a node
insertion or deletion isO(ln n). This dynamic algorithm does not
require any complicated data structures or severe constraints on
the sensors. The dynamic aspect of the NNT scheme makes them
very useful in a sensor network setting, where it is very common
for nodes to fail, or become alive asynchronously.

E. Other Related Work

X. Li et al. [5] give a local algorithm to construct a low-
weight subgraph that has many desirable properties: connectivity
(but may have cycles), sparseness, spanner, bounded degree, and
planarity. They assume that the nodes need to know coordinate or
at least relative positions, whereas for Random-NNT, no coordi-
nate information is needed. Their algorithm takesO(n) messages,
which is asymptotically optimal, in the worst case for arbitrary
node distribution. However, their low-weight structure isnot a tree
and can not be used for applications where a tree is needed, e.g.,
data aggregation. Moreover, their structure is low-weightonly if
the weight of an edge is interpreted as the distance between two
nodes (and not asαth power of the distance, for someα > 1).
Quality of this structure isO(nα−1) in the worst case. N. Li
et al. [8] devised a localized algorithm to build similar structure
called local minimum spanning tree (LMST). They use only one
hop neighbor information to build LMST. However LMST is not
a low-weight structure even forα = 1 [5]. Both [5] and [8]
assume arbitrary node distribution. Kempe et al. [23] presented an
algorithm to construct an approximate Euclidean MST (assuming
uniform node distribution) using spatial gossip mechanismwhere
they use a ranking of the nodes, similar to our Random-NNT.
This algorithm achieves an expectedO(ln n) approximation to the
MST for α = 1, where our NNTs gives an expectedO(1) approx-
imation. They did not show any approximation factor forα > 1

in which case approximation ratio can be significantly larger
thanO(ln n). The expected message complexity isO(nf(n) ln n),
wheref(n) is some poly-logarithmic function, which can even be
larger than the number of messages in GHS algorithm.

II. A L OCAL DISTRIBUTED ALGORITHM FOR CONSTRUCTION

OF APPROXIMATE MST

In this section, we describe the NNT scheme to construct a
low cost spanning tree, where each node chooses a rank, and
connects to the closest node of higher rank. An abstract form
of the scheme is given in Algorithm 1. For a nodev, let nnt(v)

denote the node thatv connects to, if it exists. Ifv has the highest
rank, nnt(v) is not defined. Ifnnt(v) is defined, it must be the
case thatrank(nnt(v)) > rank(v) and rank(v) > rank(w), for
each nodew that is closer tov than nnt(v). If we think of the
edges(v, nnt(v)) as being directed fromv to nnt(v), it is clear
that each edge is directed from a low rank node to a higher rank
node — this immediately rules out cycles, and gives a spanning
tree. Thus, the NNT algorithm is extremely simple, local, requires
no complex synchronization among the nodes, and is naturally
robust.

For a given choice of ranks, letNE(v) denotes the size of
the neighborhood thatv needs to look for in order to find the
connecting edge.NE(v) is a measure of the locality, and has a
bearing on the time and message complexity. For arbitrary choices

Algorithm 1 Basic NNT Scheme
All nodes have distinctids from a totally ordered set.
Output: A spanning tree.
Every nodev executes the following steps independently:

1) Choose a unique rankrank(v).
2) Connect to the nearest nodew such that rank(w) >

rank(v), i.e., add the edge(v, w) to the NNT.

We consider the following two rankings of the nodes:
Random-NNT:

1) v choosesp(v), a uniform random number∈ [0, 1].
2) rank(w) > rank(v) if p(w) > p(v) or if p(w) = p(v) and

id(w) > id(v).

Coordinate-NNT:
1) Assume thatV is a set of points in a plane.rank(v) =

(x(v), y(v)), i.e., the coordinates ofv.
2) For two nodesv andw, rank(w) > rank(v) if x(w) > x(v)

or if x(w) = x(v) andy(w) > y(v).

of ranks, the average neighborhood size could beΩ(n); but it
decreases significantly for Random-NNT.

Lemma 1: In the case of a random-NNT, for any nodev, the
probability thatv connects to theith nearest neighbor (NN) is

1
i(i+1)

andE[NE(v)] = Θ(ln n).
Proof: Let x0 be the random number generated byv and

xi the random number generated by theith NN of v. Then, the
probability thatv connects to theith NN is equal to the probability
that xi and x0 are the largest and second largest, respectively,
among(i + 1) random numbers:x0, x1, . . . , xi. This probability

is 1
i(i+1)

. Now, E[NE(v)] =
n−1
∑

i=1
i · 1

i(i+1)
= Hn − 1 = Θ(lnn).

III. D ISTRIBUTED IMPLEMENTATION OF THE NNT SCHEME

In these section, we describe an algorithm to construct a span-
ning tree based on the NNT scheme. In this implementation, We
assume that each nodecan communicate directly with all other
nodes by suitably increasing its transmission radius. However, it
turns out that most of the nodes need to communicate with onlya
small number of nearby neighbors, but some nodes may need to
communicate with distant nodes. For the case where the maximum
power level of the nodes is not large enough to reach another node
at that distance, we provide an alternative implementationof the
NNT scheme in Section IV.

A. The NNT Algorithm

The algorithm consists of exchanging three types of messages:
request, available, and connect among the nodes. Each node
begins with broadcasting arequestfor connection message. Each
node broadcastsrequestmessages successivelyin phasesto the
distances 2√

n
, 4√

n
, 8√

n
, . . . , until it finds a node with higher rank.

The highest ranked node among all the nodes, can never find
a node with higher rank. This node stops transmittingrequest
message when it reaches the maximum possible distance between
any two nodes. Considering a unit square, the maximum distance
between any two nodes is

√
2. A Requestmessage carries rank

information (coordinates or random number). The other nodes
who can hear the message send back anavailable message if
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their rank is higher. The sender of therequestmessage selects the
nearest node from the senders ofavailablemessages if more than
one available message is received, and thus it finds the nearest
higher ranked node.

We assume that these phases are synchronized; i.e., all nodes
begin Phasei, for eachi, simultaneously. The phases can easily
be synchronized by making all nodes wait forTi time in Phase
i, where Ti is the time required to complete exchanging the
messages of Phasei. In the proof of Theorem 6 and 10,
for Random-NNT and Co-NNT, respectively, we show howTi

can be calculated. If there is a node of higher rank within the
transmission radius of Phasei, the reply from that node is received
by the end of the Phasei.

When coordinates are not available (e.g., for Random-NNT),
senders include the transmission power levels in theavailable
messages and the recipient determine the relative distances of the
senders from these power levels and the signal-strengths ofthe
received messages. Finally, the node sends aconnectmessage to
the nearest higher ranked node, creating an edge between these
two nodes. The details are given in Algorithm 2.

Algorithm 2 Distributed NNT algorithm for wireless networks
/* The algorithm is executed by each nodeu indepen-
dently and simultaneously. Messages are written in the format
〈msg name, sender, [recipient], [other info]〉. When a message is
broadcasted, the recipient is not specified.ℓ is the maximum
possible distance between any two nodes.*/
i← 1

Repeat
Set transmission radius (power level)ri ← 2i

√
n

If ri > ℓ, setri ← ℓ

Broadcast〈request, u, rankinfo〉 // rankinfo is the random
// numberp(u) & ID for Random-NNT
// and coordinates(xu, yu) for Co-NNT

i← i + 1

until (receipt of anavailable message) or (ri = ℓ)
For all v, upon receipt of〈request, v, rankinfo〉 do

if rank(v) > rank(u),
set transmission radius todistance(u, v)

send〈available, u, v〉 to v

Upon receipt of “available” message(s):
Select the nearest nodev from the senders
Send〈connect, u, v〉 to v

B. Analysis of the NNT Algorithms

We measure the quality of the tree produced by NNT,Qα(T ) =
∑

(u,v)∈T

dα(u, v), the work complexityw =
M
∑

i=1
rα
i , the number

of messagesM , and the time complexity of NNT algorithms.
Although our analysis generalizes to anyα, for clarity we consider
α = 1 and2.

It is known thatE[Q1(MST )] is asymptoticallyΘ(
√

n) and
E[Q2(MST )] is asymptoticallyΘ(1) [24], [25]. We show that
for Co-NNT, E[Q1] = O(

√
n) and E[Q2] = O(1) giving an

approximation factor ofO(1) for both of them. For Random-NNT,
E[Q1] = O(

√
n) and E[Q2] = O(ln n) giving approximation

factors of O(1) and O(ln n), respectively. The expected work
complexities for Random-NNT and Co-NNT (forα = 2) are

O(ln n) and O(1), respectively. For both NNT algorithms, the
expected number of messages isO(n) and the time complexity is
O(ln3 n) WHP. The following lemmas and theorems prove these
claims. We prove the bounds on work and message complexity
assuming that each message is transmitted successfully in one
attempt. Then we provide a protocol for scheduling messagesand
resolving conflicts, and show that with this protocol, the bounds
can only be increased by a constant factor.

1) Analysis of Random-NNT:
Theorem 2: E[Qα(Random-NNT)] is O(ln n) for α = 2,

O(n1−α/2) for α < 2, andO(1) for α > 2.
Proof: Consider an arbitrary nodeu, and concentric circles

centered atu with radiusri = 2i

√
n

for i = 1, 2, . . . , m. Consider-
ing a unit square, the maximum distance between any two nodes
is
√

2. Thus, rm−1 <
√

2 ≤ rm, i.e., the maximum number of
circlesm < 1

2 lg n + 3
2 . Let Ci be the set of nodes in the circle

with radiusri, Ri = Ci−Ci−1 for i ≥ 2, andRi = Ci for i = 1.
For a nodev ∈ Ri, distanced(u, v) ≤ ri.

Let Ai be the event thatu connects to a nodev ∈ Ri. By
Lemma 1, the probability thatu connects to any node betweenjth
nearest neighbor (NN) and(k−1)st NN is

∑k−1
i=j

1
i(i+1) = 1

j − 1
k ,

wherej ≤ k. For i ≥ 2, |Ci−1| ≥ 1 sinceCi−1 contains at least
one node, which isu. Probability that a particular node, other
than u, is in Ci−1 is p ≥ 1

4πr2
i−1 = 22iπ

16n (for a node at the
corner or next to the border, probabilityp can be as low as14 of
the area of the circle with radiusri−1). Thus for i ≥ 2,

Pr{Ai} =
n
∑

j=1

n
∑

k=j

(

1

j
− 1

k

)

Pr{|Ci−1| = j ∧ |Ci| = k}

≤
n
∑

j=1

1

j
Pr{|Ci−1| = j}

=

n
∑

j=1

1

j

(

n− 1

j − 1

)

pj−1(1− p)n−j

=
1

np
{1− (1− p)n}

≤ 1

np
≤ 16

22iπ
.

E[dα(u, v)] ≤ Pr{A1}rα
1 +

m
∑

i=2

Pr{Ai}rα
i

≤ rα
1 +

m
∑

i=2

16

22iπ
rα

i

= n−α/2

{

2α +
16

π

m
∑

i=2

2(α−2)i

}

.

By linearity of expectation forn nodes,

E[Qα] = nE[dα(u, v)].

Whenα = 2,

E[Qα] ≤ 8

π
lg n +

24

π
+ 4 = O(lg n) = O(ln n).

Whenα 6= 2,

E[Qα] ≤
{

2α − 22+2α

π(2α − 4)

}

n1−α/2 +
21+5α/2

π(2α − 4)
.

For α < 2, E[Qα] = O(n1−α/2); for α > 2, E[Qα] = O(1).
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Theorem 3: The expected work complexity of Random-NNT
algorithmE[W ] is O(ln n) for α = 2, O(n1−α/2) for α < 2, and
O(1) for α > 2.

Proof: Again consider an arbitrary nodeu. First transmission

radius for request message isr1 = 2
√

1
n and for the ith

transmission,ri = 2ri−1 = 2i
√

1
n . Then, the maximum number

of transmissions,m < 1
2 lg n + 3

2 . Let Ci be the set of nodes in
the circle centered atu with radius ri and Ri = Ci − Ci−1,
the set of nodes in theith ring. Let A(v, u, i) be the event
that v replies tou in phasei. For i ≥ 2, the eventA(v, u, i)
occurs iff v ∈ Ri and rank(v) > rank(u) > rank(s) for all
s ∈ Ci−1. The probability that a particular node is inCi−1 is
p ≥ π22i

16n , and Pr{v ∈ Ri} ≤ 3p. Letting |Ci−1| = k, we have
Pr{∀s∈Ci−1

[rank(v) > rank(u) > rank(s)] |v ∈ Ri} = 1
k(k+1)

.
Then for i ≥ 2,

Pr{A(v, u, i)} ≤ 3p

n−1
∑

k=1

1

k(k + 1)

(

n− 2

k − 1

)

pk−1(1− p)n−k−1

≤ 3

n(n− 1)p
≤ 48

π(n− 1)22i
.

Pr{A(v, u, 1)} = Pr{v ∈ C1, rank(v) > rank(u)}
≤ 4π

n
· 1
2

=
2π

n
.

Potentially, there aren− 1 nodes that can reply tou. Thus, by
linearity of expectation, the expected work done by the all replies
to u is less than or equal to

(n− 1)

{

2π

n
rα
1 +

m
∑

i=2

48

π(n− 1)22i
rα

i

}

≤ n−α/2

{

2π2α +
48

π

m
∑

i=2

2i(α−2)

}

(1)

Now we calculate the work done by therequestand connect
messages. LetTi denotes the event thatu needsith transmission.
Pr{T1} = 1. For i ≥ 2, u needsith transmission if and only if
rank of u is the largest among all nodes inCi−1. Thus,

Pr{Ti} =

n
∑

k=1

1

k

(

n− 1

k − 1

)

pk−1(1− p)n−k ≤ 16

22iπ

In each phase, there is 1requestmessage, and at most 1connect
message byu. Thus expected work done byu for requestand
connectmessages is

m
∑

i=1

Pr{Ti}2rα
i ≤ n−α/2

{

2× 2α +
32

π

m
∑

i=2

2i(α−2)

}

(2)

From Eq. 1 and 2, the expected total work for nodeu,

E[Wu] ≤ n−α/2

{

2(π + 1)2α +
80

π

m
∑

i=2

2i(α−2)

}

Expected work by the algorithm,E[W ] = nE[Wu]. Thus,

E[W ] ≤ n1−α/2

{

2(π + 1)2α +
80

π

m
∑

i=2

2i(α−2)

}

(3)

This gives the desired result stated in the theorem.
Corollary 4: For i ≥ 2, the expected number of nodes that

needsith transmission isn Pr{Ti} ≤ 16n
4iπ

, and the expected
number of required transmissions by a node to find a higher

ranked node is
m
∑

i=1
Pr{Ti} ≤ 1 + 4

3π (1− 1
2n ) ≤ 1 + 4

3π < 1.425.

Theorem 5: The expected message complexity of Random-
NNT algorithm isO(n).

Proof: If we consider work needed for every message is 1,
i.e., whenα = 0, the total work is simply the number of messages,
M , exchanged in the algorithm. Thus, from Equation 3, putting
α = 0 in the right hand side, we get

E[M ] ≤ n

{

2(π + 1) +
80

π

m
∑

i=2

2−2i

}

= O(n).

Scheduling Messages and Resolving Collisions.Consider an
arbitrary nodeu. Let ki be the number of messages (including
the messages to be transmitted byu) that can potentially collide
with u’s messages in Phasei of the algorithm. Note thatu may
have more than one among theseki messages. In the proof of
the next theorem, we show howu can determine an upper bound
on ki. Let Fi be a time frame containing at leastki time slots.
Each phasei of the algorithm containsO(ln n) such time frames
Fi. In the first time frame, for each message,u chooses a slot
uniformly at random. If a message is in collision,u again picks
a random slot in the next frame for this message, and so on.

Now, assumeki ≥ 2. If ki ≤ 1, there is no collision. In an
attempt, a particular message does not collide with probability
at least(1− 1/ki)

ki−1 ≥ 1
e , using the known inequality(1 +

t/k)k ≥ (1− t2/k)et with t = −1. Thus, the expected number of
retransmissions required for a message is at moste, meaning the
bounds on the expected message and work complexity increase
by a factor of at moste, a constant. Further, following Corollary
7 in [26], with high probability (WHP), we have allki messages
successfully transmitted withinO(ln n) time frames, i.e., WHP,
the time to complete Phasei is given by,

Ti = O(ki ln n) (4)

Theorem 6: The time complexity of Random-NNT algorithm
is O(ln3 n) with high probability.

Proof: The radius of the first transmission by each node
is r1 = 2√

n
. The expected number of nodes within this radius,

E[|C1|] ≤ πr2
1n = 4π. Using the following standard Chernoff

bound [27],

Pr{x ≥ (1 + δ)µ} <

(

eδ

(1 + δ)1+δ

)µ

with x = |C1|, µ = E[|C1|] andδ = c ln n
µ − 1, we can show that

with high probability,|C1| < c lnn for sufficiently large constant
c, and each node sends at mostc ln n available messages. Thus,
the total number of message by the nodes within the radiusr1 is
k1 = (c ln n)2 = O(ln2 n) WHP. By Equation 4, time to complete
the first phase is at mostT1 = O(ln3 n) W.H.P.

Now consider anith transmission phase to distanceri =
2i

√
n

. After the (i − 1)st phase, the distance between any two
unconnected nodes is at leastri−1; otherwise, one node has lower
rank than the other and would connect to that in some previous
phase. Thus, the maximum number of unconnected nodes in any
circle with radiusri is O(1) (this is the maximum number of
nodes that can be packed in a circle with radius2d, for any d,
such that distance between any two nodes is at leastd. Notice
that there can be at most one node in any square with sided/2).
Next we show that each such unconnected node receives at most
O(ln n) available messages W.H.P.

Consider an arbitrary nodeu. Let Ci = y. Assume that
y ≥ 60 ln n. (If y < 60 lnn, then u receivesO(ln n) available
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messages with probability 1.) Letx denotes the number of nodes
in Ci−1. For any nodev, Pr{v ∈ Ci−1|v ∈ Ci} ≥ 1

4 (inequality,
instead of equality, comes from the fact thatu can be close to
the borders). Thus,E[x] ≥ y/4 ≥ 15 ln n. Since the position of
the nodes are independent and identically distributed, using the
standard Chernoff bound withδ = 1

2 andµ = E[x], we have

Pr{x < y/8} ≤ Pr{x < (1− δ)µ} <

(

e−δ

(1− δ)1−δ

)µ

≤ 1

n2.3

Let z = |Ri| = y − x. ThenPr{z ≥ 7y/8} = Pr{x < y/8} <
1

n2.3 . Sinceu is at theith transmission phase, it is known thatu
has the largest rank among thex nodes inCi−1. Now, u receives
exactly t available messages iff exactlyt out of z nodes inRi
have higher ranks thanu. The probability of such event is

(

z

t

)

t!(y − t− 1)!

y!
≤
(

z

y

)t

Let A be the event thatu receives more than20 ln n available
messages, andB be the event thatz < 7y/8. Then,

Pr{A} ≤
z
∑

t=⌈20 ln n⌉

(

z

y

)t

≤ y

y − z

(

z

y

)20 ln n

Pr{A|B} <
8

n2.6

Pr{A} ≤ Pr{A|B}+ Pr{B̄} <
1

n2.3
+

8

n2.6

Excluding the first phase, there are at most1
2 (lg n + 1) phases.

By the union bound (i.e., Boole’s inequality [27]), the probability
that some of then nodes receives more than20 ln n replies in
some phase is less than

1

2
(lg n + 1)n

(

1

n2.3
+

8

n2.6

)

= O
(

1/n1.2
)

Thus, to apply Equation 4, we haveki = O(ln n) and Ti =

O(ln2 n) WHP. Therefore, total time taken by all12 (lg n + 1)

phases isO(ln3 n).
We note that only a very few nodes may need to go far to

find a node of higher rank. Most of the nodes are connected to
the closer neighbors. From Corollary 4, we see that the number
of nodes that needith transmission is decreasing exponentially
with i. The average number of transmissions by a node is at most
1.425. Thus, almost all of the nodes get connected after the first
few transmissions. The radii for the first few transmissionsare
2√
n

, 4√
n

, etc., which are very small and decreasing withn. This
shows that the proposed algorithm is highly scalable and local in
nature.

2) Analysis of Coordinate NNT:Now, we show analogous
theorems for Co-NNT.

Theorem 7: The expected quality of Co-NNT forα = 1 and
2 areO (

√
n) andO (1), respectively.

Proof: Consider an arbitrary nodeu and a vertical line
throughu (the thick leftmost vertical line shown in Fig. 1). This
vertical line divides the given unit square into two rectangles.
The left rectangle is not shown in the figure. Nodeu connects to
the nearest node in the right rectangle, which is shown in Fig. 1.
For the purpose of analysis, let us subdivide this right rectangle
into square cells, where each side of each cell isb = 1√

n
. If

necessary, include empty space from the right hand side of the
unit square to make the cells in the rightmost column squares
with sidesb = 1√

n
.

. . .

x, 1

x, 2

x, y
x, y

u
k,1

k,3

k,y k+1, y

k+1, 2

k+2, 1

k+2, 2

k+2, y

  k, 3
  k, 1

 k, y

k+
1,1

k+
1,2

 ...

k+
1,y

k+
2,1

k+
2,2

  k+1, 1

u

Fig. 1. The leftmost thick vertical line through nodeu divides the unit
square into two rectangles. The right rectangle, which is shown in the figure,
is subdivided into square cells with sidesb = 1√

n
, by adding empty space

to the rightmost column if necessary. Herex ≤
√

n andy =
√

n. Then the
cells are rearranged in a single row.

We further rearrange the cells in these columns, along with
the nodes in it, in a single row as shown in Fig. 1. The cells in
the column containingu, Column k, are arranged in a different
way than the cells in the other columns. First, we put the cell
containingu, then one cell from aboveu and one cell from below
u, by interleaving them. Then we put the cells in Columnk + 1
in their original order beginning from the bottommost cell to the
topmost cells, then the cells in Columnk + 2 in the same order,
and so on. In this new arrangement, we are moving the nodes
further away and increasing the distances among the nodes; and
thus, increasing the length of the edges comparing to the original
Co-NNT. As a result, the expected quality of the original Co-NNT
is less than that of the Co-NNT in this new arrangement. Nodeu
connects to a node in theith next cell, if the nexti− 1 cells are
empty and there is a node in theith next cell. The probability that

the nexti − 1 cells are empty is
(

1− i−1
n

)n−1
. Let P ′ be the

probability that there is a node in theith cell given that the first
i − 1 cells are empty, andPi be the probability thatu connects
to a nodev in the ith cell.

Pi =
(

1− i−1
n

)n−1
P ′ ≤

(

1− i−1
n

)n−1 ≤ e−
i−1

n
(n−1) ≤ e−

i−1

2

E[dα(u, v)] ≤
n−1
∑

i=1

(ib)αPi ≤
n−1
∑

i=1

(

i√
n

)α

e−
i−1

2

E[Qα] = nE[dα(u, v)] ≤ n1−α/2
n−1
∑

i=1

iα
(

1√
e

)i−1

E[Q1] ≤
√

n
√

e
n−1
∑

i=1

i
(

1√
e

)i

= O(
√

n)

E[Q2] ≤
√

e
n−1
∑

i=1

i2
(

1√
e

)i

= O(1)

Theorem 8: The expected work complexity of Co-NNT algo-
rithm, for α = 1 and 2 areO (

√
n) andO (1) , respectively.

Proof: Again we subdivide the area into cells and consider
the rearrangement of the cells in a single row as described in
the proof of Theorem 7. The transmission radius forith phase
is 2i

√
n

. Length of each cell isb = 1√
n

. Thus, a nodeu needith

transmission if the next2i−1 cells are empty. LetTi be the event
that u needsith transmission.Pr{T1} = 1 and for i ≥ 2,

Pr{Ti} =

(

1− 2i−1

n

)n−1

≤ e−2i−1/2

The number ofavailable messagesu receives in phasei is the
number of nodes in2i − 2i−1 = 2i−1 cells that are covered by
the transmissioni but not by transmissioni − 1. For i ≥ 2, the
expected number of such nodes in these2i−1 cells, given that the
first 2i−1 cells are empty, is

2i−1

n− 2i−1
(n− 1)

≤ 2i−1 n

n− 2i−1
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= 2i−1

(

1 +
2i−1

n− 2i−1

)

≤ 2i−1
(

1 + 2i−1
)

The expected number of replies in the first phase is2
n (n−1) ≤ 2.

In addition, in each phase, there are at most onerequestmessage
and oneconnectmessage byu. Thus, the expected work byu,

E[Wu] ≤ (2 + 2)(2b)α Pr{T1}

+

⌈lg n⌉
∑

i=2

{

2 + 2i−1
(

1 + 2i−1
)}

(2ib)α Pr{Ti}

≤ 4
2α

nα/2
+

2α

nα/2

∞
∑

i=2

(2 + i + i2)iα
(

1√
e

)i

The total work byn nodes,E[W ] = nE[Wu]. Thus,

E[W ] ≤ 2αn1−α/2

{

4 +
∞
∑

i=2

(2 + i + i2)iα
(

1√
e

)i
}

(5)

Puttingα = 1 and2, we have the desired result.
Theorem 9: The expected message complexity of Co-NNT

algorithm isO(n).
Proof: Whenα = 0, the total work is equal to the number

of messagesM . Thus, from Equation 5, usingα = 0, we have
E[M ] = O(n).

Theorem 10: The time complexity of distributed Co-NNT
algorithm isO(ln3 n) with high probability.

Proof: A part of the proof of this theorem is similar to
the proof of the Theorem 6. Using the same argument as in
Theorem 6, (1) the running time for the first phase of Co-NNT
algorithm isT1 = O(ln3 n) W.H.P., (2) after(i− 1)st phase, the
maximum number of unconnected nodes in any circle of radiusri

is constant,O(1). Next we show that in phasei, each unconnected
node receivesO(ln n) availablemessages W.H.P. The number of
unconnected nodes inCi and the number ofavailable messages
received by an unconnected node jointly determine the running
time of ith phase.

u

u

u
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���
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Fig. 2. Three cases for a nodeu in the unit square. In phasei, the radius of
the circle centered atu is ri = 2i/

√
n; only the nodes in the shaded region

reply back tou.

Assume a vertical line through nodeu (the dotted line in Fig. 2),
which divides the plane that contains the unit square into two half-
planes. LetBi denotes the common region (the shaded region in
Fig. 2) among the right half-plane, the disk with radiusri centered
atu, and the unit square. Letai be the area of the regionBi. Using
simple geometry, it can easily be shown that2ai−1 ≤ ai ≤ 4ai−1

for any position ofu in the unit square. Letni be the number
of nodes inBi excludingu. Now, we consider the following two
cases.

Case ai ≤ 12 ln n
n−1 : Then, E[ni] ≤ 12 ln n. By Chernoff

bound [27] withµ = E[ni] and δ = 36 ln n
µ − 1, we have

Pr{ni ≥ 36 ln n} = Pr{ni ≥ (1 + δ)µ}
< (eδ(1 + δ)−(1+δ))µ

≤ (e/(1 + δ))(1+δ)µ

≤ 1/n3.

The number of repliesu receives in phasei cannot be more than
ni. Thus, the probability thatu receives more than36 lnn replies
is at most1/n3.

Caseai > 12 ln n
n−1 : Then,ai−1 ≥ ai

4 > 3 ln n
n−1 . In this case, the

probability thatu needsith transmission, i.e., the probability that
Bi−1 is empty, is

(1− ai−1)
n−1 ≤ e−(n−1)ai−1 < 1/n3.

Thus, with probability at least1 − 1
n3 , either u does not need

phasei or the number of replies in phasei is O(ln n). This
statement holds simultaneously for all ofO(ln n) phases for all
n nodes with probability at least1 − 1

n (by the union bound).
Thus, by Equation 4, the running time of each phasei ≥ 2 is
Ti = O(ki ln n) = O(ln2 n) and the total time isO(ln3 n) WHP.

IV. NNT A LGORITHM FOR MULTIHOP WIRELESSNETWORKS

If the maximum power level of a node is not large enough
to communicate directly with the other nodes, i.e., for the unit
disk graph (UDG) model, we propose the following algorithm
to construct an NNT, called UDG-NNT. Two nodesu andv can
communicate directly (i.e., there is an edge between them),if and

only if d(u, v) ≤ R. We assumeR = Θ(
√

ln n
n ) (see Section I-C).

Typically, in a sensor network, a special node calledsink
gathers data from the sensors and is the root of the tree. Thus
we assume that a special nodes, the sink, is designated to be the
root of NNT4.

A. The UDG-NNT Algorithm

The algorithm is executed in two phases. In the first phase,
the nodes choose their ranks randomly as follows. This phaseis
initiated by the sinks. The sink picks an arbitrary large number
p(s) and sends this number along with its ID to its neighbors in
one transmission. As soon as any other nodeu receives the first
message from a neighborv, it generates a random numberp(u) ∈
[p(v) − 1, p(v)), and transmitsp(u) and ID(u) to its neighbors.
If u receives another message later from another neighborv′, u

simply storesp(v′) and ID(v′), and does nothing else. Notice
that at some point, every node in the graph, excepts, receives a
message from at least one of its neighbors if the given unit disk
graph is connected. IdentifierID(u) and random numberp(u)

constitute the rank ofu. It is easy to see that at the end of the
first phase, i) each node knows the ranks of all of its neighbors,
ii) each nodeu, except the sinks, has at least one neighborv

such thatrank(u) < rank(v), and iii) the sinks has the highest
rank.

In the second phase, each nodeu, excepts, selects the nearest
nodew among its neighbors such thatrank(u) < rank(w) and
sends aconnectmessage tow to inform that(u, w) is an edge in
the NNT.

4If no such node is designated, a leader election algorithm can be executed
before running the distributed NNT algorithm.
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B. Analysis

a) Quality of UDG-NNT:Since each node has at least one
neighbor with higher rank, the length of any edge of an NNT is at
most R. HenceQα(NNT ) ≤ (n − 1)Rα = O(n1−α/2 lnα/2 n);
that is, E[Q1(NNT )] = Θ(

√
n ln n) and E[Q2(NNT )] =

O(ln n). Since E[Q1(MST )] = Θ(
√

n) and E[Q2(MST )] =

Θ(1), we have approximation ratio ofO(
√

ln n) andO(ln n) for
α = 1 and2, respectively.

b) Message Complexity:In each phase, each node transmits
exactly one message. Thus, the total number of messages is at
most2n = O(n).

c) Work Complexity:Each node transmits a message to a
distance of at mostR. Hence, he total work for transmitting at
most 2n messages isW ≤ 2nRα = O(n1−α/2 lnα/2 n). Using
α = 2, we haveW = O(ln n).

d) Time Complexity:Let D be the diameter of the given unit
disk graph. Using Chernoff bound, it can be shown that the num-
ber of nodes within distanceR from any point isO(ln n) WHP.
Since in each phase each node transmit at most one message,
using Equation 4, a node needs to wait at mostO(ln2 n) time
to transmit its message. Further, the rank propagation messages
from the sinks to any other node in the graph traverse at most
D links, leading to the running time ofO(D ln2 n) for the first
phase andO(ln2 n) for the second phase WHP. Thus, the total
time is O(D ln2 n) WHP, which is optimal up to polylogarithmic
factor; because to build any spanning tree requiresΩ(D) time. By
a simple analysis with the help of Chernoff bound, it can easily
be shown that for the unit disk graph model under consideration,
D = Θ(1/R) = Θ(

√

n/ ln n) WHP, which implies a running time
of O(

√
n · ln3/2 n) WHP.

All of the above bounds hold even if a nodeu picks an arbitrary
number (instead of a random number)p(u) < p(v) after receiving
the first message from a neighborv. However, as indicated by the
simulation results, the random choice may improve the boundon
quality to O(1) and O(ln lnn) for α = 1 and 2, respectively.
Due to the dependencies among these random numbers, analyzing
quality using this randomness seems to be difficult, which we
leave for future work.

V. L OWER BOUNDS ONEXPECTEDWORK AND MESSAGE

COMPLEXITY OF GHS ALGORITHM

We compare our NNT algorithm with a well-studied distributed
MST algorithm, the GHS algorithm [1], which is message-
optimal. The upper bounds on the message and time complexity
of this algorithm have been shown in [1]. Here we give
lower bounds on the expected work and message complexity of
implementing the GHS algorithm in our network model. We do
not provide the details of the implementation of GHS algorithm
here; instead, we refer to [1] for a detailed description. Here we
focus on what is essential to show lower bounds on the expected
work and message complexity.

We consider the radius of the neighborhood of each node to

be Θ(
√

ln n
n ). Since each node sends at least one message to

each of its neighbor (test message — to check if the neighbor
is in the same fragment), work and the number of messages of
GHS algorithm increases as the number of neighbors of the nodes
increases. Here we note that the way GHS algorithm works, it
needs to test the neighbors sequentially. Thus, it cannot take the
advantage of local wireless broadcasting. Even if we consider

R

 scΑ   u

Α

Α  c

  s

Fig. 3. Illustration for Lemma 11.

that a node tests all of its neighbors by broadcasting a single
message to all of its neighbors, each neighbor must reply to
this test message individually. Thus, the number of messages
related to testing the neighbors is still no less than the number of
neighbors. As a result, the best performance of the GHS algorithm
can be achieved by keeping radius of neighborhood as small

as possible; we chooseΘ(
√

ln n
n ), the minimum required for

connectivity [21].
The expected number of neighbors of a node, i.e., the expected

number of nodes within distanceΘ(
√

lnn
n ) is Θ(ln n) (in fact it

is true with high probability). Thus, each node exchanges atleast
Ω(ln n) messages; that is, the total expected number of messages
is Ω(n ln n).

The following lemma is used to find the expected work
complexity.

Lemma 11: Let n nodes are distributed uniformly at random
in a unit square andri be the distance of theith nearest neighbor
for any arbitrary node. Then,E[r2

i ] = ci
n = Θ

(

i
n

)

for some

constantc where 1
π ≤ c ≤ 2.

Proof: To get the lower bound, consider any arbitrary node
u in the unit square. Now consider a circle centered atu with
unit area, i.e.,πR2 = 1 whereR is the radius of the circle. Let
Asc be the region that is common to both the unit square and
the circle (see Fig. 3),As the region in the square but not in the
circle, andAc the region in the circle but not in the square. Since
both the circle and the square have equal area (unit area), the area
of As is equal to the area ofAc. Now consider a rearrangement
(repositioning) of the nodes: keep the nodes inAsc as they are
and move all nodes inAs to Ac; place the moved nodes inAc

randomly following the uniform distribution. Now it is easyto see
that the distance to theith nearest neighbor ofu in the original
arrangement of the nodes (i.e., unit square) is greater thanor equal
to that in the new arrangement (i.e., theith nearest neighbor in
the circle centered atu).

Now, the probability that a particular node (other thanu) is
within distancer from u (in the new arrangement) isπr2

πR2 = r2

R2 .
Then, the probability that there are at leasti nodes within distance
r,

Ci(r) = 1−
i−1
∑

k=0

(

n− 1

k

)

(

r2

R2

)k (

1− r2

R2

)n−k−1

The probability density functionPi(r) = d
dr Ci(r), that is,

Pi(r) = −
i−1
∑

k=0

(

n− 1

k

)

k
2r

R2

(

r2

R2

)k−1 (

1− r2

R2

)n−k−1

+

i−1
∑

k=0

(

n− 1

k

)

(n− k − 1)
2r

R2

(

r2

R2

)k (

1− r2

R2

)n−k−2

Let Tk be the first term inside the above sum, which is
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(n−1
k

)

k 2r
R2

(

r2

R2

)k−1 (

1− r2

R2

)n−k−1
. Then,

Tk+1 =

(

n− 1

k + 1

)

(k + 1)
2r

R2

(

r2

R2

)k (

1− r2

R2

)n−k−2

=

(

n− 1

k

)

(n− k − 1)
2r

R2

(

r2

R2

)k (

1− r2

R2

)n−k−2

Now T0 = 0, thusPi(r) = −
i−1
∑

k=0
(Tk − Tk+1) = Ti. Then,

E[r2
i ] ≥

∫ R

0

r2Pi(r)dr

= iR2

(

n− 1

i

)

∫ R

0

2r

R2

(

r2

R2

)i (

1− r2

R2

)n−i−1

dr

= iR2

(

n− 1

i

)

i
∑

k=0

(

i

k

)

(−1)k 1

k + n− i

Sincen− i > 0, using the identity
n
∑

k=0

(n
k

) (−1)k

k+x = x−1(x+n
n

)−1

(page 188 in [28]),

E[r2
i ] ≥ iR2

(

n− 1

i

)

1

(n− i)
(

n
i

) =
iR2

n
=

i

πn
.

To get the upper bound, we consider a nodeu in a corner of the
unit square and a circle centered atu and with radiusR′ =

√
2, the

length of a diagonal of the square. If we redistribute the nodes
in this circle uniformly, the average distance to theith nearest
neighbor can only increase. Thus,E[r2

i ] ≤ iR′2

n = 2i
n .

Theorem 12: The expected work complexity of GHS algo-
rithm is Ω(ln2 n).

Proof: We analyze the work complexity fortest, accept, and
rejectmessages only [1]. By the end of execution of the algorithm,
each node tests all of its adjacent edges by using test/accept/reject
messages through these edges one by one. The expected number
of neighbors of each node isc lnn, for some constantc. Thus,
each node sends test messages to or receives reply messages from
thesec ln n neighbors. Using Lemma 11, the expected work by a
node is at least

∑c ln n
i=1

i
nπ = Ω( ln2 n

n ). For n nodes, by linearity
of expectation, the total workW = n× Ω( ln2 n

n ) = Ω(ln2 n).

VI. SIMULATION RESULTS

We performed extensive simulations of our algorithms to un-
derstand their empirical performance. Our experimental setup is
the following:
Number of Nodes:Varying from 50 to 5000.
Node distributions: Uniform random distributions in the unit
square and several realistic distributions of points in an urban
setting obtained from TRANSIMS [22].
Number of Runs: 50
Measures:We compare the NNTs and the MST, with respect to
the quality Qα(T ) =

∑

(u,v)∈T dα(u, v) for α = 1 and 2 and
the performance of the algorithms with respect to the following
measures: (i) Number of messages, and (ii) Work,W =

∑M
i=1 rα

i

for α = 2.
To be fair to GHS which does not exploit geometry per se (to

compare with Co-NNT, which uses coordinate information of the
nodes) we run the GHS algorithm on the Yao graph [29]. Yao
graph is constructed as follows: the2π angle around each node
u is divided into six wedges of equal size (see Fig. 4), and the

u

Fig. 4. Construction of Yao graph. Each wedges is60◦. Nodeu have an
edge with the nearest node in each wedge.
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edge betweenu and the nearest node (if any) in each wedge is
included in the Yao graph. A Yao graph is sparse (each node
has degree at most 6) and contains the MST [29]. Running GHS
on Yao graph reduces its message complexity toO(n lnn). Note
that GHS-Yao should be compared with Co-NNT only as both
of them use coordinate information. On the other hand, Random-
NNT and UGD-NNT, which do not use coordinate information,
must be compared with GHS without Yao graph.

In our simulations, we ignore the effects of the MAC layer. Our
main results are summarized below, which validate our theoretical
results in earlier sections: (1) The Co-NNT algorithm always
outperforms the Random-NNT algorithm, with respect to the
quality, number of messages, and work. (2) Forα = 1, all NNTs
give a very good approximation to the MST; in particular, thecost
of Co-NNT is always within about10% of that of the MST. (3) For
α = 2, Random-NNT does not give a very good approximation,
but UDG-NNT and Co-NNT remains within a factor of 2. (4) The
number of messages and the work done by both NNT algorithms
are significantly smaller than that by GHS algorithm.

A. Quality of the Spanning Trees

We present the simulation results of qualityQα(T ) for α = 1
and 2. As Fig. 5 shows, all NNTs compare very well with the
MST. As shown earlier, the MST cost isΘ(

√
n) for α = 1, and

the NNTs seems to be within a small constant factor of this value;
Fig. 6 demonstrates this by showing the values as a fraction of√

n, and the plot for the NNTs are straight lines.
Fig. 7 showsQ2(T ), the sum of squares of the edge lengths,

for the NNTs and MST. QualityQ2 for both the MST and Co-
NNT are constant, andQ2(Co-NNT) is within a factor of 2 of
Q2(MST ) . However,Q2(Random-NNT) increases withn as the
asymptotic bound isO(ln n)— this becomes clear from Fig. 8.
In Section IV, we showed thatQ2(UDG-NNT) = O(ln n). Fig.
7 shows thatQ2 for UDG-NNT is almost constant. In fact, by
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looking at the numerical data, we found that it is increasingbut
at a very slow rate (which is not visible in the figure). This data
indicates that a tighter bound forQ2(UDG-NNT) may exist.

B. Work and Message Complexities to Construct the Spanning
Trees

In this section, we compare workW for α = 2 and the
number of messages needed by the algorithms. The input to
GHS algorithm must be a connected graph to obtain a MST.

We consider the radius of the neighborhood to be1.6
√

lnn
n , the

minimum required for connectivity. To determine the neighbors,

each node can broadcast a message to distance1.6
√

ln n
n and

consider another node as a neighbor if the node can hear the
message from the other node. However, we did not incur any cost
on GHS algorithm to find the neighbors (thus favoring GHS) —
for GHS algorithm, we assume that each node knows its neighbors
and their distances. In addition, we also simulate GHS on theYao
graph. Each node finds its Yao neighbors first, then executes GHS
algorithm.

Fig. 9 depicts the number of messages needed to construct the
trees. We see that the number of messages for NNT algorithms is
significantly smaller than that for GHS algorithm. Moreover, the
number of messages for NNT algorithms increases linearly. On
the other hand, the number of messages for GHS increases at a
slightly higher rate. In fact, the message complexity for GHS is
Ω(n ln n).

The required work for NNT algorithms is also significantly
less than that of GHS algorithm (Fig. 10). In addition, with the
number of nodes, work for NNT algorithms increases in a lower
rate than that of GHS algorithm. In terms of both the number of
messages and work, GHS with Yao graph is more efficient than

GHS without Yao graph, as expected. However, it is still much
less efficient than the Co-NNT algorithm.

Analytically, we know that forα = 2, the work complexities
for Co-NNT, Random-NNT, UDG-NNT, and GHS algorithms
are O(1), O(ln n), O(ln n), and Ω(ln2 n), respectively. We can
also observe these results from experimental data. Let work
w = c lna n. Then, ln w = ln c + a ln ln n. Thus, if we plotln w

vs. ln lnn, the graph is an straight line and the slope of the line
is a, the power oflog. In Fig. 11, the slope for GHS is greater
than2 and for both Random-NNT and UDG-NNT, it is about1.
For Co-NNT, the slope is 0, which indicates the work isO(1),
whereas for GHS-Yao, the slope is more than 1.

C. Experiments on Real Data

We consider a distribution of points in a section of downtown
Portland, OR, measuring2.9KM × 2.95KM approximately9

square KM. The distribution of points, corresponding to cars on
the roadway, was obtained from the TRANSIMS simulation [22],
which does a very detailed modeling of urban traffic, combining
a variety of data sources ranging from census data to activity
surveys to land use data. We use three snapshots, at one minute
intervals. The distribution of nodes at one of the snapshots
is shown in Fig. 12. The experimental results on these three
snapshots are given in Table II. The work is computed forα = 2.

We see that the number of messages and work are significantly
larger for GHS algorithm. The work is about10 times larger and
the number of messages is about5 times larger than those of
NNT algorithms. On the other hand, bothQ1 and Q2 for Co-
NNT is within 2-approximation. Although approximation forQ2

in Random-NNT is large, forQ1, Random-NNT also provides a
close approximation. In these experiments, we only considered the
Yao graph assuming that the nodes know their coordinates. Ifthe
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TABLE II

EXPERIMENT RESULTS FORSNAPSHOT1, 2,AND 3

Snapshot 1 Snapshot 2 Snapshot 3
Q1 Q2 Work Msg Q1 Q2 Work Msg Q1 Q2 Work Msg

Co-NNT 38.72 6.77 90.54 4832 39.39 8.18 92.28 4647 38.32 6.25 83.42 4668
Rnd-NNT 50.75 14.13 131.42 5241 52.97 20.12 137.91 5250 52.57 18.47 148.88 5229
GHS-Yao 33.16 3.73 1271.11 20592 33.52 3.82 1083.99 20417 33.27 3.78 1083.99 20417

Fig. 12. The distribution of nodes in one of the snapshots.

coordinates are not available, for GHS algorithm, the inputneed
to be a complete graph (each node is a neighbor of the others)
to make sure connectivity since the points does not follow any
particular (say, uniform) distribution. Thus, GHS algorithm would
incur much larger work and messages. In that case, Random-NNT
can still be a good choice over GHS, by sacrificing quality.

VII. D YNAMIC ALGORITHM FOR NNT

The local nature of the NNT algorithms naturally allows for
simple dynamic versions, where the goal is to maintain a tree
of good quality, as nodes are added or deleted. As long as we
maintain an NNT, the cost remains within the bounds proven in
the previous theorems. The measure we focus on, in the dynamic
setting, is the expected number of rearrangements, when a node is
added or deleted. We define the termnumber of rearrangements
to be the number of the edges to be deleted from the tree and
added to the tree, to maintain NNT, due to addition or deletion
of a node.

i

3

2v
1v v

v

u

Fig. 13. Each wedge around nodeu is 60◦. v1, v2, v3 . . . are the nodes in
one wedge in increasing order of distance fromu.

For the dynamic Random-NNT algorithm, each nodev main-
tains two listsQ(v) andL(v), whereQ(v) is the set of nodes in
closed ballB(v, d(v, nnt(v))) andL(v) = {u|v ∈ Q(u)}. After a
nodev is added to the network, there can be some nodesu such
that rank(v) > rank(u) andd(u, v) < d(u, nnt(u)). In that case,
u must change its connection from previousnnt(u) to v, the new
nnt(u), and we sayu is “affected” byv. The data structuresQ(v)

andL(v) facilitate an efficient way to find the affected nodes. Let

nodev just joined the network, and consider a partitioning of the
2π angle aroundv into 6 equal wedges as shown in Fig. 13. Let
w1, w2, . . . , w6 be the closest nodes in these wedges; these nodes
can be determined, for instance, by using directional antennas
(such an assumption is made in several papers, e.g., [10]). Using
the triangle inequality, it is easy to see that only the nodesin
L(wi) can be affected. The details are given in Algorithm 3.

Algorithm 3 Dynamic Random-NNT
• If a nodev is added:

1) Node v chooses a random rank, and creates two lists of
nodes,Q(v) andL(v), which are initially empty.

2) Node v checks its neighborsv1, v2, . . . in non-decreasing
order of d(v, vi), till it finds the closest neighborvj of
higher rank. Thenv adds each suchvi, i ≤ j, in Q(v)

and sends a message tovi to add it inL(vi).
3) Nodev finds the closest node in each of the 6 wedges. For

each of these closest nodesw, v sends anUPDATE message
to eachu ∈ L(w). Node u, upon receipt of this message,
does the following:

a) Letu1, u2, . . . be the neighbors ofu in non-decreasing
order ofd(u, ui), anduk be nnt(u).

b) If d(u, v) ≤ d(u, uk) and rank(v) > rank(u), u

removesuℓ from Q(u) and itself fromL(uℓ), ∀j <

ℓ ≤ k, wherev = uj . Furtheru connects tov, instead
of uk, and addsv to Q(u) and itself toL(v).

c) If d(u, v) ≤ d(u, uk) andrank(v) < rank(u), u adds
v to Q(u) and itself toL(v).

• If a nodev is deleted:

1) v sends a message to eachu ∈ Q(v). Nodeu, after receiving
this message, removesv from L(u).

2) v also sends a message to eachu ∈ L(v). Node u, upon
receipt of this message, removesv from Q(u). If nnt(u) =

v, u checks the neighborsvi beginning from distanced(u, v)

onward until it finds the new nearest node of higher rank,
adds each suchvi in Q(v), and sends a message tovi to
addu in L(vi).

It is also easy to see that the listsL(.) and Q(.) of the nodes
are correctly updated after addition and deletion of a node.Since
u ∈ L(v) iff v ∈ Q(u), and the algorithm always updatesL(v) and
Q(u) or L(u) andQ(v) in pairs, it is sufficient to show thatL(v)

andQ(v) are updated correctly when nodev is added or deleted.
Whenv is added,Q(v) is created in Step 2 following its definition
straight-forwardly. ForL(v), notice that ifu ∈ L(v), then u ∈
L(wi) for somewi, by the triangle inequality. Thus, Step 3b-c
correctly updatesL(v). Whenv is deleted, again, the consistency
of L(v) and Q(v) follows directly from their definitions. Thus,
Algorithm Dynamic Random-NNT works correctly.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Next we analyze the number of rearrangements needed for
each insertion and deletion. The complexity of a rearrangement
depends on the model of the network and communication. For the
purpose of analysis, For any nodev, we say that a charge of1 is
placed on every nodeu in closed ballB(v, d(v, nnt(v))). First,
we show the following lemma, which bounds the charge placed
on any node.

Lemma 13: For any sequence ofn node insertions and dele-
tions, the total charge on any nodeu is O(ln n) WHP.

Proof: Consider any pointu, and partition the2π angle
aroundu into 6 cones, each of angleπ/3. Consider one such
cone. We prove that the total charge from points in this cone on
u is O(ln n), with high probability. Order the points in the cone as
v1, v2, . . ., based on increasing distance fromu (Fig. 13). Node
vi places a charge onu only if rank(vi) > rank(vj), for all
1 ≤ j < i. The probability of occurring this event is at most1/i

(the probability that a particular number is the largest among i

identical random numbers is1/i). Thus, the total expected charge
on u from these points is at most

∑n−1
i=1 (1/i) ≤ lnn. In order

to bound the maximum charge on any node, we use a variant
of Chernoff bound (Lemma 14) that holds in the presence of
dependencies among the variables.

Lemma 14: ( [30]) Let X1, X2, . . . , Xl ∈ {0, 1} be random
variables such that for alli, and for anyS ⊆ {X1, . . . , Xi},
Pr[Xi+1 = 1|∧j∈S Xj = 1] ≤ Pr[Xi+1 = 1]. Then, for

any δ > 0, Pr[
∑

i Xi ≥ µ(1 + δ)] ≤ ( eδ

(1+δ)1+δ )µ, where
µ =

∑

i E[Xi].
Let E(v) be the event that nodev places a charge onu. In

order to use the Chernoff bound, we need to show that, for any
i, and any subsetS ⊂ {v1, . . . , vi}, Pr[E(vi+1)|

∧

w∈S E(w)] ≤
Pr[E(vi+1)]. First, supposed(w, vi+1) ≥ d(w, u) for each
w ∈ S. Then, the events

∧

w∈S E(w) do not place any
constraint on rank(vi+1), relative to rank(vj), j ≤ i, and
therefore,Pr[E(vi+1)|

∧

w∈S E(w)] = Pr[E(vi+1)]. Next, sup-
pose d(w, vi+1) < d(w, u) for some w ∈ S. Then, occur-
rence of the eventE(w) implies that rank(w) > rank(vi+1).
Further, d(vi+1, w) < d(w, u) ≤ d(vi+1, u). Therefore,
Pr[E(vi+1)|∧w∈S E(w)] = 0 ≤ Pr[E(vi+1)].

Next, we apply the Chernoff bound withδ = 5 ln n
µ − 1, where

µ is the expected charge onu. Sinceµ ≤ ln n, we haveδ > 0.
Let X be the total charge onu. Then,

Pr{X ≥ 5 ln n} = Pr{X ≥ (1 + δ)µ} < (eδ(1 + δ)−(1+δ))µ

≤ (e/(1 + δ))(1+δ)µ ≤ 1/n3.

Thus, with probability at least1 − 1
n3 , charge onu is O(ln n).

Using the union bound, it holds simultaneously for alln steps of
addition and deletion of nodes with probability at least1− 1

n .
Corollary 15: The degree of any nodev in the NNT isO(ln n)

W.H.P.
Proof: The degree ofv is at most the charge onv. Thus,

the corollary follows from Lemma 13.
Theorem 16: For any sequence ofn node insertions and

deletions, the number of rearrangements per insertion or deletion
is O(ln n) WHP.

Proof: When a nodev is deleted, only the nodesu such
that nnt(u) = v needs to find a new parent to connect to. Let
D(v) be the degree ofv. Deletion ofv results in deletion ofD(v)

edges and addition ofD(v) − 1 new edges. Thus the number of
rearrangement is2D(v) − 1 = O(ln n) W.H.P. (Corollary 15).
When a nodev is added, a nodeu ∈ L(v) may need to change

its connection. For any other nodew 6∈ L(v), d(w, nnt(w)) <

d(w, v) and such nodew does not need to change its connecting
edge. Thus, due to addition ofv, the number of rearrangements
is at most2|L(v)| = O(ln n) W.H.P. by Lemma 13.

VIII. C ONCLUDING REMARKS AND FURTHER WORK

The NNT paradigm is a simple and local scheme for construct-
ing and maintaining low cost trees in an ad hoc network setting.
It does not require any complex synchronization, and is naturally
robust. We study various properties, such as quality, degree and
dynamic complexity for different NNTs where the nodes are
uniformly distributed in two-dimensional plane, and it shows very
promising results. Among the questions for further work, the most
interesting ones are: (i) Analyze the NNT algorithms for arbitrary
point distributions, (ii) Quantify the tradeoff between the amount
of local information needed and the quality of the tree produced,
(iii) Obtain a tighter bound for quality of UDG-NNT, and (iv)
Determine whether it is possible to design a distributed exact MST
algorithm with better work complexity than GHS, and obtain a
lower bound on work complexity.
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