
A Simple Randomized Scheme for Constructing
Low-Weight k-Connected Spanning Subgraphs with

Applications to Distributed Algorithms

Maleq Khan ∗ Gopal Pandurangan∗ V.S. Anil Kumar †

Abstract

The main focus of this paper is the analysis of a simple randomized scheme for construct-
ing low-weight k-connected spanning subgraphs. We first show that our scheme gives a simple
approximation algorithm to construct a minimum-weight k-connected spanning subgraph in a
weighted complete graph, a NP-hard problem even if the weights satisfy the triangle inequal-
ity. We show that our algorithm gives an approximation ratio of O(k log n) for a metric graph,
O(k) for a random graph with nodes uniformly randomly distributed in [0, 1]2 and O(log n

k)
for a complete graph with random edge weights U(0, 1). We show that our scheme is optimal
with respect to the amount of “local information” needed to compute any connected spanning
subgraph. We then show that our scheme can be applied to design an efficient distributed algo-
rithm for constructing such an approximate k-connected spanning subgraph (for any k ≥ 1) in
a point-to-point distributed model, where the processors form a complete network. Our algo-
rithm takes O(log n

k) time and expected O(nk log n
k) messages. Our result in conjunction with

a result of Korach et al. ([21]) implies that the expected message complexity of our algorithm
is significantly better than the best distributed algorithm that finds an optimal k-connected
subgraph. We also show that for the geometric instances, our randomized scheme constructs
low-degree k-connected spanning subgraphs which have O(k log n) maximum degree, with
high probability.

Keywords. k-Connected Spanning Subgraph, Minimum Spanning Tree, Randomized Approxi-
mation Algorithm, Distributed Algorithm, Probabilistic Analysis.

∗Department of Computer Science, Purdue University, 250 N. Univ. St., West Lafayette, IN 47907, USA.
E-mail: {mmkhan, gopal}@cs.purdue.edu.

†Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061,
USA. E-mail: akumar@vbi.vt.edu

1 Introduction
Computing the low weight spanning subgraphs of a given graph G(V, E) with non-negative edge
weights is a fundamental problem in network design (e.g., see [25, 9] for an extensive survey).
One important problem in this setting is the k-vertex connectivity problem (henceforth simply the
k-connectivity problem): find a spanning subgraph of minimum weight that is k-vertex-connected,
i.e., there exists k vertex-disjoint paths between every pair of vertices. Finding an optimal k-
connected spanning subgraph is NP-hard for k ≥ 2 even if the weights of the edges satisfy the
triangle inequality, or even when the graph is a complete Euclidean graph [14]. There has been
a lot of work on designing approximation algorithms for the k-connectivity problem. Most of
these algorithms are centralized algorithms which are quite sophisticated and their main goal is to
obtain a polynomial time algorithms with the best possible approximation ratio (see e.g., [3, 23,
24]). Distributed algorithms for the k-connectivity (k ≥ 2) problem has received limited attention
thus far — this is especially true for the weighted version. In fact, to the best of our knowledge
there is no known efficient distributed algorithm for k ≥ 2 for weighted graphs. In contrast,
for k = 1 — the minimum spanning tree (MST) problem — optimal distributed algorithms are
well-known [7, 31]. With the emergence of the new networking technologies such as ad hoc
and sensor networks, there is an increasing need for distributed algorithms that are simple and
easily implementable, have low communication complexity, and perform reasonably well (e.g.,
see [31, 26, 32]). Such simple local algorithms are desirable even for the MST problem, where
optimal distributed algorithms are known (see e.g., [11, 7, 31]), because these algorithms are quite
complex, involve a lot of message complexity and synchronization to implement in a light weight
and unreliable environment, such as ad hoc networks. This motivates the question of developing
simple, local control, approximate algorithms. This also adds a new dimension to the design of
distributed algorithms for such networks: we can potentially tradeoff optimality of the solution to
the amount of resources (messages, time etc) consumed by the algorithm. This is the motivation
for the relatively new area of distribution approximation (we refer to the survey by Elkin [7]).

In this paper, we study a very simple randomized scheme called Random Nearest Neighbor
(Random-NN) scheme for constructing a low-weight k-connected spanning subgraph (for any k ≥
1) and show some of its properties and applications. The Random-NN scheme is based on a simple
idea (cf. Section 3): each node chooses a unique rank, a quantity that is randomly chosen from a
totally ordered set, and a node connects to its k nearest nodes of higher rank. We first show that
our scheme gives a simple approximation algorithm to construct a minimum-weight k-connected
spanning subgraph in a weighted complete graph, a NP-hard problem even if the weights satisfy
the triangle inequality. We show that our algorithm gives an approximation ratio of O(k log n) for
a metric graph, O(k) for a random graph with nodes uniformly randomly distributed in [0, 1]2 and
O(log n

k
) for a complete graph with random edge weights U(0, 1). We show that our scheme is

optimal with respect to the amount of “local information” (in an average sense — defined precisely
in Section 3.2) needed to compute any connected spanning subgraph.

We next show that our scheme can be applied to design an efficient distributed algorithm for
constructing an approximate k-connected spanning subgraph (k ≥ 1) in a point-to-point distributed
model, where the processors form a complete network. Our algorithm takes O(log n

k
) time and ex-

pected O(nk log n
k
) messages contrasting a result of Korach et al. [21] that shows that Ω(n2) is a

lower bound of the number of messages required to find an MST (i.e., k = 1) in this model. Thus,
the expected message complexity of our algorithm is significantly better than the best distributed
algorithm that finds the (optimal) MST. The proof of this Ω(n2) bound on the number messages
for finding MST (cf. Theorem 1 in [21]) can easily be modified to show that Ω(n2) is also a lower
bound on the message complexity for finding a minimum k-connected spanning subgraph for any

1

k ≤ bn/2c − 1. This lower bound also holds for the metric weights. This also implies that our
algorithm, for this restricted distributed computation model, has provably better asymptotic mes-
sage complexity than the best distributed algorithm that finds a minimum k-connected subgraph,
for any k = o(n). However, the price for this gain is that our algorithm has a somewhat weaker
approximation ratio compared to the best-known centralized algorithms.

We also show that for the geometric instances (these are relevant, for example, in the ad hoc
sensor network applications [27]), our scheme constructs low-degree k-connected spanning sub-
graphs (these are useful in many applications e.g., see [14]) which have O(k log n) maximum
degree, with high probability.

Road Map. The rest of the paper is organized as follows. In Section 2, we discuss related work.
In Section 3, we present the Random-NN scheme, to construct a k-connected spanning subgraph
on a given weighted complete graph. The analysis of the weight of k-connected subgraph produced
by Random-NN scheme and approximation ratios for various graph models are given in Section 4.
In Section 5, we describe a distributed implementation of the Random-NN scheme, and analyze its
time and message complexities. We conclude in Section 6 with a discussion on future work.

2 Related Work
The work that is closest in spirit to our work is perhaps that of Imase and Waxman [18]. They con-
sider the dynamic Steiner tree problem, where the objective is to maintain a near-optimal Steiner
tree when nodes are added or deleted. They show that, under additions only (no deletions), a sim-
ple greedy algorithm which connects the just added node to nearest existing node (by the shortest
path, i.e., they assume the triangle inequality) gives a O(log n) approximation. Their algorithm
can be considered as a variant of our NN scheme for finding the spanning tree (i.e., the special
case: k = 1). However, their algorithm will not work in a distributed (unlike our scheme) because
we cannot connect to the shortest node (they can do that since the nodes are added one by one) as
this can introduce cycles.

Random ranks were used to construct forests, by a slightly different process by Toroczkai and
Bassler [36]. The process defined here chooses a random rank for each node on a graph in G(n, p),
and each node connects to the neighbor of highest rank. They show that the resulting forest has a
power law degree distribution, which they use as a model for explaining power laws in networks.

The work of Panconesi and Rizzi [29] also uses an approach based on ranking of nodes to de-
sign simple, fast, and deterministic distributed algorithms to find maximal matchings, edge/vertex-
colorings, and maximal independent sets. This approach however is not comparable to our Random-
NN scheme because the edge weights play no role in their algorithms (they are for unweighted
networks).

We now briefly mention some previous results on the centralized approximation algorithms for
the k-connectivity problem (k ≥ 2). For the general graph setting, where edge weights are arbi-
trary, a k-approximation algorithm is given in [23]. Cheriyan et al. [3] achieved an approximation
ratio of 6Hk = O(log k) for the case where k ≤

√
n/6. For the case where k < (1 − ε)n, they

achieved an approximation ratio of
√

n/ε. Recently, an O(ln2 k · min{ n
n−k

,
√

k
ln k
}) approximation

algorithm was given in [24].
For the metric weights (the edge weights satisfy the triangle inequality), a 2+k−1

n
-approximation

algorithm was given in [23]. Czumaj et al. [5] presented a centralized (1 + ε)-approximation
(ε > 0) algorithm for the minimum-weight k-connected spanning subgraph problem for a com-
plete Euclidean graph with constant dimension. They also show that there is no polynomial time

2

(1 + ε)-approximation algorithm for a complete Euclidean graph in dimension log n or higher un-
less P = NP . This result also implies the same hardness of approximation in a complete metric
graph.

We now mention the previous work on distributed algorithms. Most of these algorithms assume
that the graph is unweighted and the goal is to find a sparse k-connected subgraph. The algorithm
of Cheriyan et al. [2] finds k edge-disjoint breadth first (BFS) forests, which gives a k-connected
subgraph. The distributed implementation of this algorithm has time and message complexity as
O(kn log3 n) and O(k|E|+kn log3 n) respectively. Thurimella [35] improved the time complexity
to O(kD + kn0.614) where D is the diameter of G, but the message complexity was ignored and
can be much larger than that of the algorithm given in [2]. Using similar ideas, Jennings et al. [19]
developed a distributed algorithm for the k-vertex connected subgraph problem which takes O(n)
time and O(|E|) messages. In the same paper, they also presented a distributed algorithm for
the k-edge connectivity problem which takes O((k + D) log3 n) time and O(k|E| + kn log3 n)
messages. All of these algorithms [2, 35, 19] produces a k-connected subgraph with O(kn) edges
from an unweighted k-connected graph G. There is also work on distributed algorithms [16, 15]
for finding the biconnected components (k = 2, unweighted graph). Both of the algorithms given
in [16] and [15] take at least linear time.

We now state relevant known distributed algorithms in the complete network model. Korach
et al. [21] showed a lower bound of Ω(n2) messages for any distributed algorithm computing
a minimum weight spanning tree. This result holds even when the weights satisfy the triangle
inequality. We note that our algorithm significantly beats the above lower bound at the cost of
producing somewhat sub-optimal solutions. In contrast, Korach et al. gave algorithms that needed
only O(n log n) messages for a class of problems that included the spanning tree problem and the
leader election problem. In another paper [22], they showed that Ω(n log n) messages are necessary
for this class of problems. They also showed, however, that for the maximal matching problem
and the Hamiltonian circuit problem, Ω(n2) messages are necessary and gave the algorithms that
matched this lower bound.

3 A Scheme to Construct a k-connected Subgraph in a Weighted
Clique

We provide a simple scheme to construct a k-vertex connected spanning subgraph in a given com-
plete weighted graph Kn of n nodes. We assume that there is a non-negative weight, c(u, v) is
associated with each edge (u, v) of the graph. The objective is to determine the edges that will be
in the k-connected subgraph and to keep the weight of the k-connected subgraph low. The weight
of a k-connected subgraph is the sum of the weights of the edges in it. In this section, we present
a basic scheme (an abstract algorithm) and prove that this scheme indeed constructs a k-connected
graph.

The scheme is quite simple. Each node u is given a unique rank r(u). By unique rank, we mean
that no two nodes have the same rank. Thus a ranking of the nodes corresponds to a permutation of
the nodes. For two nodes u and v with u 6= v, either r(u) < r(v) or r(u) > r(v). Once the ranks
of the nodes are chosen, they remain unchanged throughout the execution of the algorithm. Later,
we will see how such ranks can be chosen. To form a k-connected graph, each node u is connected
to k nearest nodes wi, such that r(u) < r(wi) for all 1 ≤ i ≤ k. Node v1 is nearer than v2, to u,
if c(u, v1) < c(u, v2). If c(u, v1) = c(u, v2), break the tie arbitrarily, i.e., choose any one of v1 and
v2 arbitrarily. The nearest nodes are chosen to minimize the weight of the constructed subgraph.
However, connecting to any k higher ranked nodes produces a k-connected graph as shown below

3

(Proposition 3.1).
If a node does not have enough nodes of higher rank to get connected to, it is connected to the

available higher ranked nodes. For example, to form a 2-connected graph, the highest ranked node
does not have any such node. The second highest ranked node has only one such node, the highest
ranked node. Every other node has at least two nodes to connect to. Obviously, the highest ranked
node is connected to at least two other nodes, but it is not the initiator of any connection. By “u
is connected to v”, we mean that u (the lower ranked node) is the initiator of the connection to v.
We use η(u) to denote the set of the nodes whom u is connected to.

Consider an enumeration of the nodes, v1, v2, . . . , vn, where vi be the node of ith rank; for any
i > j, r(vi) > r(vj). In the above scheme, each node vi is connected to the nearest min{k, n− i}
neighbors in {vi+1, vi+2, . . . , vn}. Clearly, |η(vi)| = min{k, n− i} and for the highest ranked node
vn, η(vn) = φ. We call this scheme nearest neighbor scheme or NN-scheme.

The following known proposition (Proposition 3.1) ensures that the NN-scheme constructs a
k-connected subgraph.

Proposition 3.1 Let G = (V,E) be a graph on V = {v1, v2, . . . , vn} with n ≥ k + 1 so that every
vi has at least min{k, n− i} neighbors in {vi+1, vi+2, . . . , vn}. Then G is k-connected.

Proof: If n = k + 1, then G is a complete graph. Assume that n ≥ k + 2 and suppose to the
contrary that G is not k-connected. Then there is a C ⊆ V with |C| ≤ k − 1 so that G − C is
disconnected. Let X, Y be two distinct connected components of G − C, and let x = maxvi∈X i
and y = maxvi∈Y i. For any i > x, if vi is a neighbor of vx, then vi must be in C. Now vx has
at most k − 1 (since |C| ≤ k − 1) and at least min{k, n − x} neighbors in {vx+1, vx+2, . . . , vn}.
Thus, we must have {vx+1, vx+2, . . . , vn} ⊆ C; hence x > y. The same argument applied on vy

gives y > x. Thus we have a contradiction. 2

Nearest Neighbor Tree (NNT). When k = 1, the NN-scheme produces a spanning tree. If k = 1,
each node (except the highest ranked node) connects to exactly one higher ranked one. Thus there
are n− 1 edges in the resulting graph. If we consider each edge is directed from the lower ranked
node to the higher ranked node, it is easy to see that there is no cycle in this graph. Therefore, the
resulting graph is a tree spanning all n nodes. We call this spanning tree a nearest neighbor tree,
or in short, NNT.

We use the following definitions and notations in the rest of the paper.

Let Nu(i) denote the ith nearest neighbor of u in the given complete graph Kn.

Definition 3.1 i-neighborhood. The i-neighborhood of a node u, denoted by Γu(i), is the set of
the i nearest neighbors of u in Kn; i.e., Γu(i) = {Nu(1),Nu(2), . . . ,Nu(i)}. Define Γu(0) = φ.

Definition 3.2 jth connection. Let w1, w2, . . . , w|η(u)|, in non-decreasing order of c(u,wt), be the
nodes in η(u). The connection u makes to wj , for any 1 ≤ j ≤ |η(u)|, i.e., the edge (u,wj), is
called the jth connection of u.

3.1 Random Ranking
While ranks can be chosen in many ways, in this paper, we focus on a simple randomized way of
choosing ranks: each node chooses a rank uniformly and independently at random from a totally
ordered set. A random ranking can be chosen as follows. We assume that each node u has a unique
identifier, id(u). Generate a random number p(u) ∈ [0, 1] for each node u. Now define, for any
two node u and v, r(u) < r(v) iff p(u) < p(v) or p(u) = p(v) and id(u) < id(v). Note that the

4

identifiers of the nodes also constitute a ranking of the nodes. However, here we are interested in
a random ranking. We will see later, using random ranking, in contrast to an arbitrary ranking,
we can have a better bound on the weight of the k-connected subgraph given by the NN-scheme
and on the time and message complexity of the distributed implementation of the NN-scheme.
Henceforth, we call the NN scheme with the random ranking as the Random-NN scheme.

Later, in the analysis of weight, time, and message complexity, we will use the following lemma
regarding the random ranking of the nodes.

Lemma 3.1 When a random ranking is used, the probability that an arbitrary node u makes the
jth connection to Nu(i) is j

i(i+1)
for i ≥ j.

Proof: Node u makes the jth connection to Nu(i) if and only if r(Nu(i)) > r(u) and there are
exactly j − 1 nodes in Γu(i − 1) with ranks higher than r(u). That is, r(u) is exactly (j + 1)st
among the ranks of these i + 1 nodes (u and the i nodes in Γu(i)) and Nu(i) is one of the j highest
ranked nodes among the i nodes in Γu(i).

Thus, the desired probability is 1
i+1

× j
i

= j
i(i+1)

for i ≥ j. 2

Remarks: 1) It is not possible for u to make the jth connection to a node closer than Nu(j).
2) The probability that u is able to make the jth connection is

∑n−1
i=j

j
i(i+1)

= 1− j
n

. That is, j out
of n nodes do not have their jth connection.

3.2 Average Neighborhood Size in Random-NN Scheme
In the NN-scheme, a node has to find the k closest nodes of higher rank to connect to. For a node
u, let v1, v2, . . . vi, . . . be the nodes, in non-decreasing order of c(u, vi), i.e., vi is the ith nearest
neighbor of u. For a given choice of ranks, let s(u) be the number of nodes that u has to examine
(starting from v1) before it finds the required number of nodes of higher rank. We call s(u) the size
of the neighborhood, which u has to look for, in order to find the connecting edges. The size of the
neighborhood measures the amount of local information needed by a distributed algorithm. The
quantity s(u) has a bearing on the message complexity in distributed implementation (Section 5).
For arbitrary choices of ranks, the average neighborhood size (i.e., (1/n)

∑
u s(u)) could be Ω(n).

The following lemma shows that the average neighborhood size decreases significantly if we use
the random ranking (Random-NN scheme). The notation Hn is used to denote the harmonic series∑n

i=1
1
i

= Θ(log n).

Lemma 3.2 Let an arbitrary node u makes the k-th connection to Nu(L). Then E[L] = k(Hn −
Hk) = Θ(k log n

k
).

Proof: Using Lemma 3.1,

E[L] =
n−1∑

i=k

k

i(i + 1)
i = k(Hn −Hk).

2

The above result shows that an efficient distributed algorithm can potentially be developed
for the Random-NN scheme. Consider an algorithm where each node examines its neighbors
beginning from the nearest neighbor until it finds the connecting edges. Lemma 3.2 says that using
a random ranking, on average, each node needs information from Θ(k log n

k
) nearest neighbors.

This is optimal in general, because this is the optimal local information needed to find any spanning
tree (k = 1) on a complete network. Korach et al. [21, 22] showed that any distributed algorithm

5

that constructs a spanning tree in a complete graph uses Ω(n log n) edges. That is, on average, each
node needs to use Ω(log n) edges; i.e., each nodes needs information from at least Ω(log n) other
nodes. Thus average neighborhood size for any spanning tree is at least Ω(log n). As a result, in
terms of locality, Random-NN scheme can be said to be optimal in general.

Another result by Korach et al. [21] implies that a much larger locality is required to find a
minimum spanning tree (MST). They showed that any distributed algorithm to find an MST on
a complete weighted graph uses Ω(n2) edges. The proof of this Ω(n2) bound on the number of
messages for finding an MST (cf. Theorem 1 in [21]) can easily be modified to show that Ω(n2)
is also a lower bound on the number of messages for finding an optimal k-connected spanning
subgraph for any k ≤ bn/2c − 1. This lower bound can be shown to hold also for a complete
metric graph. That is, each node uses information from Ω(n) other nodes on the average. Thus, the
average neighborhood size to find an optimal k-connected subgraph is Ω(n), which is exponentially
larger than that needed by the Random-NN scheme.

4 Weight of the k-Connected Subgraph
We analyze the weight of the k-connected graph constructed by the NN scheme with respect to
the minimum weight k-connected (sub)graph. Throughout the rest of the paper, we use Gk and
MKG to denote the k-connected graph constructed by the NN scheme and a minimum weight
k-connected graph, respectively.

Let G = (V, E,W) be any weighted undirected graph, where V is the set of vertices, E is the
set of edges and W =< c(u, v) >, where c(u, v) ≥ 0 is the weight of the edge (u, v) ∈ E. The
weight of G is defined by c(G) =

∑
(u,v)∈E

c(u, v).

Using the following known proposition (Proposition 4.1), we have c(MKG) ≥ k
2
c(MST).

Later, we use this lower bound of c(MKG) to obtain an upper bound for the approximation ratio
c(Gk)/c(MKG).

Proposition 4.1 Any k-edge-connected graph G has a spanning tree T with c(T) ≤ 2c(G)/k.

Proof: Let D be the bidirection of G; i.e., for each edge (u, v) in the undirected graph G, there
are two directed edges (u, v) and (v, u) in the directed graph D. Let w be any node in G. In the
graph G, there are k edge-disjoint paths from w to any other node. Then, in D, there are k edge-
disjoint directed paths from w to any other node. Edmonds [6] proved that if a directed graph has k
edge disjoint paths from a node w to any other node, then it contains k edge-disjoint arborescences
rooted at w. Thus D contains k edge-disjoint arborescences rooted at w. Let T be the underlying
tree of the least weight arborescence among them. Then c(T) ≤ c(D)/k = 2c(G)/k. 2

We can find an example where c(MKG) is exactly equal to k
2
c(MST). This shows that this

lower bound for the weight of MKG is tight. It is possible to construct a k-connected graph having
exactly kn

2
edges. Consider a k-cube graph where weight of each edge is one unit. Number of nodes

in a k-cube graph is n = 2k. Each node is uniquely identified by a k-tuple < b1, b2, . . . , bk > where
bi ∈ {0, 1} for 1 ≤ i ≤ k. There is an edge between any two nodes u and v if and only if the
k-tuples of u and v differ in exactly one component. A k-cube graph is k-connected and the degree
of each node is k. Thus, the number of edges is kn

2
. The weight of this k-connected graph is kn

2
and

the weight of an MST on this graph is n−1. The ratio of these weights is kn
2(n−1)

, which approaches
k
2

as n →∞.
Next we analyze the weight of Gk (output of the NN scheme) and its approximation ratios to

MKG for graphs with edge weights satisfying various characteristics.

6

4.1 Metric Graph
A metric graph is a complete weighted graph where the weights of the edges satisfy the triangle in-
equality. We show that for a metric graph, using any arbitrary ranking of the nodes, the NN scheme
outputs a k-connected subgraph with approximation ratio of O(k log n) to MKG (Theorem 4.1).

In the rest of this section, we use Ik to denote the sum of the first k positive integers, i.e.,∑k
i=1 i = 1

2
k(k + 1).

Theorem 4.1 On a metric graph G of n nodes, for any arbitrary ranking of the nodes, the weight
of the k-connected graph Gk constructed by the NN-scheme, c(Gk) = O(k lg n)c(MKG), where
MKG is a minimum k-connected subgraph of G.

Proof: The theorem holds trivially for n ≤ k. The following proof is constructed for n ≥ k + 1.
Construct a hamiltonian path S such that c(S) ≤ 2c(MST), where MST is a minimum span-

ning tree on G. Such a path S can be constructed as follows (e.g., see [4]): select any node to be
the root of the MST and perform a preorder tree walk on the MST. Let the order of the nodes, as
they are visited in the preorder walk, be v1, v2, . . . , vn. (Note that this order of the nodes is used
only to construct S. To construct Gk, we assume an arbitrary ranking, which can be different from
this ordering, of the nodes.) Now, add the edges (vi, vi+1) to S, for i = 1, 2, . . . , n− 1.

For any i, j such that 1 ≤ i ≤ j ≤ n, let Si,j denotes the sub-path < vi, vi+1, . . . , vj > and Vi,j

denotes the subset {vi, vi+1, . . . , vj}. Let Gi,j be the subgraph of G induced by Vi,j , and Fi,j be
the k-connected subgraph produced by the NN scheme running on Gi,j . Now, by induction on the
number of nodes |Vi,j|, we show that for any i and j such that |Vi,j| ≥ k + 1,

c(Fi,j) ≤ 2Ikc(Si,j) lg |Vi,j|. (1)

The basis of the induction is any i, j such that k + 1 ≤ |Vi,j| ≤ 2k + 1. The number of edges
in Fi,j is k|Vi,j| − Ik. Since the weights of the edges satisfy the triangle inequality, the weight of
any edge in Fi,j is at most c(Si,j). Thus, we have

c(Fi,j) ≤ (k|Vi,j| − Ik)c(Si,j) ≤ (k(2k + 1)− Ik)c(Si,j) ≤ 2Ikc(Si,j) lg |Vi,j|

by assuming |Vi,j| ≥ 3. For |V i, j| = 2, Inequality 1 holds trivially for any k ≥ 1.
Now we show the induction step. Consider any i, j such that |Vi,j| ≥ 2k + 2. Let m = |Vi,j|

and x = b(i + j)/2c. By the induction hypothesis,

c(Fi,x) ≤ 2Ikc(Si,x) lg |Vi,x| = 2Ikc(Si,x) lg dm/2e,
c(Fx+1,j) ≤ 2Ikc(Sx+1,j) lg |Vx+1,j| = 2Ikc(Sx+1,j) lg bm/2c.

For any node v ∈ Vi,x, if w1, w2 are the tth closest (to v) nodes of higher rank in Vi,x and Vi,j ,
respectively, then c(v, w2) ≤ c(v, w1); a similar statement holds for any node in Vx+1,j . Therefore,
for any node v, the weight of the tth connection chosen by v in Fi,x or Fx+1,j is at least as much as
that in Fi,j . Graph Fi,j has Ik more edges than the combined edges of Fi,x and Fx+1,j . The weight
of each such edge is at most c(S[i, j]). Therefore,

c(Fi,j) ≤ c(Fi,x) + c(Fx+1,j) + Ikc(Si,j)

≤ 2Ikc(Si,x) lg dm/2e+ 2Ikc(Sx+1,j) lg bm/2c+ Ikc(Si,j)

≤ 2Ik{c(Si,x) + c(Sx+1,j)} lg dm/2e+ Ikc(Si,j)

≤ 2Ikc(Si,j) lg dm/2e+ Ikc(Si,j)

≤ 2Ikc(Si,j) lg |Vi,j|,

7

where the last inequality holds for |V [i, j]| ≥ 3. Therefore, by construction of S,

c(Gk) = c(F1,n) ≤ 2Ikc(S) lg n ≤ 4Ikc(MST) lg n. (2)

The weight of the optimal k-connected graph c(MKG) ≥ k
2
c(MST). Thus, we have

c(Gk) ≤ 4(k + 1)(lg n)c(MKG).

2

Remarks. 1. Putting k = 1 in Inequality 2, we get c(NNT) = c(G1) ≤ 4(log n)c(MST).
However, for this special case, k = 1, with the help of a lemma by Rosenkrantz, Stearns, and
Lewis [33, Lemma 1] concerning the traveling salesman problem, we can achieve a better bound
of dlog nec(MST), improved by a factor of 4.
2. The above bound is asymptotically tight in general. Consider a geometric instance where n
nodes are placed on a straight line equally apart by a unit distance and the weight of the between
any two nodes is their distance on the line. There is a ranking of the nodes, for which, the weight
of the NNT (i.e., k = 1) is Θ(n log n). In fact, a random ranking of nodes (i.e., the Random-NN
scheme) can be shown to give a spanning tree of the expected weight Θ(n log n). The weight of
MST on this geometric instance is Θ(n), which gives an approximation factor of Θ(log n).

Notice that the above theorem also applies to an important special case, namely that of a ge-
ometric graph: the nodes are coordinates in a d-dimensional space and the weight of the edge
between any two nodes is the Euclidean distance (or any Minkowski distance) between them. In
the next section, using the Euclidean distance, we show that the algorithm yields a better approxi-
mation of O(k) when nodes are randomly distributed in a 2-dimensional space.

4.2 Random Graph with Uniform Distribution of Nodes on a Plane
In this section, we analyze the weight of the k-connected graph given by the Random NN-scheme
in a complete geometric graph where n nodes are randomly and uniformly distributed in a unit
square [0, 1]2 and the weight of the edge between any two nodes is the Euclidean distance between
them. In this model, the probability that a particular node lies within a particular region inside the
unit square is directly proportional to the area of the region. We show the following theorem:

Theorem 4.2 For n points distributed randomly and uniformly in [0, 1]2, the approximation guar-
antee of the Random-NN scheme is E[c(Gk)]/E[c(MKG)] = O(k).

To show the above theorem we first upper bound the weight of the k-connected subgraph con-
structed by the Random-NN scheme.

Lemma 4.1 For n points distributed randomly and uniformly in [0, 1]2, the expected weight of Gk,
the subgraph constructed by the Random NN-scheme, is O(k2

√
n), i.e., E[c(Gk)] = O(k2

√
n).

Proof: Consider an arbitrary node u, and the concentric circles centered at u with radii ri = 2i√
n

for i = 1, 2, . . . , m. Considering a unit square, the maximum distance between any two nodes is√
2. Thus, rm−1 <

√
2 ≤ rm, i.e., the maximum number of these circles is m < 1

2
lg n + 3

2
. Let Ci

be the set of the nodes in the circle with the radius ri and Ri = Ci − Ci−1 for i ≥ 2 and Ri = Ci

for i = 1. For a node v ∈ Ri, The weight of the edge (u, v) is c(u, v) ≤ ri.
Let Ai be the event that u makes the jth connection to a node v ∈ Ri. By Lemma 3.1, the

probability that u makes the jth connection to any node in Γu(y−1)−Γu(x−1) is
y−1∑
i=x

j
i(i+1)

= j
x
− j

y
,

8

where j ≤ x < y. For i ≥ 2, |Ci−1| ≥ 1 since Ci−1 contains at least one node, which is u.
Considering the fact that u can be close to the border of the unit square, the probability that a
particular node, other than u, is in Ci−1 is p ≥ 1

4
of the area of Ci−1 = 1

4
πr2

i−1 = 22iπ
16n

. Thus for
i ≥ 2,

Pr{Ai} =
n∑

x=j

n∑
y=x

(
j

x
− j

y

)
Pr{|Ci−1| = x ∧ |Ci| = y}

≤
n∑

x=1

n∑
y=x

j

x
Pr{|Ci−1| = x ∧ |Ci| = y} =

n∑

x=1

j

x
Pr{|Ci−1| = x}

=
n∑

x=1

j

x

(
n− 1
x− 1

)
px−1(1− p)n−x =

j

np
{1− (1− p)n} ≤ j

np
≤ 16j

22iπ
.

Let cj(u) be the weight of the edge given by the jth connection of u. We get

E[cj(u)] ≤ Pr{A1}r1 +
m∑

i=2

Pr{Ai}ri

≤ r1 +
m∑

i=2

16j

22iπ
ri =

1√
n

(
2 +

8j

π
− 4

√
2j

π
√

n

)

By linearity of expectation for all connections of n nodes,

E[c(Gk)] = n×
k∑

j=1

E[cj(u)] ≤ √
n

{
2 +

8Ik

π

}
− 4

√
2Ik

π
= O(k2√n).

2

Proof: (of Theorem 4.2) It is well-known that the weight of an MST in the above graph model
is Θ(

√
n) (e.g., [34]). The weight of the optimal k-connected graph c(MKG) ≥ k

2
c(MST) =

Θ(k
√

n). Thus from Lemma 4.1, we have an approximation ratio of O(k). 2

4.3 Graph with Random Edge Weights
In this section, we analyze the weight of the k-connected subgraphs in another well-studied random
graph model (e.g., see [10, 8, 12]) where the weights of the edges are selected randomly from [0, 1]
according to a uniform distribution, i.e., U(0, 1). The following theorem shows the approximation
guarantee of Random-NN scheme.

Theorem 4.3 The approximation guarantee of the Random NN-scheme on a complete graph Kn,
where the weights of the edges are chosen randomly following the distribution U(0, 1) is 2Hn −
2Hk+1 + 1 = O(log n

k
).

We note that this model does not necessarily generate a metric graph, but our algorithm still
gives a significantly better approximation of O(log n

k
). Frieze [10] showed that in this model, the

expected weight of the MST converges to a constant ζ(3) = 1.202 · · · as n → ∞. Here we
show a lower bound of 1

2
Ik for the expected weight of the MKG (Lemma 4.3) and show that the

expected weight of Gk is Ik(Hn−Hk+1 + 1
2
) (Lemma 4.4). Thus, we have an approximation ratio

of 2Hn − 2Hk+1 + 1 = O(log n
k
). We now proceed to show the following lemmas, which prove

the above theorem.

9

The proof of Lemma 4.2 can be found in [28, Page 195].

Lemma 4.2 [28] Let Xi be the ith smallest number among n independent uniform random vari-
ables over [0, 1]. Then E[Xi] = i

n+1
.

Lemma 4.3 Let MKG be a minimum weight k-connected subgraph on a complete graph Kn,
where the weights of the edges are randomly chosen according to the uniform distribution U(0, 1).
Then E[c(MKG)] ≥ 1

2
Ik.

Proof: Consider an arbitrary node u. Let the weights of the n − 1 edges adjacent to u in Kn be
e1, e2, . . . , en−1 in non-decreasing order. These edge weights are chosen randomly and indepen-
dently from U(0, 1). Thus, by Lemma 4.2, E[ei] = i

n
. Since the MKG is k-connected, the degree

of each node in the MKG is at least k. Thus the sum of the weights of the edges adjacent to u in
MKG is at least

∑k
i=1 ei and the expected sum of the weights is at least

E

[
k∑

i=1

ei

]
=

k∑

i=1

E[ei] =
1
n

Ik

Using the fact that each edge is counted by at most two nodes and by linearity of expectation
for n nodes,

E[c(MKG)] ≥ 1
2
× n× 1

n
Ik =

1
2
Ik

2

Lemma 4.4 Let Gk be the k-connected subgraph given by the Random-NN scheme on a com-
plete graph Kn, where the weights of the edges are chosen randomly according to the distribution
U(0, 1). Then E[c(Gk)] = Ik(Hn −Hk+1 + 1

2
).

Proof: Again, consider an arbitrary node u. Let the weight of the (n− 1) edges adjacent to u in
Kn be e1, e2, . . . , en−1 in non-decreasing order. Then E[c(u,Nu(i))] = E[ei] = i

n
(Lemma 4.2).

The event that u makes the jth connection to Nu(i), j ≤ i, is independent of the weights of the
edges adjacent to u. By using Lemma 3.1, the expected weight of the jth connection by u is

n−1∑

i=j

j

i(i + 1)
E[ei] =

j

n
(Hn −Hj)

Using linearity of expectation, the expected total weight of all connections by the n nodes is

E[c(Gk)] = n
k∑

j=1

j

n
(Hn −Hj) = IkHn −

k∑

j=1

jHj

Using the identity
k∑

j=1

jHj = Ik(Hk+1 − 1/2) (see [13], Page 56, Eq. 2.57),

E[c(Gk)] = Ik(Hn −Hk+1 + 1/2)

2

10

4.4 Maximum Degree in the Geometric Instances
We assume that the nodes are points in a d-dimensional space and the weight of an edge between
any two nodes is the Euclidean distance between them. We show the following theorem:

Theorem 4.4 In a geometric graph, the maximum degree of a node in the k-connected spanning
subgraph constructed by the Random-NN scheme is O(k log n) with high probability, i.e., with
probability at least 1− 1/nΩ(1).

We show the result assuming d = 2, i.e., the nodes (points) are on a plane; however, this result
can be generalized to any constant d. Note that for analyzing the maximum degree of a node, we
do not assume any particular distribution of the nodes; we consider an arbitrary placement of the
nodes in a plane. To show the desired bound on the maximum degree, we first need the following
lemma.

Lemma 4.5 Let V be the set of the nodes in the plane. If a node v ∈ V makes its longest con-
nection, i.e., the |η(v)|th connection, to node w, we say that a charge of 1 is placed on every node
u in the closed ball B(v, c(v, w)), where c(u, w) is the weight of the edge (u,w), i.e., the distance
between u and w. Then, the total charge on any node u is O(k log n), with high probability.

Proof: Consider any node u, and partition the 2π angle around u into 6 cones with each of the
angles be π/3. Consider one such cone. We prove that the total charge on u from the nodes in
this cone is O(k log n), with high probability. Order the points in the cone as v1, v2, v3, . . . in non-
decreasing order of their distances from u (see Fig. 1). Node vi places a charge on u only if the
rank of vi is in the top |η(vi)| among the ranks of the nodes v1, v2, . . . vi. Thus, the probability that
vi places a charge on u is at most |η(vi)|/i ≤ k/i. Therefore, the total expected charge on u from
these nodes is at most

∑n−1
i=1 (k/i) ≤ k log n.

i

3

2v
1v v

v

u

Figure 1: Each wedge around the node u is 60◦. v1, v2, v3 . . . are the nodes in one wedge in non-
decreasing order of their distances from u.

In order to bound the maximum charge on any node, we use a variant of the Chernoff bound
[Lemma 4.6] that holds in the presence of dependencies among the variables.

Lemma 4.6 ([30]) Let X1, X2, . . . , Xl ∈ {0, 1} be random variables such that for all i, and for
any S ⊆ {X1, . . . , Xi}, Pr[Xi+1 = 1|∧j∈S Xj = 1] ≤ Pr[Xi+1 = 1]. Then for any δ > 0,
Pr[

∑
i Xi ≥ µ(1 + δ)] ≤ (eδ

(1+δ)1+δ)
µ, where µ =

∑
i E[Xi].

Let E(v) be the event that v places a charge on u. In order to use the Chernoff bound, we need
to show that, for any i, and any subset S ⊂ {v1, . . . , vi}, Pr[E(vi+1)|

∧
w∈S E(w)] ≤ Pr[E(vi+1)].

First, suppose c(w, vi+1) ≥ c(w, u) for each w ∈ S. Then, the events
∧

w∈S E(w) do not place
any constraint on rank(vi+1), relative to rank(vj), j ≤ i, and therefore, Pr[E(vi+1)|

∧
w∈S E(w)] =

Pr[E(vi+1)].
Next, suppose c(w, vi+1) < c(w, u) for some w ∈ S. If the event E(w) occurs, then rank(w)

is in the top |η(w)| ranks among the ranks of the nodes v1, v2, . . . vi+1, and the probability of
rank(vi+1) being in the top |η(vi+1)| ranks goes down; that is, Pr[E(vi+1)|

∧
w∈S E(w)] ≤ Pr[E(vi+1)].

11

Next, we apply the Chernoff bound with δ = 5k log n
µ

− 1, where µ is the expected charge on u.
Since µ ≤ k log n, δ > 0. Let X be the total charge on u. Then,

Pr{X ≥ 5k log n} = Pr{X ≥ (1 + δ)µ} <

(
eδ

(1 + δ)1+δ

)µ

≤
(

e

1 + δ

)(1+δ)µ

≤ 1
n3k

.

Thus, with probability at least 1− 1/n3k, where k ≥ 1, the total charge on u is O(k log n). Using
the union bound, this holds simultaneously for all nodes with probability at least 1− 1/n2k. 2

Proof: (of Theorem 4.4) If a node u connects to v, u must place a charge on v (see Lemma 4.5).
Thus, the total charge on v is an upper bound on the number of nodes that are connected to v.
Further, η(v) ≤ k. Thus, the degree of v is at most k + O(k log n) = O(k log n) with probability
at least 1− 1/n2k. 2

5 Distributed Implementation
In this section, we give an efficient distributed implementation of the Random-NN scheme. Our
distributed algorithm takes O(log n

k
) time and expected O(nk log n

k
) messages to construct a k-

connected graph.

Model of distributed computation. We consider the well-studied point-to-point communication
model, where we are given a complete network of n nodes (processors) with distinct identifiers
(we assume O(log n)-size ids) and each node knows the (nonnegative) weights associated with its
incident edges (bidirectional communication links) but not the identifiers of its neighbors (see e.g.,
[31, 21]). The communication between any two nodes happens by sending/receiving messages
along the edge between them and all nodes perform the same algorithm. We assume that O(log n)
bits can be transferred in one step per edge and a node can send messages through all its incident
links at the same time (see e.g., [31]).

The following distributed algorithm, in Figure 2, is a realization of the Random NN-scheme
in a distributed complete network. Here, each node chooses its rank by choosing a number uni-
formly and independently at random from [0, 1].1 Then each node, in rounds, keeps sending FIND
messages to its neighbors beginning with the nearest neighbor, in non-decreasing order of the edge
weights, until it receives k ACCEPT messages. The FIND messages contain the sender’s random
number (chosen from [0, 1]) and id. The receiver of a FIND message compares its rank with the
rank of the sender. If the receiver’s rank is higher than the sender’s rank, the receiver sends an AC-
CEPT message back to the sender of the FIND message. Note that we do not make any assumption
about the weights of the edges in designing the distributed algorithm and in analyzing its time and
message complexity. However, as we have seen in the previous section, the quality (the weight) of
the k-connected subgraph constructed by this algorithm, with respect to the quality of the optimal
k-connected subgraph, depends on the properties satisfied by the weights of the edges.

Message and Time Complexity. It is interesting to analyze the message complexity and the time
complexity, and their tradeoffs in the distributed model we consider (i.e., point to point commu-
nications with all processors forming a clique). A naive method for finding the k nearest higher
ranked nodes is: each node probes one neighbor at a time, to find the ranks of its neighbors, in

1The ranks can be also chosen uniformly from, say, [1, n4] and the ranks will be unique with high probability. Or,
as is done in the algorithm, we assume that each node has a unique label which is used to break the ties. This does not
alter any of our proofs or the results.

12

Distributed k-connected graph algorithm

Input: A complete graph Kn = G(V, E). We assume each node has a unique id from a totally ordered set.
Output: A k-connected subgraph Gk. On termination, each node knows which of its adjacent edges are in
Gk.

Each node u ∈ V executes the following protocol independently and simultaneously:

1. Choose the rank r(u) as follows: generate a random number p(u) ∈ [0, 1]. We say r(v) > r(u) if
and only if [p(v) > p(u)] or [p(v) = p(u) and id(v) > id(u)].

2. Find |η(u)| nearest nodes w with r(w) > r(u), and add the edges (u,w) to Gk. Find the w’s as
follows:

t ← 1 I t is the round number

REPEAT I A FIND message includes p(u) and id(u)
If t = 1, u sends FIND messages to all v ∈ Γu(k) simultaneously;
If t ≥ 2, u sends FIND messages to all v ∈ [Γu(2t−1k)− Γu(2t−2k)] simultaneously;
t ← t + 1

UNTIL u received k ACCEPT messages or probed all of its neighbors.

3. Upon receipt of a FIND message from any v, send back an ACCEPT message to v iff r(u) > r(v).

Figure 2: Distributed implementation of the Random-NN scheme.

nondecreasing order of edge weights. By Lemma 3.2, the expected number of the messages each
node needs to exchange is O(k log n

k
) to find the k higher ranked nodes (Note that a node made

its kth connection means that it already made all the required connections). This gives an expected
total of O(kn log n

k
) messages. However, the time complexity of this implementation is Θ(n) since

there will be a node (the highest ranked node) which has to probe all its (n− 1) neighbors. On the
other hand, if we want to get a better time complexity at the expense of more messages, consider a
different protocol: each node sends its rank (the random number and the id) to all its neighbors in
one step (one round); this finishes in O(1) time, but consumes Θ(n2) messages.

To reduce both the time complexity and the message complexity, we consider the hybrid pro-
tocol given in Figure 2, where in the first round, a node probes the first k nearest neighbors and in
the subsequent rounds t ≥ 2, it probes the next 2t−2k nearest neighbors until it succeeds in finding
the k nearest higher ranked neighbors. Below we present the analysis of the time and message
complexity of this protocol.

Theorem 5.1 The protocol of Figure 2 takes O(lg n
k
) time and uses expected O(kn lg n

k
) messages.

Proof: A node u needs 1 + dlg n−1
k
e rounds to probe all of its n − 1 neighbors. Therefore, the

protocol takes at most 1+dlg n−1
k
e ≤ 2+lg n

k
time. To bound the message complexity, we calculate

the expected number of the messages a node sends before it finds the k neighbors of higher ranks.
In the tth round for t ≥ 2, a node u sends FIND messages to all nodes in Γu(2

t−1k)−Γu(2
t−2k).

Using Lemma 3.1, the probability that u makes the kth connection in the round t is

2t−1k∑

i=2t−2k+1

k

i(i + 1)
= k

{
1

2t−2k + 1
− 1

2t−1k + 1

}

= k

{
2

2t−1k + 2
− 1

2t−1k + 1

}
≤ k

2t−1k + 1
≤ 1

2t−1
.

13

Notice that the above upper bound for the probability can also be used for t = 1 as 1/2t−1 evaluates
to 1 when t = 1. The number of SEND messages u sends in the first t rounds is 2t−1k. Thus, the
expected number of SEND messages by u is at most

1+dlg n−1
k
e∑

t=1

(2t−1k)
1

2t−1
≤ 2k + k lg

n

k
.

Moreover, u receives at most k ACCEPT messages. Thus, using linearity of expectation for n
nodes, the expected total number of the messages is 3kn + kn lg n

k
. 2

Remarks. 1. In the distributed model we consider (i.e., point to point communication with all
processors forming a clique), a modification of the proof given by Korach, Moran, and Zaks in [21]
(which was given for MST) shows a lower bound of Ω(n2) on the number of the messages needed
to construct an optimal k-connected spanning subgraph (for any 1 ≤ k ≤ bn/2c−1) in a complete
weighted metric graph; this lower bound is independent of the length of the messages. Thus, in
general, the expected message complexity of our randomized algorithm is significantly better than
the deterministic lower bound. Also, the message complexity of our algorithm is optimal in the
sense that Ω(n log n) is a lower bound on the number of the messages needed to construct any
spanning tree [22]. A lot of work had been devoted to finding spanning tree (equivalent to leader
election) algorithms having O(n log n) message complexity in this model (see e.g.,[22, 1, 17]) and
our protocol also gives a very simple spanning tree and leader-election protocol that has O(n log n)
(expected) message complexity.
2. It is also quite easy to adapt the above algorithm for a “broadcast” setting which is a typical
model for wireless networks (see e.g., [27]). In such a setting, nodes are assumed to be in a
geometric space (e.g., a plane) and a node communicates with its neighbors by broadcasting a
message. All nodes within the broadcast range can receive the message (ignoring collisions). To
implement our algorithm, a node has to progressively increase its broadcast range (in a similar
doubling fashion) till it finds the nearest nodes of higher ranks. We analyze such a strategy in
detail in a separate paper which also contains experimental results in the context of the wireless
sensor networks. [20].

6 Conclusion and Further Work
We showed and analyzed a simple randomized approximation scheme for constructing a low-
weight k-connected spanning subgraph. We also presented its efficient implementation in a com-
plete network of processors. The proposed algorithm has low time and message complexity while
giving a relatively good approximation ratio for the metric graphs, random geometric graphs, and
random edge-weight graphs. It is interesting to see whether the ideas in this paper can be used to
design an efficient distributed algorithm for the more challenging problem of finding a k-connected
subgraph in an arbitrary general graph (need not be complete). The local nature of the NN-scheme
seems suitable for designing a simple and efficient dynamic algorithm (especially in a distributed
setting), where the goal is to maintain a k-connected graph of good quality, as nodes are added or
deleted. This looks promising for future work.

14

References
[1] Y. Afek and E. Gafni. Simple and efficient distributed algorithms for election in complete networks.

In Proc. 22nd Ann. Allerton Conference on Communication, Control, and Computing, pages 689–698,
1984.

[2] J. Cheriyan, M. Kao, and R. Thurimella. Scan-first search and sparse certificates: an improved parallel
algorithm for k-connectivity. SIAM Journal of Computing, 22(1):157–174, 1993.

[3] J. Cheriyan, S. Vempala, and A. Vetta. Approximation algorithms for minimum-cost k-vertex con-
nected subgraph. In 34th Annual ACM Symposium on Theory of Computing (STOC), pages 206–312,
2002.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1990.
[5] A. Czumaj and A. Lingas. On approximability of the minimum-cost k-connected spanning subgraph

problem. In Proceedings of 10th ACM-SIAM Symposium on Discrete Algorithms, pages 74–83, 2002.
[6] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, R. Rustin Ed., Academic Press,

New York, pages 91–96, 1973.
[7] M. Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the distributed min-

imum spanning tree problem. In Proceedings of Symposium on Theory of Computing (STOC), June
2004.

[8] J. Fill and M. Steele. Exact expectations of minimal spanning trees for graphs with random edge
weights. In Proceedings of the Symposium ”Stein’s Method and Applications: A Program in Honor of
Charles Stein”, 2004.

[9] A. Frank. Connectivity and network flows. Survery Chapter in Handbook of Combinatorics, Eds. R.
Graham, M. Grotschel and L. Lovasz, Elsevier Science B.V., pages 111–177, 1995.

[10] A. Frieze. On the value of a random minimum spanning tree problem. Discrete Applied Mathematics,
10(1):47–56, 1985.

[11] R. Gallager, P. Humblet, and P. Spira. A distributed algorithm for minimum-weight spanning trees.
ACM Transactions on Programming Languages and Systems, 5(1):66–77, January 1983.

[12] D. Gamarnik. The expected value of random minimal spanning tree of a complete graph. In Proceed-
ings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), January 2005.

[13] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for Computer Science,
Second Edition. Addison-Wesley Publishing Company, Inc., 1989.

[14] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston,
MA, 1996.

[15] W. Hohberg. How to find biconnected components in distributed networks. Journal of Parallel and
Distributed Computing, 9(4):374–386, 1990.

[16] S. Huang. A new distributed algorithm for the biconnectivity problem. In Proceedings of International
Conference on Parallel Processing, volume III, pages 106–103, 1989.

[17] P. Humblet. Selecting a leader in a clique in o(n log n) messages. In Proc. 23rd conf. on decision and
control, pages 1139–1140, 1984.

[18] M. Imase and B.M. Waxman. Dynamic steiner tree problem. Siam J. Discrete Math, 4(3):369–384,
1991.

[19] E. Jennings and L. Motyckova. Distributed algorithms for sparse k-connectivity certificates. In Pro-
ceedings of the Symposium on Principles of Distributed Computing (PODC), page 180, 1996.

[20] M. Khan, V.S.A. Kumar, and G. Pandurangan. Local algorithms for construct-
ing approximate minimum spanning trees with applications to wireless sensor net-
works. Technical report, Department of Computer Science, Purdue University, 2005.
http://www.cs.purdue.edu/homes/gopal/localapproxmst.pdf.

[21] E. Korach, S. Moran, and S. Zaks. The optimality of distributive constructions of minimum weight

15

and degree restricted spanning trees in a complete network of processors. SIAM Journal of Computing,
16(2):231–236, 1987.

[22] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds for some distributed algorithms for a com-
plete network of processors. Theoretical Computer Science, 64:125–132, 1989. Conference version:
Proceedings of the ACM Symposium on the Principles of Distributed Computing (PODC) 1984.

[23] G. Kortsarz and Z. Nutov. Approximating node connectivity problem via set covers. In 3rd Inter-
national workshop on approximation algorithms for combinatorial optimization (APPROX), pages
194–205, 2000.

[24] G. Kortsarz and Z. Nutov. Approximation algorithm for k-node connected subgraphs via critical
graphs. In 36th Annual ACM Symposium on Theory of Computing (STOC), pages 206–312, 2004.

[25] G. Kortsarz and Z. Nutov. Approximating min-cost connectivity problems. Survey Chapter in Hand-
book on Approximation Algorithms an Metaheuristics, Ed. T. F. Gonzalez, Chapman & Hall, 2006.

[26] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally. In Proceedings of the
Symposium on Principles of Distributed Computing (PODC), 2004.

[27] X. Li. Algorithmic, geometric and graphs issues in wireless networks. Journal of Wireless Communi-
cations and Mobile Computing (WCMC), 3(2):119–140, 2003.

[28] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithm and Probabilistic
Analysis. Cambridge University Press, first edition, 2005.

[29] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks. Distributed
Computing, 14(2):97–100, 2001.

[30] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of the
chernoff-hoeffding bounds. SIAM Journal on Computing, 26:350–368, 1997.

[31] D. Peleg. Distributed Computing: A Locality Sensitive Approach. SIAM, 2000.
[32] R. Rajaraman. Topology control and routing in ad hoc networks: A survey. SIGACT News, 33:60–73,

2002.
[33] D. Rosenkrantz, R. Stearns, and P. Lewis. An analysis of several heuristics for the traveling salesman

problem. SIAM J. Comput., 6(3):563–581, 1977.
[34] M. Steele. Asymptotics for euclidian minimal spanning trees on random points. Probability Theory

and Related Fields, 92:247–258, 1992.
[35] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and biconnected components

(extended abstract). In Symposium on Principles of Distributed Computing (PODC), pages 28–37,
1995.

[36] Z. Toroczkai and K. Bassler. Jamming is limited in scale-free systems. Nature, 428:716, 2004.

16

