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ABSTRACT

Traditionally, the performance of distributed algorithms has
been measured in terms of time and message complexity.
Message complexity concerns the number of messages trans-
mitted over all the edges during the course of the algorithm.
However, in energy-constraint radio or wireless networks
(e.g., sensor networks), energy is a critical factor in measur-
ing the efficiency of a distributed algorithm. Transmitting a
message between two nodes has an associated cost (energy)
and moreover this cost can depend on the two nodes (e.g.,
the distance between them among other things). Thus in ad-
dition to the time and message complexity, it is important
to consider energy complexity that accounts for the total
energy associated with the messages exchanged among the
nodes in a distributed algorithm, and design energy-efficient
distributed algorithms for energy-constraint networks.

This paper addresses the minimum spanning tree (MST)
problem, an important problem in distributed computing.
We study energy-efficient distributed algorithms for the Eu-

clidean MST problem assuming random distribution of nodes.

We show a non-trivial lower bound of Q(logn) on the en-
ergy complexity of any distributed MST algorithm. We
then give a distributed algorithm that constructs an opti-
mal MST with energy complexity O(logn) on average and
O(log nloglogn) with high probability. This is an improve-
ment over the previous best known bound on the average
energy complexity of Q(log®n). All the above results as-
sume that nodes do not know their geometric coordinates.
If the nodes know their own coordinates, then we give an
algorithm with O(1) energy complexity (which is the best
possible) that gives an O(1) approximation to the MST.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems — Computations on discrete
structures; G.2.2 [Discrete Mathematics]: Graph Theory
— Graph algorithms
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1. MODEL AND PROBLEM

Network Model. We assume that the network is modeled
as a weighted undirected graph G = (V, E,w) where V is
the set of the nodes (vertices) and F is the set of the (bi-
directional) communication links between them and w(e) is
the weight of the edge e € E. The weight w(u,v) represents
the energy associated with transmitting a message between u
and v. The graph G has the following underlying geometry.
The nodes are set of |V| = n points distributed randomly in
a unit square and two nodes are connected if they are within
distance r of each other (the graph induced is also known
as a random geometric graph [11]). G can be considered as
a weighted unit disk graph. This is a standard geometric
graph model that has been widely used in the literature for
modeling communications networks in a plane, e.g., wireless
and ad hoc (sensor) networks. Without loss of generality,
we assume that r is chosen such that G is connected.
Formally, the energy complexity of the distributed algo-
rithm is defined as 7", w;, where w; is the weight of the
edge that connects the nodes exchanging the ith message,
and m is the total number of messages exchanged by the al-
gorithm. The weight of an edge is a function of the distance
between the two points. Although our results are general-
izable to a wide variety of weight functions, for concrete-
ness, we assume that w(u,v) is proportional to some fixed
power (denoted as «) of the distance between v and v, i.e.,
w(u,v) = a(d(u,v))® where d(u,v) is the (Euclidean) dis-
tance between u and v, and a is some fixed constant. The
motivation for this comes from energy requirements in a ra-
dio (wireless) communication paradigm: to transmit a mes-
sage over a distance r, the required energy is (proportional
to) r%, where typically « is 2 [7]. In this paper, unless
otherwise stated, we assume o = 2. (Our results can be
generalized to other values of « as well.)
Distributed Computing Model. Each node in G hosts
a processor with limited initial knowledge. Each node has
unique identity numbers and at the beginning of computa-
tion, each vertex v accepts as input its own identity number.
Nodes do not even know the weights of its incident edges (or
equivalently the distance to its neighbors). We assume that
the communication is synchronous and occurs in discrete
time steps. The energy associated with a bi-directional com-
munication between neighbors u and v is ©(w(u,v)), i.e., if
u wants to send a message to v and v replies back to u



then the cost associated with this bi-directional communi-
cation is 2w(u,v). (A message is of size O(logn) bits). In
a one-directional communication, when a node u can send a
message to a distance d < r, we assume that any node within
distance d can receive the message. The cost associated with
this message is (proportional to) d?. This is called as local
broadcasting and is a feature of radio and wireless networks.
We assume that a node can receive messages from more than
one neighbor in the same time step. In this model, we ig-
nore “collisions” between messages; such issues do arise in
real-world radio and wireless networks. However, the colli-
sions can easily be resolved by a constant-factor increase in
energy complexity of a distributed algorithm [10].

MST Problem. In the above model, we study the Eu-
clidean MST problem: given a network G = (V, E, w), find
a tree T" spanning V such that >, , o7 d(u, v) is minimized.
We actually solve a generalized version of the above prob-
lem: find a tree T' spanning V' such that 3, crd*(u,v)
is minimized where « is a (small) positive number. The
motivation for this objective function comes from energy re-
quirements in a wireless communication paradigm as men-
tioned earlier. It can easily be shown (e.g., using Kruskal’s
algorithmic construction [3]) that the MST which minimizes
> (uwyer Au,v) also minimizes }° ., ) d*(u,v) for any
a > 0. In the rest of the paper, we use the terms cost
and quality interchangeably. Note that a plays a role in
determining the approximation ratio guarantee (for exact
algorithms, it does not matter). Although our results can
be generalized to any «, for quality of an MST, we focus on
a =1 (the Euclidean MST) and a = 2.

Computing an MST by a distributed algorithm is a funda-
mental task, as the following distributed computation can be
carried over the best backbone of the communication graph.
Two important applications of MST are in broadcasting [10,
1] and data aggregation [8, 10]. In wireless networks, an
MST can be used as a communication tree to minimize en-
ergy consumption since it minimizes Z(W})eT d*(u,v).

2. OUR RESULTS

We show tight upper and lower bounds on the energy com-
plexity of distributed MST algorithms. We first show that
Q(logn) is a lower bound on the energy complexity of any
distributed MST algorithm. In fact, we show that this is the
lower bound for constructing any spanning tree in the net-
work. We then give a distributed algorithm that constructs
an optimal MST with O(log n) energy complexity on average
and O(log nloglogn) energy complexity with high probabil-
ity (whp). Throughout the paper, “whp” means with prob-
ability tending to 1 as n — oo, where n is the number of
nodes in the network. The previous best known bound on
the average energy complexity for distributed MST in this
model was Q(log”n) [10]. This bound was obtained in [10]
for a natural implementation of the classical algorithm of
Gallager, Humblet, and Spira (henceforth called as GHS al-
gorithm) [5]. All the above results assume that nodes do not
know their geometric coordinates. If nodes know their own
coordinates, then we give an algorithm with O(1) energy
complexity that gives an O(1) approximation to the MST.
We note that (1) is a lower bound on the energy complexity
of any distributed MST algorithm (even with nodes knowing
their coordinates) since any algorithm has to communicate
at least once using the tree edges of an MST. For an instance
specified by the set V' of nodes, we denote this lower bound

as LMST(V) = 3, vyemsrv) (A, v))?, where MST (V)
denotes the minimum FEuclidean spanning tree on V. If the
nodes are distributed uniformly at random, it is well-known
that Z:(W))E]VIST(V)(d(u,v))2 =Q(1) (e.g., see [10]).

Although message complexity of a distributed algorithm
directly influences the energy complexity, algorithms that
have optimal message complexity are not necessarily en-
ergy optimal. The message-optimal GHS algorithm [5] uses
O(nlogn + |E|) messages. It was shown in [10] that this al-
gorithm requires Q(log® n) energy on average under random
distribution; in contrast we show that there is an algorithm
that takes O(log n) energy on the average and this is asymp-
totically optimal. There are distributed algorithms that con-
struct the MST optimally in terms of time complexity [4,
12]. But these algorithms require much more messages than
GHS algorithm, and consequently require a lot more energy.
The distributed algorithm of [9, 10] requires only O(logn)
energy, but it gives an O(log n)-approximation to the MST.
The work of [10] raised the question of whether there exists
a distributed algorithm of O(logn) energy complexity and
this paper answers this in the affirmative.

The details of the algorithms, results, and proofs of the
theorems can be found in the full version of this paper [2].

3. LOWER BOUND

We show a non-trivial lower bound on the energy complex-
ity in the following theorem (Q(1) lower bound is trivial).

THEOREM 3.1. Any distributed algorithm needs Q(logn)
energy whp to construct a spanning tree.

This bound holds under the following assumptions: (1) the
model is synchronous (hence the lower bound applies to
asynchronous model as well); (2) any non-empty set of pro-
cessors may start the algorithm; a processor that is not
started remains asleep until a message reaches it and can
be awakened spontaneously; (3) no assumption is made on
the size of the messages; this assumption only strengthens
our bound; (4) nodes do not have any information on their
geometric coordinates.

4. AN ENERGY-OPTIMAL ALGORITHM

In this section, we give an energy-optimal distributed MST
algorithm of energy complexity O(log n), matching the lower
bound shown in the previous section. We assume that graph
G (cf. Section 1) is connected by setting the transmission

cologn
n

radius r = for some constant ¢z (cf. [6, 11]).

Our distributed MST algorithm consists of two steps, each
of which uses the GHS algorithm with some modifications
(described later). For constants ci, c2, and 8 (as defined
above and in Theorem 4.1), our algorithm works as follows.
Step 1:

1. Each node sets its radius to ﬁ (i-e., it communicates
with nodes only within this distance).

2. Run the modified GHS algorithm.

Step 2:

1. Each component computes its size, the number of nodes
it contains. If the size is greater than $log?n, then it con-
siders itself as a giant component.

. . . log
2. Each node increases its radius to y/ 2287,

3. Run the modified GHS algorithm on the remaining com-
ponent (the giant component does not participate but only
accepts connection messages from small components.)



Our algorithm crucially depends on the following theorem.

THEOREM 4.1. There exists a positive constant c1 such
that, if r = \/g, then there is a unique giant component
containing ©(n) nodes whp. Furthermore, whp, all remain-
ing components of nodes are trapped inside small regions,
each of which contains at most $log? n nodes, for some pos-
itive constant (.

The theorem is essentially similar to Theorem 1 in [13],
but the conditions are different. In our model two nodes
are connected to each other if they are within r = /<= (for
some constant c¢1) of each other, whereas in [13] each node
is connected to the K closest nodes where K is some fixed
constant (independent of n).

The main idea of our algorithm is based on the fact that,
after the first step, with high probability, there will be one
unique giant component and other small components, and
that those small components will be trapped inside small
regions, each of which contains at most 3log®n nodes. In
the second step, the small components in each small region
are merged with each others in the same small region or
with the giant component, and eventually all nodes will be
connected with high probability. By controlling the trans-
mission radius in each step, we bound the energy complexity
as in the following theorem.

THEOREM 4.2. Our algorithm constructs an optimal MST
using O(logn) energy on average and O(lognloglogn) whp.

The correctness of our algorithm follows from the connec-
tivity of the graph and the correctness of GHS algorithm.

We now describe the modified GHS algorithm and ana-
lyze its message complexity. In the modified GHS algorithm,
most of the steps are the same as those in the original GHS
algorithm [5]. The difference is that each node additionally
keeps a list of its neighbors that are in other fragments with
their distance information. As in [5], a subtree of MST is
called a fragment. In each phase, after two or more frag-
ments are merged, each node sends a message to its neigh-
bors to announce its new fragment id if the id has changed.
Each node updates its list when it receives those announce-
ments from its neighbors. This modification enables each
node to find its minimum outgoing edge without any addi-
tional messages — just by looking up its list and picking up
the one with the minimum distance.

In the modified GHS algorithm in Step 2, two simple tech-
niques are used to reduce the expected energy complexity.
Firstly, the giant fragment does not participate but only ac-
cepts connection messages from small fragments. Secondly,
when small fragments are merged with the giant fragment,
small fragments change their ids. That is, the giant frag-
ment keeps its fragment id so that its nodes do not need to
announce new ids.

5. AN o(1) ENERGY ALGORITHM

We present a distributed algorithm to construct a span-
ning tree assuming that each node knows its own coordi-
nates. This spanning tree gives a constant approximation
to MST, and the energy complexity of the algorithm is also
constant (this is the best energy possible — cf. Section 2).

Nodes are distributed uniformly at random in a unit square
with lower-left corner at (0,0) and upper-right corner at
(1,1). Each node v knows its coordinates (z., y»). We define
the ranks of the nodes as follows: for any two nodes u and
v, rank(u) < rank(v) iff (Ty +Yu < To +Yo) OF (T + Yu =
Ty + Yo and Yo < Yo).

Assuming that no two nodes have the same coordinates,
for any pair of nodes uw and v, either rank(u) < rank(v)
or rank(v) < rank(w). To build the spanning tree, each
node, except the node with the highest rank, is connected
to the nearest node of higher rank. It is easy to see that
in such a construction, the resulting graph is a single con-
nected component with no cycle, i.e., a tree. This tree is
called nearest neighbor tree (NNT) (cf. [10]). In [10], an
NNT is constructed using a different ranking: rank(u) <
rank(v) iff (2, < xy) or (xy = z, and ¥, < ¥Y»), which
also gives us constant approximation and constant energy
complexity. However, in that ranking, there are few nodes
that need to go far away to find the nearest node of higher
rank. As a result, it is not suitable for the unit disk graph

model with r = ©(4/ 105"), the model used in this pa-
per. With our modified ranking scheme, we show that every

node finds the nearest node of higher rank within distance
r=0(y/ lc’%) with high probability. The following theorem
shows the time and message complexity to construct NNT.

THEOREM 5.1. There is a distributed algorithm to con-
struct NNT with expected energy complexity O(1) and mes-
sage complezity O(n).
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