
DISTRIBUTED APPROXIMATION ALGORITHMS FOR MINIMUM

SPANNING TREES AND OTHER RELATED PROBLEMS WITH

APPLICATIONS TO WIRELESS AD HOC NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Md Abdul Maleq Khan

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2007

Purdue University

West Lafayette, Indiana

ii

Dedicated to the memory of my father, Nayeb Uddin Khan, who, in my childhood,

prepared me for the long journey toward this degree.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Gopal Pandurangan, for his continuous

guidance, encouragement, and active participation in developing the ideas in this the-

sis. I also like to thank Prof. V.S. Anil Kumar of Virginia Tech for his collaboration

in some part of this research work. We are very grateful to the referees of the pa-

pers [1–4] containing the results of this thesis published in various conferences and

journals, for their careful reading of the papers and detailed comments which helped

greatly in improving the presentation of the results.

I also thank Prof. Wojciech Szpankowski, Prof. Mikhail Atallah, and Prof. Suresh

Jagannathan for serving in the committee of my Ph.D. final examination.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 Introduction . 1

2 Nearest Neighbor Tree Scheme . 7
2.1 NNT Scheme . 7
2.2 Cost of a Nearest Neighbor Tree . 9
2.3 NNT-Scheme for Arbitrary Graph . 10
2.4 Choosing Unique Rank . 12

2.4.1 Average Neighborhood Size in Random-NNT 12

3 Generalized NNT-Scheme for Distributed Construction of Low-Weight k-
Connected Spanning Subgraphs . 15
3.1 Introduction . 15
3.2 Related Work . 18
3.3 A Scheme to Construct a k-connected Subgraph in a Weighted Clique 20

3.3.1 Random Ranking . 23
3.3.2 Average Neighborhood Size in Random-NN Scheme 24

3.4 Weight of the k-Connected Subgraph 26
3.4.1 Metric Graph . 30
3.4.2 Random Graph with Uniform Distribution of Nodes on a Plane 32
3.4.3 Graph with Random Edge Weights 34
3.4.4 Maximum Degree in the Geometric Instances 36

3.5 Distributed Implementation . 39
3.6 Conclusion and Further Work . 44

4 A Fast Distributed Approximation Algorithm for Minimum Spanning Trees
in an Arbitrary Graph . 45
4.1 Introduction . 45

4.1.1 Background and Previous Work 45
4.1.2 Distributed Computing Model 47
4.1.3 Overview of the Results . 48

4.2 Distributed Approximate MST Algorithm 50
4.2.1 Nearest Neighbor Tree Scheme 50

v

Page
4.2.2 Preliminaries . 51
4.2.3 Distributed NNT Algorithm 52
4.2.4 Analysis of the Algorithm . 60

4.3 Exact vs. Approximate MST and Near-Optimality of NNT Algorithm 64
4.4 Special Classes of Graphs . 67
4.5 Conclusion and Future Work . 68

5 Distributed Algorithms for Constructing Approximate Minimum Spanning
Trees with Applications to Wireless Sensor Networks 69
5.1 Overview . 69

5.1.1 Introduction and Motivation 69
5.1.2 MST and Work Complexity 72
5.1.3 Our Contributions and Results 73
5.1.4 Network Model . 76
5.1.5 Other Related Work . 77

5.2 A Local Distributed Algorithm for Construction of (Approximate) MST 78
5.2.1 Random-NNT . 81
5.2.2 Coordinate NNT . 86

5.3 Work Complexity of GHS Algorithm 91
5.4 Dynamic Algorithm for NNT . 93
5.5 Simulation Results . 98

5.5.1 Quality of the Spanning Trees 100
5.5.2 Work and Message Complexities to Construct the Spanning Trees100
5.5.3 Implementing NNT Algorithms in a Multihop Setting 105
5.5.4 Experiments on Real Data . 108

5.6 Implementation of NNT-Scheme in a Wireless Sensor Network Modeled
as a Unit Disk Graph . 108
5.6.1 The Algorithm . 110
5.6.2 Analysis . 111

5.7 Conclusion and Further Work . 112

LIST OF REFERENCES . 114

VITA . 120

vi

LIST OF TABLES

Table Page

5.1 Experiment results for Snapshot 1, 2, and 3 109

vii

LIST OF FIGURES

Figure Page

2.1 Nearest Neighbor Tree (NNT) Scheme. 8

2.2 An geometric instance with 5 points (in a plane) showing the NNT con-
struction. For each point i, r(i) denotes its rank, and each point i (other
than 5) is connected to the closest node of higher rank. Following the
definition of nnt(), nnt(1) = 4, nnt(2) = 5, nnt(3) = 4 and nnt(4) = 5;
nnt(5) is not defined, since it has the highest rank. 8

2.3 Random ranking of the nodes. 12

3.1 In this graph, three types of edges are shown: solid, dashed, and dotted
lines. MKG contains all of the edges (solid, dashed, and dotted). Here
k = 3, i.e., MKG is 3-connected. Dotted edges are removed by the edge
removal process and thus Gr contains solid and dashed edges only. The
two dashed edges are out-of-cycle edges (m = 2). If we remove these two
out-of-cycle edges from Gr, we have three components C1, C2, and C3. . 28

3.2 Each wedge around the node u is 60◦. v1, v2, v3 . . . are the nodes in one
wedge in non-decreasing order of their distances from u. 38

3.3 Distributed implementation of the Random-NN scheme. 41

4.1 A network with possible congestion in the edges adjacent to v. The weight
of the edge (v, ui) is 1 for every i, and 9 for the rest of the edges. Assume
r(v) < r(ui) for all i. 54

4.2 A possible scenario of creating cycle and avoiding it. Nodes are marked
with letters. Edge weights are given in the figure. Let r(u) = 11, r(v) =
12, r(p) = 13, r(q) = 14, and ranks of the rest of the nodes are smaller
than 11. u connects to v, v connects to p, and p connects to q. 59

5.1 Distributed NNT algorithm for wireless networks. 80

5.2 Division of the unit square into
√

n×√n smaller squares and their rear-
rangement. Here x = y =

√
n. Node u resides in column k. The cells in

columns k + 1, k + 2, . . . ,
√

n have been rearranged in a single row. . . . 86

5.3 The figure shows three cases where u is a node in the unit square. In phase
i, radius of the circle centered at u is ri = 2i/

√
n. Only the nodes in the

shaded region reply back to u in phase i. 89

viii

Figure Page

5.4 Dynamic Algorithm for Random-NNT. 95

5.5 Each wedge around node u is 60◦. v1, v2, v3 . . . are the nodes in one wedge
in increasing order of distance from u. 96

5.6 Construction of Yao graph. Each wedges is 60◦. Node u have an edge with
the nearest node in each wedge. 99

5.7 Sum of the lengths of the edges, Q1(T), for MST, Random-NNT, and
Co-NNT. 100

5.8 Sum of the lengths of the edges, Q1(T), plotted with
√

n for MST, Random-
NNT, and Co-NNT. 101

5.9 Sum of the squares of the edge lengths, Q2(T) for MST, Random-NNT,
and Co-NNT. 101

5.10 Q2(T) for Random-NNT with respect to log n. 102

5.11 Number of messages needed to construct the spanning trees. 104

5.12 Work done by the algorithms. 104

5.13 Slope of the lines indicate the powers of log in work complexity. 106

5.14 Number of messages needed to construct the trees in Multi-hop Commu-
nication. 106

5.15 Work needed to construct the spanning trees in Multi-hop Communication.107

5.16 The distribution of nodes in one of the snapshots. 107

ix

ABSTRACT

Khan, Md Abdul Maleq. Ph.D., Purdue University, December, 2007. Distributed
Approximation Algorithms for Minimum Spanning Trees and Other Related Prob-
lems with Applications to Wireless Ad Hoc Networks. Major Professor: Gopal
Pandurangan.

Due to the advent of various advanced network technologies, distributed algo-

rithms have become an important and rapidly growing field of research. Many emerg-

ing networks such as wireless ad hoc networks and peer-to-peer networks operate

under inherent resource constraints (energy, bandwidth, etc.). Topologies of these

networks can also change dynamically. For these networks, it is necessary to de-

velop efficient (in both time and message complexities) distributed algorithms even

if the solutions are sub-optimal (approximate). In this dissertation, we develop and

analyze a class of distributed approximation algorithms to solve two fundamental

network optimization problems: minimum spanning trees (MST) and minimum-cost

k-connected subgraphs. We design and analyze a simple randomized scheme called

Nearest Neighbor Tree (NNT) for efficient construction of approximate MSTs. We

show that our scheme constructs a O(log n)-approximate MST in any weighted graph

and a constant approximation for uniform distribution of nodes on a plane. Then we

apply the NNT scheme to design local distributed algorithms for MST in complete

networks, arbitrary networks, and wireless ad hoc networks. Our main contribution

is the first non-trivial distributed O(log n)-approximation algorithm for MST in an

arbitrary network which takes Õ(D + L) time and Õ(E) messages, where L is a pa-

rameter called the local shortest path diameter and D is the (unweighted) diameter

of the graph. L always lies between 1 and n but can be much smaller than
√

n in

most of the graphs. In addition, we develop an algorithm for a complete graph that

takes O(log n) time and expected O(n log n) messages and an algorithm for wireless

x

ad hoc network that takes O(log2 n) time and expected O(n) messages. We also

perform extensive simulations of our algorithms for wireless ad hoc networks. Simu-

lations validate the theoretical results and show that the bounds can be much better

in practice.

We extend the NNT scheme to develop a simple randomized scheme for construct-

ing low-cost k-connected spanning subgraphs in a weighted complete graph. We show

that our algorithm gives an approximation ratio of O(k log n) for a metric graph, O(k)

for a random graph with nodes uniformly randomly distributed in [0, 1]2 and O(log n
k
)

for a graph with random edge weights U(0, 1). We then design an efficient local dis-

tributed algorithm for constructing a k-connected spanning subgraph (for any k ≥ 1)

in a point-to-point distributed model, where the processors form a complete network.

This algorithm takes O(log n
k
) time and expected O(nk log n

k
) messages.

1

1 INTRODUCTION

Many emerging networks such as wireless ad hoc networks and peer-to-peer networks

operate under inherent resource constraint (energy, bandwidth, etc.). A distributed

algorithm which exchanges a large number of messages can consume a relatively

large amount of energy (and also time) is not suitable in an resource-constrained ad

hoc wireless sensor network. This is especially true in a dynamic setting – when

the network needs to be reconfigured (e.g., due to mobility or failures) frequently and

quickly. Reconfiguration is also necessary to evenly distribute the energy consumption

among all the nodes [5] in a wireless network and thus to increase network lifetime.

Thus it is necessary to develop simple, local, distributed algorithms which are efficient

(in both time and message) even at the cost of being sub-optimal (see e.g., [6–8]

for such algorithms in the context of wireless sensor networks). This adds a new

dimension to the design of distributed algorithms for such networks. Thus we can

potentially tradeoff optimality of the solution to the efficiency of the algorithm.

In this dissertation, we develop and analyze a class of distributed approxima-

tion algorithms to solve two fundamental network optimization problems: minimum

spanning trees (MST) and minimum-cost k-connected subgraphs.

Minimum Spanning Tree (MST) Problem. The MST problem is one of the

most important problems in the area of distributed computing and a commonly oc-

curring primitive in the design and operation of data and communication networks.

A minimum spanning tree is spanning tree with minimum weight among all possible

spanning trees of the graph, where the weight (or cost) of a spanning tree is the

sum of the weights of the edges in the spanning tree. Minimum spanning trees has

many applications in networking. For instance, in ad hoc sensor networks, MST is

the optimal routing tree for data aggregation [9, 10]. The classical distributed MST

algorithm due to Gallager, Humblet, and Spira (henceforth referred to as the GHS

2

algorithm) [11] uses Θ(n log n+ |E|) messages, and is essentially optimal with respect

to the message complexity. There are distributed algorithms that find the MST (for

e.g., see [12,13]) and are essentially optimal in terms of time complexity: they run in

O(Diam(G)+
√

n) time, and there are matching lower bounds. However, these time-

optimal algorithms involve a lot of message transfers (much more than GHS). Even

for a wireless network modeled by a unit disk graph (or even a ring) any distributed

algorithm to construct a MST needs Ω(n log n) messages [6,14]. Despite their theoret-

ical optimality, these algorithms are fairly involved, require synchronization and a lot

of book keeping; such algorithms are impractical for resource-constraint networks [6].

For example, consider sensor networks — an ad hoc network formed by large numbers

of small, battery-powered, wireless sensors. We develop time, message, and energy

efficient distributed approximation algorithms to build a low-cost spanning tree which

is a very close approximation to MST [1,3].

k-Connected Subgraph Problem. Computing the low weight spanning subgraphs

of a given graph G(V, E) with non-negative edge weights is a fundamental problem in

network design (e.g., see [15,16] for an extensive survey). One important problem in

this setting is the k-vertex connectivity problem (henceforth simply the k-connectivity

problem): find a spanning subgraph of minimum weight that is k-vertex-connected,

i.e., there exists k vertex-disjoint paths between every pair of vertices. Finding an

optimal k-connected spanning subgraph is NP-hard for k ≥ 2 even if the weights of the

edges satisfy the triangle inequality, or even when the graph is a complete Euclidean

graph [17]. There has been a lot of work on designing approximation algorithms for

the k-connectivity problem. Most of these algorithms are centralized algorithms which

are quite sophisticated and their main goal is to obtain a polynomial time algorithms

with the best possible approximation ratio (see e.g., [18–20]). Distributed algorithms

for the k-connectivity (k ≥ 2) problem has received limited attention thus far — this

is especially true for the weighted version. In fact, to the best of our knowledge there

is no known efficient distributed algorithm for k ≥ 2 for weighted graphs. In this

3

thesis, we present a simple scheme to construct low-cost k-connected subgraph and

its efficient distributed implementation in a complete weighted network [2].

NNT-Scheme. We present a simple and local scheme called Nearest Neighbor Tree

Scheme (NNT-Scheme) to construct a low-cost spanning tree in a distributed net-

work — each node chooses a unique rank (thus the ranks define a permutation on

the nodes), and connects to the closest node of higher rank (details are in Chap-

ter 2). While ranks can be chosen in many ways, in this thesis, we mainly focus on

a simple randomized way of choosing ranks: each node chooses a rank uniformly and

independently at random from a totally ordered set. Thus, we call this scheme as

Random-NNT. In the context of geometric setting, we also devise another ranking of

the nodes using the coordinates of the nodes, which is called Co-NNT. In Chapter 3,

we generalize the NNT-scheme to construct a low-cost k-connected subgraph. This

generalized scheme is called Nearest Neighbor Scheme (NN-Scheme).

Using the NNT-scheme and the generalized NN-scheme, we develop distributed

approximation algorithm for the minimum spanning tree problem and the k-connected

subgraph problem. The implementation and the time and message complexity of the

NNT-scheme depends on the network model. In this thesis, we consider the following

two models of distributed computation.

Point-to-point Communication Model. We are given a network modeled as an

undirected weighted graph G = (V,E, w) where V is the set of the nodes (vertices)

and E is the set of the communication links between them and w(e) is the weight

of the edge e ∈ E. Each node hosts a processor with limited initial knowledge.

The communication between any two nodes happens by sending/receiving messages

along the edge between them in the graph G. We assume that the communication

is synchronous and occurs in discrete pulses (time steps). (This assumption is not

essential for our time complexity analysis. One can use a synchronizer to obtain the

same time bound in an asynchronous network at the cost of some increase in the

message complexity [13].) We assume that O(log n) bits can be transferred in one

4

step per edge and a node can send messages through all its incident links at the same

time (see e.g., [13, 21]).

Wireless Local Broadcast Model. For a wireless network, we consider wireless

local broadcast model. We assume that each node has an omni-directional antenna

and a single transmission can be received by any node within within the transmission

radius (called local broadcasting), which is assumed to be a disk of appropriate radius

centered at the node. We utilize this broadcasting property to reduce the communi-

cations needed in our algorithms. If the maximum transmission power is not enough

to communicate with a node directly, then it can communicate through multihop

wireless links by using intermediate nodes to relay the message. We also assume that

while a node is transmitting a message, no other node within its transmission radius

is allowed to transmit.

In Chapter 2, we present the NNT-scheme to construct a low-cost spanning tree,

called nearest neighbor tree (NNT) and show that NNT using any ranking of the

nodes gives an O(log n)-approximation to MST in any weighted graph. Then we show

that Random-NNT gives an O(1)-approximation to an MST in a random graph with

nodes uniformly randomly distributed in [0, 1]2. For geometric instances, Random-

NNT constructs low-degree spanning trees which have O(log n) maximum degree,

with high probability.

In Chapter 3, we present the generalized NN-Scheme for constructing low-weight

k-connected spanning subgraphs in a complete metric graph. Then, based on NN-

Scheme, we give a distributed approximation algorithm using the point-to-point co-

munication model to construct a minimum-weight k-connected spanning subgraph in

a weighted complete graph [2]. We show that our algorithm gives an approximation

ratio of O(k log n) for a metric graph, O(k) for a random graph with nodes uniformly

randomly distributed in [0, 1]2 and O(log n
k
) for a complete graph with random edge

weights U(0, 1). Our algorithm takes O(log n
k
) time and expected O(nk log n

k
) mes-

sages. With k = 1, this algorithm is simply an approximation algorithm for MST in

a complete graph.

5

In Chapter 4, we present a distributed algorithm that constructs an O(log n)-

approximate minimum spanning tree (MST) in any arbitrary network (with arbitrary

topology and arbitrary edge-weights) [1]. This algorithm runs in time Õ(D(G) +

L(G,w)) where L(G,w) is a parameter called the local shortest path diameter and

D(G) is the (unweighted) diameter of the graph. L(G,w) always lies between 1 and

n. The parameter L(G,w) can be smaller or larger than the diameter and typically

it can be much smaller than
√

n. Our algorithm is existentially optimal (up to

polylogarithmic factors), i.e., there exists graphs which need Ω(D(G)+L(G,w)) time

to compute an H-approximation to the MST for any H ∈ [1, Θ(log n)]. Our result also

shows that there can be a significant time gap between exact and approximate MST

computation: there exists graphs in which the running time of our approximation

algorithm is exponentially faster than the time-optimal distributed algorithm that

computes the exact MST.

In Chapter 5, we present an energy efficient implementation of the NNT-Scheme

for construction of MSTs in a wireless ad hoc setting [3]. We show provable bounds

on the performance with respect to both the quality of the spanning tree produced

and the energy needed to construct them. In a wireless network, to transmit a signal

over a distance r, the required radiation energy is proportional to rα, where typically

α is 2 and can range up to 4 in environments with multiple-path interferences or local

noise [5, 22]. Motivated by this consideration, our focus is the following geometric

weighted minimum spanning tree problem: given an arbitrary set N of points (nodes)

in a plane, find a tree T spanning N such that
∑

(u,v)∈T dα(u, v)) is minimized where

d(u, v) is the distance between nodes u and v.

We show that when the points are distributed uniformly at random in the unit

square, Random-NNT gives an O(1) and O(log n) approximation, respectively, for

the case of α = 1 and α = 2, respectively. In contrast, Co-NNT gives an O(1) ap-

proximation for both α = 1 and α = 2. In the uniform random setting, we show

that NNT algorithms have significantly lower message, time, and work complexity

(radiation energy required to run the algorithm) compared to other distributed algo-

6

rithms which compute the exact MST. We show that the average work complexities

for Co-NNT and Random-NNT are O(1) and O(log n), respectively, for α = 2. These

work complexities are within a constant of optimum, because for the case of points

distributed uniformly in a unit square, the cost of the MST equals these values, within

constant factors (see e.g., [23]) and this lower bounds the work complexity of any al-

gorithm that constructs it. We also show that for both NNT algorithms, the expected

message complexity is O(n) (on average) and time complexity is O(log2 n) (with high

probability) which are essentially the best possible.

In addition to showing theoretical bounds, we also perform extensive simulations

of our algorithms. We tested our algorithms on both uniformly random distributions

of nodes, and on realistic distributions of nodes in an urban setting. Simulations

validate the theoretical results and show that the bounds are much better in practice.

7

2 NEAREST NEIGHBOR TREE SCHEME

In this chapter, we present and analyze a simple scheme, called nearest neighbor tree

scheme (NNT scheme) for constructing low-cost spanning trees. We show that our

scheme constructs an O(log n)-approximate minimum spanning tree (MST) in any

weighted graph. We also show that our scheme is optimal with respect to the amount

of “local information” needed to compute any connected spanning subgraph.

2.1 NNT Scheme

We present a simple and local scheme called Nearest Neighbor Tree (NNT) scheme

to construct a low cost spanning tree — each node chooses a unique rank (thus the

ranks define a permutation on the nodes), and connects to the closest node of higher

rank. First we assume that the underlying graph is a complete metric graph. Later we

will modify the scheme for an arbitrary graph. The basic NNT-scheme for a complete

metric graph is given in Figure 2.1.

For a node v, let nnt(v) denote the node that v connects to, if it exists — if v has

the highest rank, nnt(v) is not defined. If nnt(v) is defined for node v, it must be the

case that r(nnt(v)) > r(v) and r(v) > r(w), for each node w that is closer to v than

nnt(v). If we think of the edges (v, nnt(v)) as being directed from v to nnt(v), it is

clear that each edge is directed from a low rank node to a higher rank node — this

immediately rules out cycles, and gives a spanning tree. Figure 2.2 shows a geometric

example of the NNT construction for 5 points in the plane, along with the ranks.

Our NNT scheme is closely related to the approximation algorithm for the traveling

salesman problem (coincidentally called Nearest Neighbor algorithm) analyzed in a

classic paper of Rosenkrantz, Lewis, and Stearns [24]. Imase and Waxman [25] also

used a scheme based on [24] (their algorithm can also be considered a variant of NNT

8

All nodes have a unique label id from a totally ordered set.

Output: A spanning tree.

NNT Scheme:

Every node v ∈ V executes the following steps independently:

1. Each node v chooses a unique (distinct) rank r(v).

2. Connect to the nearest node w such that r(w) > r(v), i.e., add the edge

(v, w) (to the spanning tree).

Figure 2.1. Nearest Neighbor Tree (NNT) Scheme.

1

2

3

4

5

r(1)=0.3

r(3)=0.2

r(4)=0.6

r(2)=0.1
r(5)=0.8

Figure 2.2. An geometric instance with 5 points (in a plane) showing
the NNT construction. For each point i, r(i) denotes its rank, and each
point i (other than 5) is connected to the closest node of higher rank.
Following the definition of nnt(), nnt(1) = 4, nnt(2) = 5, nnt(3) = 4 and
nnt(4) = 5; nnt(5) is not defined, since it has the highest rank.

scheme) to show that it can maintain a O(log n)-approximate Steiner tree dynamically

(assuming only node additions, but not deletions.) However, their algorithm will not

work in a distributed setting because we cannot connect to the shortest node (they

can do that since the nodes are added one by one) as this can introduce cycles. The

approach needed for distributed implementation is very different.

9

Before showing how the nodes can choose distinct rank in a distributed fashion, we

show a general result that NNT gives an O(log n) approximation to MST irrespective

of how the ranks are chosen.

2.2 Cost of a Nearest Neighbor Tree

In this section we show a general result about the quality of a spanning tree

constructed by any NNT scheme, i.e., ranks can be chosen arbitrarily as long as they

are unique. Consider any weighted metric graph G(V, E), i.e., all edges have non-

negative weights that satisfy the triangle inequality. The cost of any NNT tree (i.e.,

using any arbitrary ranking of the nodes) is within a factor of dlog ne of the cost

(weight) of the MST on G (Theorem 2.2.1). We use log to denote logarithm to the

base 2.

To prove Theorem 2.2.1, we use the following Lemma concerning the traveling

salesman problem which appears in Rosenkrantz, Stearns, and Lewis [24, Lemma 1].

Lemma 2.2.1 [24] Let G = (V, E) be a weighted metric (complete) graph on n nodes.

Let d(p, q) be the weight of the edge between nodes p and q. Suppose there is a mapping

l assigning each node p a number lp such that the following two conditions hold:

(a) d(p, q) ≥ min(lp, lq) for all nodes p and q.

(b) lp ≤ 1
2
c(TSP) for all nodes p, where c(TSP) is the cost of a optimal (shortest)

traveling salesman tour in G.

Then
∑

p∈V lp ≤ 1
2
(dlog ne+ 1)c(TSP).

Theorem 2.2.1 On a complete metric graph G, any NNT scheme constructs a tree

whose cost is at most dlog ne times the cost of (optimal) MST.

Proof: Let c(MST) be the cost of an MST. It can be shown that (e.g., see [26])

c(TSP) ≤ 2c(MST). (2.1)

To apply Lemma 2.2.1, based on the NNT scheme, we define a mapping l as

follows:

10

lp = d(p, nnt(p)) if nnt(p) (the node that p connects to) exists; otherwise (if p is

the highest-ranked node), lp = 1
2
c(TSP).

Mapping l satisfies condition (a): Let p and q be any two nodes, and without

loss of generality, assume rank(p) < rank(q). Then by definition of nnt(), d(p, q) ≥
d(p, nnt(p)) = lp (note that p cannot be the highest-ranked node).

Mapping l satisfies also condition (b): It is trivially true for the highest-ranked

node. For any other node p, lp = d(p, nnt(p)). There are exactly two disjoint paths

between p and nnt(p) in the TSP route. Let S1 and S2 be these two paths. Then

c(S1) + c(S2) = c(TSP), and by triangle inequality, d(p, nnt(p)) ≤ c(S1) and also

d(p, nnt(p)) ≤ c(S2). Thus d(p, nnt(p)) ≤ 1
2
c(TSP).

Let p0 be the highest-ranked node. By construction of NNT and applying Lemma

2.2.1, we have

c(NNT) =
∑
p∈V

lp − lp0 ≤
1

2
dlog nec(TSP). (2.2)

From Inequality 2.1 and 2.2, we have

c(NNT) ≤ dlog nec(MST).

¤

Remark. We can show that the above bound is tight up to a constant factor. Con-

sider a complete graph of n nodes which are uniformly spread on a straight line of unit

length, where n = 2k+1 for some positive integer k. The nodes are (from left to right)

X1, X2, . . . , Xn. Assign the ranks to the nodes as follows: rank(X1) > rank(Xn) >

rank(Xdn/2e) > rank(Xdn/4e) > rank(Xd3n/4e) > rank(Xdn/8e) > rank(Xd3n/8e) >

rank(Xd5n/8e) > rank(Xd7n/8e) The cost of MST and NNT on this graph is 1 and

1 + 1
2
log(n− 1) respectively.

2.3 NNT-Scheme for Arbitrary Graph

If the nodes cannot connect directly and/or edge weights do not satisfy triangle

inequality, say, we are given a graph G with arbitrary topology and arbitrary edge

11

weights,we modify the basic NNT scheme so that nodes connect to their closest node

of higher rank using a shortest path. That is, add all of the edges in this shortest path

in NNT. Notice that the resulting graph found by this scheme can contain cycles. To

find a spanning tree from this resulting graph we need to remove some edges to break

the cycles. The details of how such cycles can be broken are given later in Chapter 4.

We can show that the O(log n) approximation factor for NNT to MST still hold

for any arbitrary graph. We note that the scheme produces a connected subgraph

which may, in general, contain cycles. Let’s call the subgraph produced by the above

scheme as the NNT subgraph. We show next that this subgraph is of cost within a

O(log n) factor of the MST of G. Thus any spanning tree (say, e.g., a breadth-first

tree) of this NNT subgraph (this will be our NNT tree) will also have cost at most

within O(log n) factor of MST.

The argument below is similar to the one showing that there is an approximation

factor preserving reduction from the Steiner tree problem to the metric Steiner tree

problem (see e.g., [27][Chapter 3]). For the purpose of proving the above claim,

consider a virtual graph H(Vh, Eh) that is constructed based on the original graph

G(V, E) as follows: 1) H has the same set of nodes as in G, i.e., Vh = V ; 2) make

H a complete graph, i.e., for all u, v ∈ Vh, (u, v) ∈ Eh; 3) assign weight to each edge

(u, v) ∈ Eh equal to the weight of the shortest path from u to v in G. Now it is clear

that H is a complete metric graph. Let NNTH and MSTH be the NNT tree and

MST in graph H respectively, and NNTG and MSTG denote the NNT subgraph and

the MST in the original graph G. By Theorem 3.4.1, c(NNTH) ≤ 4(log n)c(MSTH).

Since we form NNT subgraph in G by connecting nodes via shortest paths, we have

c(NNTG) ≤ c(NNTH) (in general, it is less in because the same edge can occur in

different shortest paths in G). Let w(u, v) and wH(u, v) be the weights of edge (u, v)

in G and H respectively. If (u, v) ∈ E, clearly wH(u, v) ≤ w(u, v). If (u, v) 6∈ E,

then we are simply having an extra edge in graph H, comparing to G. Thus, as a

direct consequence, we have c(MSTH) ≤ c(MSTG), which leads to the conclusion

c(NNTG) ≤ c(NNTH) ≤ 4(log n)c(MSTH) ≤ 4(log n)c(MSTG).

12

All nodes have a unique label id from a totally ordered set.

Each node v is assigned a unique rank r(v) as follows:

1) v chooses p(v), a uniform random number ∈ [0, 1].

2) r(w) > r(v) if p(w) > p(v) or if p(w) = p(v) and id(w) > id(v).

Figure 2.3. Random ranking of the nodes.

2.4 Choosing Unique Rank

While ranks can be chosen in many ways, we mainly focus on a simple randomized

way of choosing ranks: each node chooses a rank uniformly and independently at

random from a totally ordered set. The detail is given in Figure 2.3. The NNT

constructed using random ranking is called Random-NNT. Later in this thesis, we

also introduce and analyze couple of other ranking scheme.

2.4.1 Average Neighborhood Size in Random-NNT

In NNT scheme, a node has to find the closest node of higher rank to connect to.

For a node v, let v1, v2, . . . vi, . . . be the nodes that are at increasing distance from v,

i.e., vi is the ith nearest neighbor of v. For a given choice of ranks, let s(v) be the

number of nodes that v has to examine (starting from v1) before it finds a node of

higher rank (hence v will connect to vs(v)). We call s(v) the size of the neighborhood

v has to look for, in order to find the connecting edge. The size of the neighborhood

measures the amount of local information needed by a distributed algorithm. The

quantity s(v) has a bearing on the message complexity in distributed implementation

of NNT (Section 3.5). For arbitrary choices of ranks, the average neighborhood size

13

(i.e., (1/n)
∑

v s(v)) could be Ω(n). The following lemma shows that the average

neighborhood size decreases significantly in Random-NNT.

Lemma 2.4.1 In the case of Random-NNT, on any graph, the (expected) average

neighborhood size is Θ(log n).

Proof: Let a be the random number generated by node v and xi denotes the random

number generated by the ith nearest neighbor of v. Let Xi = {xk|1 ≤ k ≤ i}. We

define, a > Xi ⇐⇒ ∀1≤k≤i(a > xk). Since the random numbers are generated by

the nodes independently, Pr{a > Xi} = probability that a is the largest among i + 1

independent identically distributed random numbers. That is, Pr{a > Xi} = 1
i+1

.

Now, the probability that a node connect to the ith nearest neighbor is

Pr{a > Xi−1, a < xi}
= Pr{a > Xi−1}Pr{a < xi|a > Xi−1}
= Pr{a > Xi−1}[1− Pr{a > xi|a > Xi−1}]
= Pr{a > Xi−1} − Pr{a > xi, a > Xi−1}
= Pr{a > Xi−1} − Pr{a > Xi}
=

1

i
− 1

i + 1
=

1

i(i + 1)
.

Let L be a random variable denoting the size of the neighborhood for a node.

E[s(v)] = E[L] =
n−1∑
i=1

i Pr{L = i} =
n−1∑
i=1

1

i + 1
=

n∑
i=1

1

i
− 1 = Hn − 1 = Θ(log n).

By linearity of expectation, the expected average neighborhood size is Θ(log n).

¤
The above result shows that a local distributed algorithm can potentially be de-

veloped to find a Random-NNT. Consider an algorithm where each node examines

its neighbors beginning from the nearest neighbor until it finds a node of higher rank.

Lemma 2.4.1 says that for Random-NNT, on average, each node needs information

from Θ(log n) nearest neighbors. In fact, this is the optimal local information needed

to find any spanning tree on a complete network. Korach et al. [21, 28] showed that

14

any distributed algorithm that constructs a spanning tree in a complete graph uses

Ω(n log n) edges. That is, on average, each node needs to use Ω(log n) edges; i.e., each

nodes needs information from at least Ω(log n) other nodes. Thus average neighbor-

hood size for any spanning tree is at least Ω(log n). As a result, in terms of locality,

Random-NNT scheme can be said to be optimal.

Another result by Korach et al., in the same article [21], implies that much larger

locality is required to find a MST. They showed that any distributed algorithm to find

an MST on a complete weighted graph uses Ω(n2) edges. This lower bound can be

shown to hold also for a complete metric graph. That is, each node uses information

from Ω(n) other nodes on the average. Thus, the average neighborhood size for MST

is Ω(n), i.e., exponentially more than that needed by Random-NNT.

15

3 GENERALIZED NNT-SCHEME FOR DISTRIBUTED CONSTRUCTION OF

LOW-WEIGHT K-CONNECTED SPANNING SUBGRAPHS

In this chapter, we generalize the NNT-scheme to construct a low cost k-connected

subgraph from a complete graph. We show that this scheme gives an approxima-

tion ratio of O(k log n) for a metric graph, O(k) for a random graph with nodes

uniformly randomly distributed in [0, 1]2 and O(log n
k
) for a complete graph with ran-

dom edge weights U(0, 1). We then show that our scheme can be applied to design

an efficient distributed algorithm for constructing such an approximate k-connected

spanning subgraph (for any k ≥ 1) in a point-to-point distributed model, where the

processors form a complete network. Our algorithm takes O(log n
k
) time and expected

O(nk log n
k
) messages. We also show that for the geometric instances, our randomized

scheme constructs low-degree k-connected spanning subgraphs which have O(k log n)

maximum degree, with high probability.

3.1 Introduction

Computing the low weight spanning subgraphs of a given graph G(V, E) with non-

negative edge weights is a fundamental problem in network design (e.g., see [15,16] for

an extensive survey). One important problem in this setting is the k-vertex connectiv-

ity problem (henceforth simply the k-connectivity problem): find a spanning subgraph

of minimum weight that is k-vertex-connected, i.e., there exists k vertex-disjoint paths

between every pair of vertices. Finding an optimal k-connected spanning subgraph is

NP-hard for k ≥ 2 even if the weights of the edges satisfy the triangle inequality, or

even when the graph is a complete Euclidean graph [17]. There has been a lot of work

on designing approximation algorithms for the k-connectivity problem. Most of these

algorithms are centralized algorithms which are quite sophisticated and their main

16

goal is to obtain a polynomial time algorithms with the best possible approximation

ratio (see e.g., [18–20]). Distributed algorithms for the k-connectivity (k ≥ 2) prob-

lem has received limited attention thus far — this is especially true for the weighted

version. In fact, to the best of our knowledge there is no known efficient distributed

algorithm for k ≥ 2 for weighted graphs. In contrast, for k = 1 — the minimum span-

ning tree (MST) problem — optimal distributed algorithms are well-known [12, 13].

With the emergence of the new networking technologies such as ad hoc and sensor

networks, there is an increasing need for distributed algorithms that are simple and

easily implementable, have low communication complexity, and perform reasonably

well (e.g., see [13, 29, 30]). Such simple local algorithms are desirable even for the

MST problem, where optimal distributed algorithms are known (see e.g., [11–13]),

because these algorithms are quite complex, involve a lot of message complexity and

synchronization to implement in a light weight and unreliable environment, such as

ad hoc networks. This motivates the question of developing simple, local control,

approximate algorithms. This also adds a new dimension to the design of distributed

algorithms for such networks: we can potentially tradeoff optimality of the solution

to the amount of resources (messages, time etc) consumed by the algorithm. This is

the motivation for the relatively new area of distribution approximation (we refer to

the survey by Elkin [12]).

In this chapter, we study a very simple randomized scheme called Random Nearest

Neighbor (Random-NN) scheme for constructing a low-weight k-connected spanning

subgraph (for any k ≥ 1) and show some of its properties and applications. The

Random-NN scheme is based on a simple idea (cf. Section 3.3): each node chooses a

unique rank, a quantity that is randomly chosen from a totally ordered set, and a node

connects to its k nearest nodes of higher rank. We first show that our scheme gives

a simple approximation algorithm to construct a minimum-weight k-connected span-

ning subgraph in a weighted complete graph, a NP-hard problem even if the weights

satisfy the triangle inequality. We show that our algorithm gives an approximation

ratio of O(k log n) for a metric graph, O(k) for a random graph with nodes uniformly

17

randomly distributed in [0, 1]2 and O(log n
k
) for a complete graph with random edge

weights U(0, 1). We show that our scheme is optimal with respect to the amount of

“local information” (in an average sense — defined precisely in Section 3.3.2) needed

to compute any connected spanning subgraph.

We next show that our scheme can be applied to design an efficient distributed

algorithm for constructing an approximate k-connected spanning subgraph (k ≥ 1)

in a point-to-point distributed model, where the processors form a complete network.

Our algorithm takes O(log n
k
) time and expected O(nk log n

k
) messages contrasting a

result of Korach et al. [21] that shows that Ω(n2) is a lower bound of the number of

messages required to find an MST (i.e., k = 1) in this model. Thus, the expected

message complexity of our algorithm is significantly better than the best distributed

algorithm that finds the (optimal) MST. The proof of this Ω(n2) bound on the number

messages for finding MST (cf. Theorem 1 in [21]) can easily be modified to show that

Ω(n2) is also a lower bound on the message complexity for finding a minimum k-

connected spanning subgraph for any k ≤ bn/2c− 1. This lower bound also holds for

the metric weights. This also implies that our algorithm, for this restricted distributed

computation model, has provably better asymptotic message complexity than the

best distributed algorithm that finds a minimum k-connected subgraph, for any k =

o(n). However, the price for this gain is that our algorithm has a somewhat weaker

approximation ratio compared to the best-known centralized algorithms.

We also show that for the geometric instances (these are relevant, for example,

in the ad hoc sensor network applications [31]), our scheme constructs low-degree

k-connected spanning subgraphs (these are useful in many applications e.g., see [17])

which have O(k log n) maximum degree, with high probability.

The rest of the chapter is organized as follows. In Section 3.2, we discuss related

work. In Section 3.3, we present the Random-NN scheme, to construct a k-connected

spanning subgraph on a given weighted complete graph. The analysis of the weight

of k-connected subgraph produced by Random-NN scheme and approximation ratios

for various graph models are given in Section 3.4. In Section 3.5, we describe a

18

distributed implementation of the Random-NN scheme, and analyze its time and

message complexities. We conclude in Section 3.6 with a discussion on future work.

3.2 Related Work

The work that is closest in spirit to our work is perhaps that of Imase and Wax-

man [25]. They consider the dynamic Steiner tree problem, where the objective is to

maintain a near-optimal Steiner tree when nodes are added or deleted. They show

that, under additions only (no deletions), a simple greedy algorithm which connects

the just added node to nearest existing node (by the shortest path, i.e., they assume

the triangle inequality) gives a O(log n) approximation. Their algorithm can be con-

sidered as a variant of our NN scheme for finding the spanning tree (i.e., the special

case: k = 1). However, their algorithm will not work in a distributed (unlike our

scheme) because we cannot connect to the shortest node (they can do that since the

nodes are added one by one) as this can introduce cycles.

Random ranks were used to construct forests, by a slightly different process by

Toroczkai and Bassler [32]. The process defined here chooses a random rank for each

node on a graph in G(n, p), and each node connects to the neighbor of highest rank.

They show that the resulting forest has a power law degree distribution, which they

use as a model for explaining power laws in networks.

The work of Panconesi and Rizzi [33] also uses an approach based on ranking of

nodes to design simple, fast, and deterministic distributed algorithms to find maxi-

mal matchings, edge/vertex-colorings, and maximal independent sets. This approach

however is not comparable to our Random-NN scheme because the edge weights play

no role in their algorithms (they are for unweighted networks).

We now briefly mention some previous results on the centralized approximation al-

gorithms for the k-connectivity problem (k ≥ 2). For the general graph setting, where

edge weights are arbitrary, a k-approximation algorithm is given in [19]. Cheriyan

et al. [18] achieved an approximation ratio of 6Hk = O(log k) for the case where

19

k ≤
√

n/6. For the case where k < (1 − ε)n, they achieved an approximation ratio

of
√

n/ε. Recently, an O(ln2 k · min{ n
n−k

,
√

k
ln k
}) approximation algorithm was given

in [20].

For the metric weights (the edge weights satisfy the triangle inequality), a 2+ k−1
n

-

approximation algorithm was given in [19]. Czumaj et al. [34] presented a centralized

(1 + ε)-approximation (ε > 0) algorithm for the minimum-weight k-connected span-

ning subgraph problem for a complete Euclidean graph with constant dimension.

They also show that there is no polynomial time (1 + ε)-approximation algorithm for

a complete Euclidean graph in dimension log n or higher unless P = NP . This result

also implies the same hardness of approximation in a complete metric graph.

We now mention the previous work on distributed algorithms. Most of these

algorithms assume that the graph is unweighted and the goal is to find a sparse k-

connected subgraph. The algorithm of Cheriyan et al. [35] finds k edge-disjoint

breadth first (BFS) forests, which gives a k-connected subgraph. The distributed

implementation of this algorithm has time and message complexity as O(kn log3 n)

and O(k|E| + kn log3 n) respectively. Thurimella [36] improved the time complexity

to O(kD + kn0.614) where D is the diameter of G, but the message complexity was

ignored and can be much larger than that of the algorithm given in [35]. Using

similar ideas, Jennings et al. [37] developed a distributed algorithm for the k-vertex

connected subgraph problem which takes O(n) time and O(|E|) messages. In the

same paper, they also presented a distributed algorithm for the k-edge connectivity

problem which takes O((k +D) log3 n) time and O(k|E|+ kn log3 n) messages. All of

these algorithms [35–37] produces a k-connected subgraph with O(kn) edges from an

unweighted k-connected graph G. There is also work on distributed algorithms [38,39]

for finding the biconnected components (k = 2, unweighted graph). Both of the

algorithms given in [38] and [39] take at least linear time.

We now state relevant known distributed algorithms in the complete network

model. Korach et al. [21] showed a lower bound of Ω(n2) messages for any distributed

algorithm computing a minimum weight spanning tree. This result holds even when

20

the weights satisfy the triangle inequality. We note that our algorithm significantly

beats the above lower bound at the cost of producing somewhat sub-optimal solutions.

In contrast, Korach et al. gave algorithms that needed only O(n log n) messages for

a class of problems that included the spanning tree problem and the leader election

problem. In another paper [28], they showed that Ω(n log n) messages are necessary

for this class of problems. They also showed, however, that for the maximal matching

problem and the Hamiltonian circuit problem, Ω(n2) messages are necessary and gave

the algorithms that matched this lower bound.

3.3 A Scheme to Construct a k-connected Subgraph in a Weighted Clique

We provide a simple scheme to construct a k-vertex connected spanning subgraph

in a given complete weighted graph Kn of n nodes. We assume that there is a non-

negative weight, c(u, v) is associated with each edge (u, v) of the graph. The objective

is to determine the edges that will be in the k-connected subgraph and to keep the

weight of the k-connected subgraph low. The weight of a k-connected subgraph is

the sum of the weights of the edges in it. In this section, we present a basic scheme

(an abstract algorithm) and prove that this scheme indeed constructs a k-connected

graph.

The scheme is quite simple. Each node u is given a unique rank r(u). By unique

rank, we mean that no two nodes have the same rank. Thus a ranking of the nodes

corresponds to a permutation of the nodes. For two nodes u and v with u 6= v, either

r(u) < r(v) or r(u) > r(v). Once the ranks of the nodes are chosen, they remain

unchanged throughout the execution of the algorithm. Later, we will see how such

ranks can be chosen. To form a k-connected graph, each node u is connected to k

nearest nodes wi, such that r(u) < r(wi) for all 1 ≤ i ≤ k. Node v1 is nearer than

v2, to u, if c(u, v1) < c(u, v2). If c(u, v1) = c(u, v2), break the tie arbitrarily, i.e.,

choose any one of v1 and v2 arbitrarily. The nearest nodes are chosen to minimize

21

the weight of the constructed subgraph. However, connecting to any k higher ranked

nodes produces a k-connected graph as shown below (Proposition 3.3.1).

If a node does not have enough nodes of higher rank to get connected to, it is

connected to the available higher ranked nodes. For example, to form a 2-connected

graph, the highest ranked node does not have any such node. The second highest

ranked node has only one such node, the highest ranked node. Every other node has

at least two nodes to connect to. Obviously, the highest ranked node is connected

to at least two other nodes, but it is not the initiator of any connection. By “u

is connected to v”, we mean that u (the lower ranked node) is the initiator of the

connection to v. We use η(u) to denote the set of the nodes whom u is connected to.

Consider an enumeration of the nodes, v1, v2, . . . , vn, where vi be the node of

ith rank; for any i > j, r(vi) > r(vj). In the above scheme, each node vi is

connected to the nearest min{k, n − i} neighbors in {vi+1, vi+2, . . . , vn}. Clearly,

|η(vi)| = min{k, n − i} and for the highest ranked node vn, η(vn) = φ. We call this

scheme nearest neighbor scheme or NN-scheme.

The following known proposition (Proposition 3.3.1) ensures that the NN-scheme

constructs a k-connected subgraph.

Proposition 3.3.1 Let G = (V,E) be a graph on V = {v1, v2, . . . , vn} with n ≥ k+1

so that every vi has at least min{k, n − i} neighbors in {vi+1, vi+2, . . . , vn}. Then G

is k-connected.

Proof: If n = k + 1, then G is a complete graph. Assume that n ≥ k + 2 and

suppose to the contrary that G is not k-connected. Then there is a C ⊆ V with

|C| ≤ k − 1 so that G − C is disconnected. Let X,Y be two distinct connected

components of G − C, and let x = maxvi∈X i and y = maxvi∈Y i. For any i > x,

if vi is a neighbor of vx, then vi must be in C. Now vx has at most k − 1 (since

|C| ≤ k − 1) and at least min{k, n − x} neighbors in {vx+1, vx+2, . . . , vn}. Thus, we

must have {vx+1, vx+2, . . . , vn} ⊆ C; hence x > y. The same argument applied on vy

gives y > x. Thus we have a contradiction. ¤

22

Before finding the above shorter proof, we developed the following inductive proof.

Let CG(vi) be the number of connections by node vi to higher ranked nodes in G.

Observe that the above scheme satisfies the following.

CG(vi) = i− 1 for 1 ≤ i ≤ k,

= k for k + 1 ≤ i ≤ n,

where n is the number of nodes. The following theorem proves that the above

scheme constructs a k-connected subgraph.

Theorem 3.3.1 If CG(vi) ≥ i− 1 for 1 ≤ i ≤ k and CG(vi) ≥ k for k + 1 ≤ i ≤ n,

then G is k-connected.

Proof: The proof is given by induction on k. The base case is k = 1. When k = 1,

the number of edges in G is at least n−1, where each node (except the highest ranked

node) is connected to at least one higher ranked node. It is easy to see that when

each node (except the highest ranked node) is connected to exactly one higher ranked

node, there is no cycle in the resultant graph and it is connected; in fact, it is a tree.

Therefore, G is indeed 1-connected.

Induction hypothesis: If CG(vi) ≥ i− 1 for 1 ≤ i ≤ k − 1 and CG(vi) ≥ k − 1 for

k ≤ i ≤ n, G is (k − 1)-connected.

To apply our hypothesis we make use of the following property of a k-connected

graph (see e.g., [40, Theorem 3.3.5]). A k-connected graph is a connected graph such

that removing any k − 1 vertices and their incident edges leaves the resulting graph

connected. Inductively, this can also be stated as: A k-vertex-connected graph is a

connected graph such that removing any one vertex and its incident edges leaves the

resulting graph k − 1 connected.

Let G′ be the graph formed by deleting an arbitrary node vj and its adjacent

edges from G. For clarity, let vi and v′i denote the ith ranked nodes in G and G′

respectively.

After removing vj, for 1 ≤ i ≤ j − 1, the number of connections for vi remains

unchanged; that is, for 1 ≤ i ≤ j−1, CG′(v
′
i) = CG(vi). For j+1 ≤ i ≤ n, vi can loose

at most one connection and the ith ranked node in G becomes the (i − 1)st ranked

23

node in G′ i.e., the node vi in G is now node v′i−1 in G′. Therefore, for j + 1 ≤ i ≤ n,

CG′(v
′
i−1) ≥ CG(vi)− 1.

For 2 ≤ i ≤ j, CG′(v
′
i−1) = CG(vi−1) ≥ CG(vi) − 1. That is, for 2 ≤ i ≤ n,

CG′(v
′
i−1) ≥ CG(vi)− 1.

Now for 1 ≤ i ≤ k − 1, CG′(v
′
i) ≥ CG(vi+1)− 1 ≥ (i + 1)− 1− 1 = i− 1.

For k ≤ i ≤ n− 1, CG′(v
′
i) ≥ CG(vi+1)− 1 ≥ k − 1.

By induction hypothesis, G′ is (k − 1)-connected. That is, G is k-connected. ¤
Nearest Neighbor Tree (NNT). When k = 1, the NN-scheme produces a spanning

tree. If k = 1, each node (except the highest ranked node) connects to exactly one

higher ranked one. Thus there are n− 1 edges in the resulting graph. If we consider

each edge is directed from the lower ranked node to the higher ranked node, it is easy

to see that there is no cycle in this graph. Therefore, the resulting graph is a tree

spanning all n nodes. We call this spanning tree a nearest neighbor tree, or in short,

NNT.

We use the following definitions and notations in the rest of the chapter.

Let Nu(i) denote the ith nearest neighbor of u in the given complete graph Kn.

Definition 3.3.1 i-neighborhood. The i-neighborhood of a node u, denoted by

Γu(i), is the set of the i nearest neighbors of u in Kn; i.e., Γu(i) = {Nu(t)|1 ≤ t ≤ i}.
We define Γu(0) = φ.

Definition 3.3.2 jth connection. Let w1, w2, . . . , w|η(u)|, in non-decreasing order

of c(u,wt), be the nodes in η(u). The connection u makes to wj, for any 1 ≤ j ≤
|η(u)|, i.e., the edge (u,wj), is called the jth connection of u.

3.3.1 Random Ranking

Now we analyze the NN-Scheme using random ranking. Random ranking is defined

in the previous chapter. Note that the identifiers of the nodes also constitute a

ranking of the nodes. However, here we are interested in a random ranking. We will

24

see later, using random ranking, in contrast to an arbitrary ranking, we can have a

better bound on the weight of the k-connected subgraph given by the NN-scheme

and on the time and message complexity of the distributed implementation of the

NN-scheme. Henceforth, we call the NN scheme with the random ranking as the

Random-NN scheme.

Later, in the analysis of weight, time, and message complexity, we will use the

following lemma regarding the random ranking of the nodes.

Lemma 3.3.1 When a random ranking is used, the probability that an arbitrary node

u makes the jth connection to Nu(i) is j
i(i+1)

for i ≥ j.

Proof: Node u makes the jth connection to Nu(i) if and only if r(Nu(i)) > r(u)

and there are exactly j − 1 nodes in Γu(i− 1) with ranks higher than r(u). That is,

r(u) is exactly (j + 1)st among the ranks of these i + 1 nodes (u and the i nodes in

Γu(i)) and Nu(i) is one of the j highest ranked nodes among the i nodes in Γu(i).

Thus, the desired probability is 1
i+1

× j
i

= j
i(i+1)

for i ≥ j. ¤
Remarks: 1) It is not possible for u to make the jth connection to a node closer

than Nu(j).

2) The probability that u is able to make the jth connection is
∑n−1

i=j
j

i(i+1)
= 1− j

n
.

That is, j out of n nodes do not have their jth connection.

3.3.2 Average Neighborhood Size in Random-NN Scheme

In the NN-scheme, a node has to find the k closest nodes of higher rank to connect

to. For a node u, let v1, v2, . . . vi, . . . be the nodes, in non-decreasing order of c(u, vi),

i.e., vi is the ith nearest neighbor of u. For a given choice of ranks, let s(u) be the

number of nodes that u has to examine (starting from v1) before it finds the required

number of nodes of higher rank. We call s(u) the size of the neighborhood, which u

has to look for, in order to find the connecting edges. The size of the neighborhood

measures the amount of local information needed by a distributed algorithm. The

25

quantity s(u) has a bearing on the message complexity in distributed implementa-

tion (Section 3.5). For arbitrary choices of ranks, the average neighborhood size (i.e.,

(1/n)
∑

u s(u)) could be Ω(n). The following lemma shows that the average neighbor-

hood size decreases significantly if we use the random ranking (Random-NN scheme).

The notation Hn is used to denote the harmonic series
∑n

i=1
1
i

= Θ(log n).

Lemma 3.3.2 Let an arbitrary node u makes the k-th connection to Nu(L). Then

E[L] = k(Hn −Hk) = Θ(k log n
k
).

Proof: Using Lemma 3.3.1,

E[L] =
n−1∑

i=k

k

i(i + 1)
i = k(Hn −Hk).

¤
The above result shows that an efficient distributed algorithm can potentially be

developed for the Random-NN scheme. Consider an algorithm where each node ex-

amines its neighbors beginning from the nearest neighbor until it finds the connecting

edges. Lemma 3.3.2 says that using a random ranking, on average, each node needs

information from Θ(k log n
k
) nearest neighbors. This is optimal in general, because

this is the optimal local information needed to find any spanning tree (k = 1) on a

complete network. Korach et al. [21, 28] showed that any distributed algorithm that

constructs a spanning tree in a complete graph uses Ω(n log n) edges. That is, on

average, each node needs to use Ω(log n) edges; i.e., each nodes needs information

from at least Ω(log n) other nodes. Thus average neighborhood size for any spanning

tree is at least Ω(log n). As a result, in terms of locality, Random-NN scheme can be

said to be optimal in general.

Another result by Korach et al. [21] implies that a much larger locality is required

to find a minimum spanning tree (MST). They showed that any distributed algorithm

to find an MST on a complete weighted graph uses Ω(n2) edges. The proof of this

Ω(n2) bound on the number of messages for finding an MST (cf. Theorem 1 in [21])

can easily be modified to show that Ω(n2) is also a lower bound on the number of

26

messages for finding an optimal k-connected spanning subgraph for any k ≤ bn/2c−1.

This lower bound can be shown to hold also for a complete metric graph. That

is, each node uses information from Ω(n) other nodes on the average. Thus, the

average neighborhood size to find an optimal k-connected subgraph is Ω(n), which is

exponentially larger than that needed by the Random-NN scheme.

3.4 Weight of the k-Connected Subgraph

We analyze the weight of the k-connected graph constructed by the NN scheme

with respect to the minimum weight k-connected (sub)graph. Throughout the rest

of the chapter, we use Gk and MKG to denote the k-connected graph constructed

by the NN scheme and a minimum weight k-connected graph, respectively.

Let G = (V, E, W) be any weighted undirected graph, where V is the set of

vertices, E is the set of edges and W =< c(u, v) >, where c(u, v) ≥ 0 is the weight of

the edge (u, v) ∈ E. The weight of G is defined by c(G) =
∑

(u,v)∈E

c(u, v).

Using the following known proposition (Proposition 3.4.1), we have c(MKG) ≥
k
2
c(MST). Later, we use this lower bound of c(MKG) to obtain an upper bound for

the approximation ratio c(Gk)/c(MKG).

Proposition 3.4.1 Any k-edge-connected graph G has a spanning tree T with c(T) ≤
2c(G)/k.

Proof: Let D be the bidirection of G; i.e., for each edge (u, v) in the undirected

graph G, there are two directed edges (u, v) and (v, u) in the directed graph D. Let

w be any node in G. In the graph G, there are k edge-disjoint paths from w to any

other node. Then, in D, there are k edge-disjoint directed paths from w to any other

node. Edmonds [41] proved that if a directed graph has k edge disjoint paths from a

node w to any other node, then it contains k edge-disjoint arborescences rooted at w.

Thus D contains k edge-disjoint arborescences rooted at w. Let T be the underlying

tree of the least weight arborescence among them. Then c(T) ≤ c(D)/k = 2c(G)/k.

¤

27

Before finding the above proof which depends on the some previous results, we had

the following self-contained proof. We wanted to make the alternative proof available

to the readers.

Proof: For k ≤ 2, the inequality is trivially true. For k = 1 and 2, c(MKG) ≥
c(MST), otherwise we can construct a spanning tree with lower cost than a minimum

spanning tree. The following proof is for k ≥ 3.

We remove edges from MKG until we get a spanning tree, say T , of MKG.

Initially, in MKG, each vertex (and edge) is in some cycle because there are at least

k ≥ 3 edge-disjoint paths between any two vertices. After deleting some edges from

MKG, there can be edges and vertices which are not in any cycle. Such vertices

(edges) are called out-of-cycle vertices (edges). The other vertices (edges) are called

in-cycle vertices (edges). By largest edge, we refer to the edge having the largest

weight.

We assume the following process of removing edges from MKG to form the span-

ning tree T .

1. Select the largest edge from all in-cycle edges. If there is more than one largest

edge, select one arbitrarily.

2. Remove the selected edge from the graph.

3. Repeat steps 1 and 2 until there is no cycle in the resulting graph.

The above edge removal process never disconnects the graph since an edge is

removed from a cycle only. At the end of the process, there is no cycle. Thus the

resulting graph T is a spanning tree. Once an edge becomes out-of-cycle, it can never

be removed and will eventually be in T .

The following lemma is needed to complete the proof.

Lemma 3.4.1 For any integer t ≥ 1, after removing exactly (k−2)t edges, there are

at most 2t− 2 out-of-cycle edges in the remaining graph.

28

2

C 1

C
C 3

Figure 3.1. In this graph, three types of edges are shown: solid, dashed,
and dotted lines. MKG contains all of the edges (solid, dashed, and
dotted). Here k = 3, i.e., MKG is 3-connected. Dotted edges are removed
by the edge removal process and thus Gr contains solid and dashed edges
only. The two dashed edges are out-of-cycle edges (m = 2). If we remove
these two out-of-cycle edges from Gr, we have three components C1, C2,
and C3.

Proof: Let Gr be the remaining graph after removing exactly (k − 2)t edges from

MKG and m be the number of out-of-cycle edges in Gr.

We assume that m ≥ 1. If m = 0, the lemma holds vacuously. If we remove all out-

of-cycle edges from Gr, the resulting graph is disconnected and the number of com-

ponents is exactly m+1 (see Figure 3.1). Let these components be C1, C2, . . . , Cm+1.

Now consider a partitioning of MKG into m + 1 partitions where the ith partition

Pi contains exactly the same vertices as in Ci. Each partition Pi shares at least k

cross edges with other partitions. Otherwise, MKG is not k-connected. We have at

least d (m+1)k
2

e cross edges. Each of these cross edges can only be either one of the m

out-of-cycle edges (dashed lines in the figure) in Gr or one of the (k − 2)t removed

edges (dotted lines in the figure).

Thus

d(m + 1)k

2
e ≤ m + (k − 2)t

⇒ m ≤ 2t− k

k − 2
.

For k ≥ 3, k
k−2

> 1, i.e., m < 2t− 1. ¤

29

Let λi be the weight of the ith largest edge in MKG, 1 ≤ i ≤ |Ek|, where Ek is

the set of edges in MKG. If more than one edge has the same weight, we break ties

arbitrarily. Thus λi ≥ λi+1 for all 1 ≤ i ≤ |Ek| − 1. In a similar fashion, let µj be

the weight of the jth largest edge in T for 1 ≤ j ≤ n − 1, where n is the number of

vertices.

By using Lemma 3.4.1, among (k−2)t+2t−2 = kt−2 largest edges in MKG, T

can have at most 2t− 2 edges. Thus µ2t−1 ≤ λkt−1 and µ2t ≤ λkt for 1 ≤ t ≤ dn
2
e− 1,

and also µn−1 ≤ λkn/2−1 when n is even.

For odd n,

c(T) =

dn
2
e−1∑

t=1

(µ2t−1 + µ2t) ≤
bn

2
c∑

t=1

(λkt−1 + λkt).

For even n,

c(T) =

n
2
−1∑

t=1

(µ2t−1 + µ2t) + µn−1 ≤
bn

2
c∑

t=1

(λkt−1 + λkt).

For any n,

c(T) ≤
bn

2
c∑

t=1

(λkt−1 + λkt) ≤
bn

2
c∑

t=1

2

k

k−1∑

l=0

(λkt−l) =
2

k

bn
2
ck∑

i=1

λi.

Now |Ek| ≥ dkn
2
e ≥ bn

2
ck, and thus

c(T) ≤ 2

k

|Ek|∑
i=1

λi =
2

k
c(MKG).

That is, c(MKG) ≥ k
2
c(T) ≥ k

2
c(MST). ¤

We can find an example where c(MKG) is exactly equal to k
2
c(MST). This shows

that this lower bound for the weight of MKG is tight. It is possible to construct a

k-connected graph having exactly kn
2

edges. Consider a k-cube graph where weight

of each edge is one unit. Number of nodes in a k-cube graph is n = 2k. Each node

is uniquely identified by a k-tuple < b1, b2, . . . , bk > where bi ∈ {0, 1} for 1 ≤ i ≤ k.

There is an edge between any two nodes u and v if and only if the k-tuples of u and

v differ in exactly one component. A k-cube graph is k-connected and the degree of

30

each node is k. Thus, the number of edges is kn
2

. The weight of this k-connected

graph is kn
2

and the weight of an MST on this graph is n − 1. The ratio of these

weights is kn
2(n−1)

, which approaches k
2

as n →∞.

Next we analyze the weight of Gk (output of the NN scheme) and its approximation

ratios to MKG for graphs with edge weights satisfying various characteristics.

3.4.1 Metric Graph

A metric graph is a complete weighted graph where the weights of the edges satisfy

the triangle inequality. We show that for a metric graph, using any arbitrary ranking

of the nodes, the NN scheme outputs a k-connected subgraph with approximation

ratio of O(k log n) to MKG (Theorem 3.4.1).

In the rest of this section, we use Ik to denote the sum of the first k positive

integers, i.e.,
∑k

i=1 i = 1
2
k(k + 1).

Theorem 3.4.1 On a metric graph G of n nodes, for any arbitrary ranking of the

nodes, the weight of the k-connected graph Gk constructed by the NN-scheme, c(Gk) =

O(k lg n)c(MKG), where MKG is a minimum k-connected subgraph of G.

Proof: The theorem holds trivially for n ≤ k. The following proof is constructed

for n ≥ k + 1.

Construct a hamiltonian path S such that c(S) ≤ 2c(MST), where MST is a

minimum spanning tree on G. Such a path S can be constructed as follows (e.g.,

see [26]): select any node to be the root of the MST and perform a preorder tree

walk on the MST. Let the order of the nodes, as they are visited in the preorder

walk, be v1, v2, . . . , vn. (Note that this order of the nodes is used only to construct S.

To construct Gk, we assume an arbitrary ranking, which can be different from this

ordering, of the nodes.) Now, add the edges (vi, vi+1) to S, for i = 1, 2, . . . , n− 1.

For any i, j such that 1 ≤ i ≤ j ≤ n, let Si,j be the sub-path < vi, vi+1, . . . , vj >

and Vi,j the subset {vi, vi+1, . . . , vj}. Let Gi,j be the subgraph of G induced by Vi,j,

and Fi,j be the k-connected subgraph produced by the NN scheme running on Gi,j.

31

Now, by induction on the number of nodes |Vi,j|, we show that for any i and j such

that |Vi,j| ≥ k + 1,

c(Fi,j) ≤ 2Ikc(Si,j) lg |Vi,j|. (3.1)

The basis of the induction is any i, j such that k + 1 ≤ |Vi,j| ≤ 2k + 1. The

number of edges in Fi,j is k|Vi,j| − Ik. Since the weights of the edges satisfy the

triangle inequality, the weight of any edge in Fi,j is at most c(Si,j). Thus, we have

c(Fi,j) ≤ (k|Vi,j| − Ik)c(Si,j) ≤ (k(2k + 1)− Ik)c(Si,j) ≤ 2Ikc(Si,j) lg |Vi,j|

by assuming |Vi,j| ≥ 3. For |V i, j| = 2, Inequality 3.1 holds trivially for any k ≥ 1.

Now we show the induction step. Consider any i, j such that |Vi,j| ≥ 2k + 2. Let

m = |Vi,j| and x = b(i + j)/2c. By the induction hypothesis,

c(Fi,x) ≤ 2Ikc(Si,x) lg |Vi,x| = 2Ikc(Si,x) lg dm/2e,
c(Fx+1,j) ≤ 2Ikc(Sx+1,j) lg |Vx+1,j| = 2Ikc(Sx+1,j) lg bm/2c.

For any node v ∈ Vi,x, if w1, w2 are the tth closest (to v) nodes of higher rank in Vi,x

and Vi,j, respectively, then c(v, w2) ≤ c(v, w1); a similar statement holds for any node

in Vx+1,j. Therefore, for any node v, the weight of the tth connection chosen by v in

Fi,x or Fx+1,j is at least as much as that in Fi,j. Graph Fi,j has Ik more edges than the

combined edges of Fi,x and Fx+1,j. The weight of each such edge is at most c(S[i, j]).

Therefore,

c(Fi,j) ≤ c(Fi,x) + c(Fx+1,j) + Ikc(Si,j)

≤ 2Ikc(Si,x) lg dm/2e+ 2Ikc(Sx+1,j) lg bm/2c+ Ikc(Si,j)

≤ 2Ik{c(Si,x) + c(Sx+1,j)} lg dm/2e+ Ikc(Si,j)

≤ 2Ikc(Si,j) lg dm/2e+ Ikc(Si,j)

≤ 2Ikc(Si,j) lg |Vi,j|,

where the last inequality holds for |V [i, j]| ≥ 3. Therefore, by construction of S,

c(Gk) = c(F1,n) ≤ 2Ikc(S) lg n ≤ 4Ikc(MST) lg n. (3.2)

32

The weight of the optimal k-connected graph c(MKG) ≥ k
2
c(MST). Thus, we have

c(Gk) ≤ 4(k + 1)(lg n)c(MKG).

¤
Remarks. 1. Using k = 1 in Inequality 3.2, we get c(NNT) = c(G1) ≤ 4(lg n)c(MST).

However, for this special case, k = 1, with the help of a lemma by Rosenkrantz,

Stearns, and Lewis [24, Lemma 1] concerning the traveling salesman problem, we can

achieve a better bound of dlog nec(MST) (see Theorem 2.2.1), improved by a factor

of 4.

2. The above bound is asymptotically tight in general. Consider a geometric instance

where n nodes are placed on a straight line equally apart by a unit distance and the

weight of the edge between any two nodes is their distance on the line. There is a

ranking of the nodes, for which, the weight of the NNT (i.e., k = 1) is Θ(n log n).

In fact, a random ranking of nodes (i.e., the Random-NN scheme) can be shown to

give a spanning tree of the expected weight Θ(n log n). The weight of MST on this

geometric instance is Θ(n), which gives an approximation factor of Θ(log n).

Notice that the above theorem also applies to an important special case, namely

that of a geometric graph: the nodes are coordinates in a d-dimensional space and the

weight of the edge between any two nodes is the Euclidean distance (or any Minkowski

distance) between them. In the next section, using the Euclidean distance, we show

that the algorithm yields a better approximation of O(k) when nodes are randomly

distributed in a 2-dimensional space.

3.4.2 Random Graph with Uniform Distribution of Nodes on a Plane

In this section, we analyze the weight of the k-connected graph given by the

Random NN-scheme in a complete geometric graph where n nodes are randomly and

uniformly distributed in a unit square [0, 1]2 and the weight of the edge between any

two nodes is the Euclidean distance between them. In this model, the probability

33

that a particular node lies within a particular region inside the unit square is directly

proportional to the area of the region. We show the following theorem:

Theorem 3.4.2 For n points distributed randomly and uniformly in [0, 1]2, the ap-

proximation guarantee of the Random-NN scheme is E[c(Gk)]/E[c(MKG)] = O(k).

To show the above theorem we first upper bound the weight of the k-connected

subgraph constructed by the Random-NN scheme.

Lemma 3.4.2 For n points distributed randomly and uniformly in [0, 1]2, the ex-

pected weight of Gk, the subgraph constructed by the Random NN-scheme, is O(k2
√

n),

i.e., E[c(Gk)] = O(k2
√

n).

Proof: Consider an arbitrary node u, and the concentric circles centered at u with

radii ri = 2i√
n

for i = 1, 2, . . . , m. Considering a unit square, the maximum distance

between any two nodes is
√

2. Thus, rm−1 <
√

2 ≤ rm, i.e., the maximum number of

these circles is m < 1
2
lg n + 3

2
. Let Ci be the set of the nodes in the circle with the

radius ri and Ri = Ci−Ci−1 for i ≥ 2 and Ri = Ci for i = 1. For a node v ∈ Ri, The

weight of the edge (u, v) is c(u, v) ≤ ri.

Let Ai be the event that u makes the jth connection to a node v ∈ Ri. By

Lemma 3.3.1, the probability that u makes the jth connection to any node in Γu(y−
1)− Γu(x− 1) is

y−1∑
i=x

j
i(i+1)

= j
x
− j

y
, where j ≤ x < y. For i ≥ 2, |Ci−1| ≥ 1 since Ci−1

contains at least one node, which is u. Considering the fact that u can be close to

34

the border of the unit square, the probability that a particular node, other than u, is

in Ci−1 is p ≥ 1
4

of the area of Ci−1 = 1
4
πr2

i−1 = 22iπ
16n

. Thus for i ≥ 2,

Pr{Ai} =
n∑

x=j

n∑
y=x

(
j

x
− j

y

)
Pr{|Ci−1| = x ∧ |Ci| = y}

≤
n∑

x=1

n∑
y=x

j

x
Pr{|Ci−1| = x ∧ |Ci| = y}

=
n∑

x=1

j

x
Pr{|Ci−1| = x}

=
n∑

x=1

j

x

(
n− 1

x− 1

)
px−1(1− p)n−x

=
j

np
{1− (1− p)n} ≤ j

np
≤ 16j

22iπ
.

Let cj(u) be the weight of the edge given by the jth connection of u. We get

E[cj(u)] ≤ Pr{A1}r1 +
m∑

i=2

Pr{Ai}ri

≤ r1 +
m∑

i=2

16j

22iπ
ri

=
1√
n

(
2 +

8j

π
− 4

√
2j

π
√

n

)

By linearity of expectation for all connections of n nodes,

E[c(Gk)] = n×
k∑

j=1

E[cj(u)] ≤ √
n

{
2 +

8Ik

π

}
− 4

√
2Ik

π
= O(k2

√
n).

¤
Proof: (of Theorem 3.4.2) It is well-known that the weight of an MST in the

above graph model is Θ(
√

n) (e.g., [23]). The weight of the optimal k-connected

graph c(MKG) ≥ k
2
c(MST) = Θ(k

√
n). Thus from Lemma 3.4.2, we have an

approximation ratio of O(k). ¤

3.4.3 Graph with Random Edge Weights

In this section, we analyze the weight of the k-connected subgraphs in another

well-studied random graph model (e.g., see [42–44]) where the weights of the edges

35

are selected randomly from [0, 1] according to a uniform distribution, i.e., U(0, 1).

The following theorem shows the approximation guarantee of Random-NN scheme.

Theorem 3.4.3 The approximation guarantee of the Random NN-scheme on a com-

plete graph Kn, where the weights of the edges are chosen randomly following the

distribution U(0, 1) is 2Hn − 2Hk+1 + 1 = O(log n
k
).

We note that this model does not necessarily generate a metric graph, but our

algorithm still gives a significantly better approximation of O(log n
k
). Frieze [42]

showed that in this model, the expected weight of the MST converges to a constant

ζ(3) = 1.202 · · · as n → ∞. Here we show a lower bound of 1
2
Ik for the expected

weight of the MKG (Lemma 3.4.4) and show that the expected weight of Gk is Ik(Hn−
Hk+1+

1
2
) (Lemma 3.4.5). Thus, we have an approximation ratio of 2Hn−2Hk+1+1 =

O(log n
k
). We now proceed to show the following lemmas, which prove the above

theorem.

The proof of Lemma 3.4.3 can be found in [45, Page 195].

Lemma 3.4.3 [45] Let Xi be the ith smallest number among n independent uniform

random variables over [0, 1]. Then E[Xi] = i
n+1

.

Lemma 3.4.4 Let MKG be a minimum weight k-connected subgraph on a complete

graph Kn, where the weights of the edges are randomly chosen according to the uniform

distribution U(0, 1). Then E[c(MKG)] ≥ 1
2
Ik.

Proof: Consider an arbitrary node u. Let the weights of the n − 1 edges adjacent

to u in Kn be e1, e2, . . . , en−1 in non-decreasing order. These edge weights are chosen

randomly and independently from U(0, 1). Thus, by Lemma 3.4.3, E[ei] = i
n
. Since

the MKG is k-connected, the degree of each node in the MKG is at least k. Thus

the sum of the weights of the edges adjacent to u in MKG is at least
∑k

i=1 ei and

the expected sum of the weights is at least

E

[
k∑

i=1

ei

]
=

k∑
i=1

E[ei] =
1

n
Ik

36

Using the fact that each edge is counted by at most two nodes and by linearity of

expectation for n nodes,

E[c(MKG)] ≥ 1

2
× n× 1

n
Ik =

1

2
Ik

¤

Lemma 3.4.5 Let Gk be the k-connected subgraph given by the Random-NN scheme

on a complete graph Kn, where the weights of the edges are chosen randomly according

to the distribution U(0, 1). Then E[c(Gk)] = Ik(Hn −Hk+1 + 1
2
).

Proof: Again, consider an arbitrary node u. Let the weight of the (n − 1) edges

adjacent to u in Kn be e1, e2, . . . , en−1 in non-decreasing order. Then E[c(u,Nu(i))] =

E[ei] = i
n

(Lemma 3.4.3).

The event that u makes the jth connection to Nu(i), j ≤ i, is independent of the

weights of the edges adjacent to u. By using Lemma 3.3.1, the expected weight of

the jth connection by u is

n−1∑
i=j

j

i(i + 1)
E[ei] =

j

n
(Hn −Hj)

Using linearity of expectation, the expected total weight of all connections by the

n nodes is

E[c(Gk)] = n

k∑
j=1

j

n
(Hn −Hj) = IkHn −

k∑
j=1

jHj

Using the identity
k∑

j=1

jHj = Ik(Hk+1 − 1/2) (see [46], Page 56, Eq. 2.57),

E[c(Gk)] = Ik(Hn −Hk+1 + 1/2)

¤

3.4.4 Maximum Degree in the Geometric Instances

We assume that the nodes are points in a d-dimensional space and the weight of

an edge between any two nodes is the Euclidean distance between them. We show

the following theorem:

37

Theorem 3.4.4 In a geometric graph, the maximum degree of a node in the k-

connected spanning subgraph constructed by the Random-NN scheme is O(k log n)

with high probability, i.e., with probability at least 1− 1/nΩ(1).

We show the result assuming d = 2, i.e., the nodes (points) are on a plane;

however, this result can be generalized to any constant d. Note that for analyzing

the maximum degree of a node, we do not assume any particular distribution of the

nodes; we consider an arbitrary placement of the nodes in a plane. To show the

desired bound on the maximum degree, we first need the following lemma.

Lemma 3.4.6 Let V be the set of the nodes in the plane. If a node v ∈ V makes its

longest connection, i.e., the |η(v)|th connection, to node w, we say that a charge of 1

is placed on every node u in the closed ball B(v, c(v, w)), where c(u,w) is the weight

of the edge (u,w), i.e., the distance between u and w. Then, the total charge on any

node u is O(k log n), with high probability.

Proof: Consider any node u, and partition the 2π angle around u into 6 cones

with each of the angles be π/3. Consider one such cone. We prove that the total

charge on u from the nodes in this cone is O(k log n), with high probability. Order

the points in the cone as v1, v2, v3, . . . in non-decreasing order of their distances from

u (see Fig. 3.2). Node vi places a charge on u only if the rank of vi is in the top

|η(vi)| among the ranks of the nodes v1, v2, . . . vi. Thus, the probability that vi places

a charge on u is at most |η(vi)|/i ≤ k/i. Therefore, the total expected charge on u

from these nodes is at most
∑n−1

i=1 (k/i) ≤ k log n.

In order to bound the maximum charge on any node, we use a variant of the

Chernoff bound [Lemma 3.4.7] that holds in the presence of dependencies among the

variables.

Lemma 3.4.7 [47] Let X1, X2, . . . , Xl ∈ {0, 1} be random variables such that for all

i, and for any S ⊆ {X1, . . . , Xi}, Pr[Xi+1 = 1|∧j∈S Xj = 1] ≤ Pr[Xi+1 = 1]. Then

for any δ > 0, Pr[
∑

i Xi ≥ µ(1 + δ)] ≤ (eδ

(1+δ)1+δ)
µ, where µ =

∑
i E[Xi].

38

i

3

2v
1v v

v

u

Figure 3.2. Each wedge around the node u is 60◦. v1, v2, v3 . . . are the
nodes in one wedge in non-decreasing order of their distances from u.

39

Let E(v) be the event that v places a charge on u. In order to use the Cher-

noff bound, we need to show that, for any i, and any subset S ⊂ {v1, . . . , vi},
Pr[E(vi+1)|

∧
w∈S E(w)] ≤ Pr[E(vi+1)].

First, suppose c(w, vi+1) ≥ c(w, u) for each w ∈ S. Then, the events
∧

w∈S E(w)

do not place any constraint on rank(vi+1), relative to rank(vj), j ≤ i, and therefore,

Pr[E(vi+1)|
∧

w∈S E(w)] = Pr[E(vi+1)].

Next, suppose c(w, vi+1) < c(w, u) for some w ∈ S. If the event E(w) occurs,

then rank(w) is in the top |η(w)| ranks among the ranks of the nodes v1, v2, . . . vi+1,

and the probability of rank(vi+1) being in the top |η(vi+1)| ranks goes down; that is,

Pr[E(vi+1)|
∧

w∈S E(w)] ≤ Pr[E(vi+1)].

Next, we apply the Chernoff bound with δ = 5k log n
µ

− 1, where µ is the expected

charge on u. Since µ ≤ k log n, δ > 0. Let X be the total charge on u. Then,

Pr{X ≥ 5k log n} = Pr{X ≥ (1 + δ)µ} <

(
eδ

(1 + δ)1+δ

)µ

≤
(

e

1 + δ

)(1+δ)µ

≤ 1

n3k
.

Thus, with probability at least 1 − 1/n3k, where k ≥ 1, the total charge on u is

O(k log n). Using the union bound, this holds simultaneously for all nodes with

probability at least 1− 1/n2k. ¤
Proof: (of Theorem 3.4.4) If a node u connects to v, u must place a charge on v

(see Lemma 3.4.6). Thus, the total charge on v is an upper bound on the number of

nodes that are connected to v. Further, η(v) ≤ k. Thus, the degree of v is at most

k + O(k log n) = O(k log n) with probability at least 1− 1/n2k. ¤

3.5 Distributed Implementation

In this section, we give an efficient distributed implementation of the Random-

NN scheme. Our distributed algorithm takes O(log n
k
) time and expected O(nk log n

k
)

messages to construct a k-connected graph.

Model of distributed computation. We consider the well-studied point-to-point

communication model, where we are given a complete network of n nodes (proces-

40

sors) with distinct identifiers (we assume O(log n)-size ids) and each node knows the

(nonnegative) weights associated with its incident edges (bidirectional communication

links) but not the identifiers of its neighbors (see e.g., [13, 21]). The communication

between any two nodes happens by sending/receiving messages along the edge be-

tween them and all nodes perform the same algorithm. We assume that O(log n) bits

can be transferred in one step per edge and a node can send messages through all its

incident links at the same time (see e.g., [13]).

The following distributed algorithm, in Figure 3.3, is a realization of the Random

NN-scheme in a distributed complete network. Here, each node chooses its rank

by choosing a number uniformly and independently at random from [0, 1].1 Then

each node, in rounds, keeps sending FIND messages to its neighbors beginning with

the nearest neighbor, in non-decreasing order of the edge weights, until it receives

k ACCEPT messages. The FIND messages contain the sender’s random number

(chosen from [0, 1]) and id. The receiver of a FIND message compares its rank with

the rank of the sender. If the receiver’s rank is higher than the sender’s rank, the

receiver sends an ACCEPT message back to the sender of the FIND message. Note

that we do not make any assumption about the weights of the edges in designing the

distributed algorithm and in analyzing its time and message complexity. However,

as we have seen in the previous section, the quality (the weight) of the k-connected

subgraph constructed by this algorithm, with respect to the quality of the optimal

k-connected subgraph, depends on the properties satisfied by the weights of the edges.

Message and Time Complexity. It is interesting to analyze the message com-

plexity and the time complexity, and their tradeoffs in the distributed model we

consider (i.e., point to point communications with all processors forming a clique). A

naive method for finding the k nearest higher ranked nodes is: each node probes one

neighbor at a time, to find the ranks of its neighbors, in nondecreasing order of edge

1The ranks can be also chosen uniformly from, say, [1, n4] and the ranks will be unique with high
probability. Or, as is done in the algorithm, we assume that each node has a unique label which is
used to break the ties. This does not alter any of our proofs or the results.

41

Distributed k-connected graph algorithm

Input: A complete graph Kn = G(V,E). We assume each node has a unique id from a

totally ordered set.

Output: A k-connected subgraph Gk. On termination, each node knows which of its

adjacent edges are in Gk.

Each node u ∈ V executes the following protocol independently and simultaneously:

1. Choose the rank r(u) as follows: generate a random number p(u) ∈ [0, 1]. We say

r(v) > r(u) if and only if [p(v) > p(u)] or [p(v) = p(u) and id(v) > id(u)].

2. Find |η(u)| nearest nodes w with r(w) > r(u), and add the edges (u,w) to Gk. Find

the w’s as follows:

t ← 1 I t is the round number

REPEAT I A FIND message includes p(u) and id(u)

If t = 1, u sends FIND messages to all v ∈ Γu(k) simultaneously;

If t ≥ 2, u sends FIND messages to all v ∈ [Γu(2t−1k) − Γu(2t−2k)] simulta-

neously;

t ← t + 1

UNTIL u received k ACCEPT messages or probed all of its neighbors.

3. Upon receipt of a FIND message from any v, send back an ACCEPT message to v

iff r(u) > r(v).

Figure 3.3. Distributed implementation of the Random-NN scheme.

weights. By Lemma 3.3.2, the expected number of the messages each node needs to

exchange is O(k log n
k
) to find the k higher ranked nodes (Note that a node made its

kth connection means that it already made all the required connections). This gives

an expected total of O(kn log n
k
) messages. However, the time complexity of this im-

42

plementation is Θ(n) since there will be a node (the highest ranked node) which has

to probe all its (n− 1) neighbors. On the other hand, if we want to get a better time

complexity at the expense of more messages, consider a different protocol: each node

sends its rank (the random number and the id) to all its neighbors in one step (one

round); this finishes in O(1) time, but consumes Θ(n2) messages.

To reduce both the time complexity and the message complexity, we consider the

hybrid protocol given in Figure 3.3, where in the first round, a node probes the first

k nearest neighbors and in the subsequent rounds t ≥ 2, it probes the next 2t−2k

nearest neighbors until it succeeds in finding the k nearest higher ranked neighbors.

Below we present the analysis of the time and message complexity of this protocol.

Theorem 3.5.1 The protocol of Figure 3.3 takes O(lg n
k
) time and uses expected

O(kn lg n
k
) messages.

Proof: A node u needs 1 + dlg n−1
k
e rounds to probe all of its n − 1 neighbors.

Therefore, the protocol takes at most 1 + dlg n−1
k
e ≤ 2 + lg n

k
time. To bound the

message complexity, we calculate the expected number of the messages a node sends

before it finds the k neighbors of higher ranks.

In the tth round for t ≥ 2, a node u sends FIND messages to all nodes in Γu(2
t−1k)−

Γu(2
t−2k). Using Lemma 3.3.1, the probability that u makes the kth connection in

the round t is

2t−1k∑

i=2t−2k+1

k

i(i + 1)

= k

{
1

2t−2k + 1
− 1

2t−1k + 1

}

= k

{
2

2t−1k + 2
− 1

2t−1k + 1

}

≤ k

2t−1k + 1
≤ 1

2t−1
.

43

Notice that the above upper bound for the probability can also be used for t = 1 as

1/2t−1 evaluates to 1 when t = 1. The number of SEND messages u sends in the first

t rounds is 2t−1k. Thus, the expected number of SEND messages by u is at most

1+dlg n−1
k
e∑

t=1

(2t−1k)
1

2t−1
≤ 2k + k lg

n

k
.

Moreover, u receives at most k ACCEPT messages. Thus, using linearity of expecta-

tion for n nodes, the expected total number of the messages is 3kn + kn lg n
k
. ¤

Remarks. 1. In the distributed model we consider (i.e., point to point communica-

tion with all processors forming a clique), a modification of the proof given by Korach,

Moran, and Zaks in [21] (which was given for MST) shows a lower bound of Ω(n2)

on the number of the messages needed to construct an optimal k-connected spanning

subgraph (for any 1 ≤ k ≤ bn/2c−1) in a complete weighted metric graph; this lower

bound is independent of the length of the messages. Thus, in general, the expected

message complexity of our randomized algorithm is significantly better than the de-

terministic lower bound. Also, the message complexity of our algorithm is optimal in

the sense that Ω(n log n) is a lower bound on the number of the messages needed to

construct any spanning tree [28]. A lot of work had been devoted to finding spanning

tree (equivalent to leader election) algorithms having O(n log n) message complexity

in this model (see e.g., [28,48,49]) and our protocol also gives a very simple spanning

tree and leader-election protocol that has O(n log n) (expected) message complexity.

2. It is also quite easy to adapt the above algorithm for a “broadcast” setting which

is a typical model for wireless networks (see e.g., [31]). In such a setting, nodes

are assumed to be in a geometric space (e.g., a plane) and a node communicates

with its neighbors by broadcasting a message. All nodes within the broadcast range

can receive the message (ignoring collisions). To implement our algorithm, a node

has to progressively increase its broadcast range (in a similar doubling fashion) till

it finds the nearest nodes of higher ranks. We analyze such a strategy in detail in

44

Chapter 5 which also contains experimental results in the context of the wireless

sensor networks [3].

3.6 Conclusion and Further Work

We showed and analyzed a simple randomized approximation scheme for con-

structing a low-weight k-connected spanning subgraph. We also presented its efficient

implementation in a complete network of processors. The proposed algorithm has low

time and message complexity while giving a relatively good approximation ratio for

the metric graphs, random geometric graphs, and random edge-weight graphs. It is

interesting to see whether the ideas in this chapter can be used to design an efficient

distributed algorithm for the more challenging problem of finding a k-connected sub-

graph in an arbitrary general graph (need not be complete). The local nature of the

NN-scheme seems suitable for designing a simple and efficient dynamic algorithm (es-

pecially in a distributed setting), where the goal is to maintain a k-connected graph

of good quality, as nodes are added or deleted. This looks promising for future work.

45

4 A FAST DISTRIBUTED APPROXIMATION ALGORITHM FOR MINIMUM

SPANNING TREES IN AN ARBITRARY GRAPH

In this chapter, we present a distributed algorithm that constructs a spanning tree

with O(log n) approximation to minimum spanning tree (MST) in any arbitrary net-

work. This algorithm runs in time Õ(D(G) + L(G,w)) where L(G,w) is a parameter

called the local shortest path diameter and D(G) is the (unweighted) diameter of the

graph. Our result also shows that there can be a significant time gap between exact

and approximate MST computation: there exists graphs in which the running time of

our approximation algorithm is exponentially faster than the time-optimal distributed

algorithm that computes the MST.

4.1 Introduction

4.1.1 Background and Previous Work

The distributed minimum spanning tree (MST) problem is one of the most im-

portant problems in the area of distributed computing. There has been a long line

of research to develop efficient distributed algorithms for the MST problem starting

with the seminal paper of Gallager et al [11] that constructs the MST in O(n log n)

time and O(|E|+n log n) messages. The communication (message) complexity of the

Gallager et al. algorithm is optimal, but its time complexity is not. Hence further

research concentrated on improving the time complexity. The time complexity was

first improved to O(n log log n) by Chin and Ting [50], further improved to O(n log∗ n)

by Gafni [51], and then improved to existentially optimal running time of O(n) by

Awerbuch [52]. The O(n) bound is existentially optimal in the sense that there exists

graphs where no distributed MST algorithm can do better than Ω(n) time. This was

46

the state of the art till the mid-nineties when Garay, Kutten, and Peleg [53] raised

the question of identifying graph parameters that can better capture the complexity

(motivated by “universal” complexity) of distributed MST computation. For many

existing networks G, their diameter D(G) (or D for short) is significantly smaller

than the number of vertices n and therefore is a good candidate to design protocols

whose running time is bounded in terms of D(G) rather than n. Garay, Kutten,

and Peleg [53] gave the first such distributed algorithm for the MST problem with

running time O(D(G) + n0.61), which was later improved by Kutten and Peleg [54]

to O(D(G) +
√

n log∗ n). Elkin [55] refined this result further and argued that a pa-

rameter called “MST-radius” captures the complexity of distributed MST algorithms

better. He devised a distributed protocol that constructs the MST in Õ(µ(G,w)+
√

n)

time, where µ(G,w) is the “MST-radius” of the graph [55] (is a function of the graph

topology as well as the edge weights). The ratio between diameter and MST-radius

can be as large as Θ(n), and consequently, on some inputs, this protocol is faster

than the protocol of [54] by a factor of Ω(
√

n). However, a drawback of this protocol

(unlike the previous MST protocols [11, 50, 51, 53, 54]) is that it cannot detect the

termination of the algorithm in this much time (unless µ(G,w) is given as part of the

input). Finally, we note that the time-efficient algorithms of [53–55] are not message-

optimal (i.e., they take asymptotically much more than O(|E| + n log n) messages,

e.g., the protocol of [54] takes O(|E|+ n1.5) messages).

The lack of progress in improving the result of [54], and in particular breaking the
√

n barrier, led to work on lower bounds for the distributed MST problem. Peleg and

Rabinovich [56] showed that Ω̃(
√

n) time is required for constructing an MST even

on graphs of small diameter and showed that this result establishes the asymptotic

near-tight (existential) optimality of the protocol of [54].

While the previous distributed protocols deal with computing the exact MST, the

next important question addressed in the literature concerns the study of distributed

approximation of the MST, i.e., constructing a spanning tree whose total weight is

near-minimum. From a practical perspective, given that MST construction can take

47

as much as Ω̃(
√

n) time, it is worth investigating whether one can design distributed

algorithms that run faster and output a near-minimum spanning tree. Peleg and

Rabinovich [56] was one of the first to raise the question of devising faster algorithms

that construct an approximation to the MST and left it open for further study. To

quote their paper: “To the best of our knowledge, nothing nontrivial is known about

this problem...”. Since then, the most important result known till date is the hardness

results shown by Elkin [12]. This result showed that approximating the MST problem

on graphs of small diameter (e.g., O(log n)) within a ratio H requires essentially

Ω(
√

n/HB) time (assuming B bits can be sent through each edge in one round), i.e.,

this gives a time-approximation trade-off for the distributed MST problem: T 2H =

Ω(
√

n/B). However, not much progress has been made on designing time-efficient

distributed approximation algorithms for the MST problem. To quote Elkin’s survey

paper [57]: “There is no satisfactory approximation algorithm known for the MST

problem”. To the best of our knowledge, the only known distributed approximation

algorithm for the MST problem is given by Elkin in [12]. This algorithm gives an

H-approximation to the MST with running time O(D(G)+ ωmax

H−1
· log∗ n), where ωmax

is the ratio between the maximum and minimum weights of the edges in the input

graph G. Thus, this algorithm is not independent of the edge weights and its running

time can be quite large.

4.1.2 Distributed Computing Model

We present a fast distributed approximation algorithm for the MST problem.

First, we briefly describe the distributed computing model that is used by our algo-

rithm (as well as the previous MST algorithms [11,50–55] mentioned above) which is

now standard in the distributed computing literature (see e.g., the book by Peleg [13]).

We are given a network modeled as an undirected weighted graph G = (V, E, w)

where V is the set of the nodes (vertices) and E is the set of the communication links

between them and w(e) is the weight of the edge e ∈ E. Without loss of generality,

48

we assume that G is connected. Each node hosts a processor with limited initial

knowledge. Specifically, we make the common assumption that each node has unique

identity numbers (this is not really essential, but simplifies presentation) and at the

beginning of computation, each vertex v accepts as input its own identity number

and the weights of the edges adjacent to v. Thus, a node has only local knowledge

limited to itself and its neighbors. The vertices are allowed to communicate through

the edges of the graph G. We assume that the communication is synchronous and

occurs in discrete pulses (time steps). (This assumption is not essential for our time

complexity analysis. One can use a synchronizer to obtain the same time bound in an

asynchronous network at the cost of some increase in the message complexity [13].)

In each time step, each node v can send an arbitrary message of size O(log n) through

each edge e = (v, u) that is adjacent to v, and the message arrives at u by the end

of this time step. (If unbounded-size messages are allowed, the MST problem can

be trivially solved in O(D(G)) time [13].) The weights of the edges are at most

polynomial in the number of vertices n, and therefore, the weight of a single edge

can be communicated in one time step. This model of the distributed computation

is called the CONGEST (log n) model or simply the CONGEST model [13] (the

previous results on the distributed MST problem cited in Section 4.1.1 are for this

model). We note that more generally, CONGEST (B) model allows messages of size

at most O(B) to be transmitted in a single time step across an edge. Our algorithm

can straightforwardly be applied to this model also. We will assume B = log n

throughout this chapter.

4.1.3 Overview of the Results

Our main contribution is an almost existentially optimal (in both time and mes-

sage complexity) distributed approximation algorithm that constructs an O(log n)-

approximate minimum spanning tree, i.e., whose cost is within an O(log n) factor of

49

the MST. The running time1 of our algorithm is Õ(D(G)+L(G,w)), where L(G,w) is

a parameter called the local shortest path diameter (we defer the definition of L(G,w)

to Sect. 4.2.2). L(G,w) depends on the graph topology. L(G,w) always lies be-

tween 1 and n. The parameter L(G,w) can be smaller or larger than the diameter

and typically it can be much smaller than
√

n (recall that this is essentially a lower

bound on distributed (exact) MST computation). In fact, we show that there exist

some graphs for which any distributed algorithm for computing an MST will take

Ω̃(
√

n) time, while our algorithm will compute a near-optimal MST in Õ(1) time,

since L(G,w) = Õ(1) and D = Õ(1) for these graphs. Thus there exists an exponen-

tial gap between exact MST and O(log n)-approximate MST computation. However,

in some graphs L(G,w) can be asymptotically larger than both the diameter and
√

n.

By combining the MST algorithm of Kutten and Peleg [54] with our algorithm in an

obvious way, we can obtain an algorithm with the same approximation guarantee but

with running time Õ(D(G) + min(L(G,w),
√

n)).

The parameter L(G,w) is not arbitrary. We show that it captures the hardness

of distributed approximation quite precisely: there exists a family of n-vertex graphs

where Ω(L(G,w)) time is needed by any distributed approximation algorithm to ap-

proximate the MST within an H-factor, 1 ≤ H ≤ O(log n) (cf. Theorem 4.3.1).

This implies that our algorithm is existentially optimal (upto a polylogarithmic fac-

tor) and in general, no other algorithm can do better. We note that the existential

optimality of our algorithm is with respect to L(G,w) instead of n as in the case of

Awerbuch’s algorithm [52]. Our algorithm is also existentially optimal (upto a poly-

logarithmic factor) with respect to the communication (message) complexity — takes

Õ(|E|) messages, since Ω(|E|) messages is clearly needed in some graphs to construct

any spanning tree [28, 58].

One of the motivations for this work is to investigate whether a fast distributed

algorithm that construct a (near-optimal) MST can be developed for some special

1We use the notations Õ(f(n)) and Ω̃(f(n)) to denote O(f(n) · polylog(f(n))) and
Ω(f(n)/polylog(f(n))), respectively.

50

classes of networks. An important consequence of our results is that the networks

with low L(G,w) value (compared to O(D(G)) admit a Õ(D(G)) time O(log n)-

approximation distributed algorithm. In particular, the unit disk graphs have L(G,w)

= 1. The unit disk graph model is a commonly used model in the wireless networks.

We also show that L(G,w) = O(log n) with high probability in any arbitrary net-

work whose edge weights are chosen independently at random from any arbitrary

distribution (cf. Theorem 4.4.2).

4.2 Distributed Approximate MST Algorithm

4.2.1 Nearest Neighbor Tree Scheme

The main objective of our approach is to construct a spanning tree, called the

Nearest Neighbor Tree (NNT), efficiently in a distributed fashion. In Chapter 2, we

introduced the Nearest Neighbor Tree and showed that its cost is within an O(log n)

factor of the cost of the MST. The scheme is used to construct an NNT (henceforth

called NNT scheme) as follows: (1) each node first chooses a unique rank from a

totally-ordered set; a ranking of the nodes corresponds to a permutation of the nodes;

(2) each node (except the one with the highest rank) connects (via the shortest path)

to the nearest node of higher rank. We show that the NNT scheme constructs a

spanning subgraph in any weighted graph whose cost is at most O(log n) times that

of the MST, irrespective of how the ranks are selected (as long as they are distinct)

2. Note that some cycles can be introduced in step 2, and hence to get a spanning

tree we need to remove some edges to break the cycles.

The main advantage of the NNT scheme is that each node, individually, has the

task of finding its nearest node of higher rank to connect to, and hence no explicit

coordination is needed among the nodes. However, despite the simplicity of the NNT

scheme, it is not clear how to efficiently implement the scheme in a general weighted

graph. In Chapter 3, we showed how the NNT scheme can be implemented in a

complete metric graph G (i.e., D(G) = 1). This algorithm takes only O(n log n)

51

messages to construct an O(log n)-approximate MST as opposed to the Ω(n2) lower

bound (shown by Korach et al [21]) on the number messages needed by any distributed

MST algorithm in this model. If the time complexity needs to be optimized, then

NNT scheme can easily be implemented in O(1) time (using O(n2) messages), as

opposed to the best known time bound of O(log log n) for the (exact) MST [59]. These

results suggest that the NNT scheme can yield faster and communication-efficient

algorithms compared to the algorithm that compute the exact MST. However, an

efficient implementation in a general weighted graph is non-trivial and was left open

in [2]. Thus, a main contribution of this chapter is an efficient implementation of the

scheme in a general network. The main difficulties are avoiding the congestions in

finding the nearest node of higher rank efficiently in a distributed fashion (since many

nodes are trying to search at the same time) and avoiding cycle formation. We use

a technique of “incremental” neighborhood exploration that avoids congestion and

cycle formation, and is explained in detail in Sect. 4.2.3.

4.2.2 Preliminaries

We use the following definitions and notations concerning an undirected weighted

graph G = (V, E, w). We say that u and v are neighbors of each other if (u, v) ∈ E.

Notations:

|Q(u, v)| or simply |Q| — is the number of edges in path Q from u to v. We call |Q|
the length of the path Q.

w(Q(u, v)) or w(Q) — is the weight of the path Q, which is defined as the sum of the

weights of the edges in path Q, i.e., w(Q) =
∑

(x,y)∈Q w(x, y).

P (u, v) — is a shortest path (in the weighted sense) from u to v.

d(u, v) — is the (weighted) distance between u and v, and defined by d(u, v) =

w(P (u, v)).

Nρ(v) — is the set of all neighbors of v within the distance ρ, i.e.,

Nρ(v) = {u | (u, v) ∈ E ∧ w(u, v) ≤ ρ}.

52

W (v) — is the weight of the largest edge adjacent to v, e.g., W (v) = max(v,x)∈E w(v, x).

l(u, v) — is the number of edges in the minimum-length shortest path from u to v.

Note that there may be more than one shortest path from u to v. Thus, l(u, v) is the

number of edges of the shortest path having the least number of edges, i.e,

l(u, v) = min{|P (u, v)| | P (u, v) is a shortest path from u to v}.

Definition 4.2.1 ρ-neighborhood. ρ-neighborhood of a node v, denoted by Γρ(v),

is the set of the nodes that are within distance ρ from v. Γρ(v) = {u | d(u, v) ≤ ρ}.

Definition 4.2.2 (ρ, λ)-neighborhood. (ρ, λ)-neighborhood of a node v, denoted by

Γρ,λ(v), is the set of all nodes u such that there is a path Q(v, u) such that w(Q) ≤ ρ

and |Q| ≤ λ. Clearly, Γρ,λ(v) ⊆ Γρ(v).

Definition 4.2.3 Shortest Path Diameter (SPD). SPD is denoted by S(G,w)

(or S for short) and defined by S = maxu,v∈V l(u, v).

Definition 4.2.4 Local Shortest Path Diameter (LSPD). LSPD is denoted by

L(G,w) (or L for short) and defined by L = max
v∈V

L(v), where L(v) = max
u∈ΓW (v)(v)

l(u, v).

Notice that 1 ≤ L ≤ S ≤ n in any graph. However, there exists graphs, where

L is significantly smaller than both S and the (unweighted) diameter of the graph,

D. For example, in a chain of n nodes (all edges with weight 1), S = n, D = n, and

L = 1.

4.2.3 Distributed NNT Algorithm

We recall the basic NNT scheme as follows. Each node v selects a unique rank

r(v). Then each node finds the nearest node of higher rank and connects to it via the

shortest path. Now we describe each of these steps in detail.

Rank selection. The nodes select unique ranks as follows. First, a leader is elected

by using a leader election algorithm. Let s be the leader node. The leader picks a

53

number p(s) from the range [b−1, b], where b is a number arbitrarily chosen by s, and

sends this number p(s) along with its identity number ID(s) to all of its neighbors.

A neighbor v of the leader s, after receiving p(s), picks a number p(v) from the open

interval [p(s)−1, p(s)), thus p(v) is less than p(s), and then transmits p(v) and ID(v)

to all of its neighbors. This process is repeated by every node in the graph. Notice

that at some point, every node in the graph will receive a message from at least one of

its neighbors since the given graph is connected; some nodes may receive more than

one message. As soon as a node u receives the first message from a neighbor v, it

picks a number p(u) from [p(v)−1, p(v)), so that it is smaller than p(v), and transmit

p(u) and ID(u) to the neighbors. If u receives another message later from another

neighbor v′, u simply stores p(v′) and ID(v′), and does nothing else. p(u) and ID(u)

constitute u’s rank r(u) as follows.

Definition 4.2.5 Rank. The rank of a node u is defined as r(u) = (p(u), ID(u)) and

for any two nodes u and v,

r(u) < r(v) iff p(u) < p(v) or [p(u) = p(v) and ID(u) < ID(v)].

At the end of execution of the above procedure of rank selection, it is easy to make

the following observations.

Observation 4.2.1 Each node knows the ranks of all of its neighbors.

Proof: Once a node receives the rank from one of its neighbors, it selects it own

rank and sends it to all of its neighbors. Since the underlying graph G is connected,

eventually (within time D, where D is the diameter of the graph), each node receives

the messages containing the ranks from all of its neighbors. ¤

Observation 4.2.2 Each node u, except the leader s, has at least one neighbor v,

i.e., (u, v) ∈ E, such that r(u) < r(v).

Proof: Each node u 6= s, selects its own rank r(u) such that r(u) < r(v) only after

receiving r(v) from some neighbor v. ¤

54

 6

 5
 4

 3

 2

 1

 2 1

 7

 6

 5

 4

 3u

x

x

x

x
x

x

 7 9
9

9

9

9

9

99
 9

 9

9

 99

1

1
1 1

1

11
x

v
u

u

u

u

uu

Figure 4.1. A network with possible congestion in the edges adjacent to
v. The weight of the edge (v, ui) is 1 for every i, and 9 for the rest of the
edges. Assume r(v) < r(ui) for all i.

Observation 4.2.3 The leader s has the highest rank among all nodes in the graph.

Proof: Since the leader s is the initiator of this rank selection process, we have

r(s) > r(v) for any v ∈ V where v 6= s. ¤
Connecting to a higher-ranked node. Each node v (except the leader s) executes

the following algorithm simultaneously to find the nearest node of higher rank and

connect to it. By Observation 4.2.2, we can conclude that for any node v, exploring

the nodes in ΓW (v)(v) is sufficient to find a node of higher rank.

Each node v executes the algorithm in phases. In the first phase, v sets ρ = 1. In

the subsequent phases, it doubles the value of ρ; that is, in the ith phase, ρ = 2i−1.

In a phase of the algorithm, v explores the nodes in Γρ(v) to find a node u (if any)

such that r(u) > r(v). If such a node with higher rank is not found, v continues to

the next phase with ρ doubled. By Observation 4.2.2, v needs to increase ρ to at

most W (v). Each phase of the algorithm consists of one or more rounds. In the first

round, v sets λ = 1. In the subsequent rounds, the values for λ are doubled, i.e., in

the jth round, λ = 2j−1. In a particular round, v explores all nodes in Γρ,λ(v). At the

end of each round, v counts the number of the nodes it has explored. If the number of

nodes remain the same in two successive rounds of the same phase (that is, v already

explored all nodes in Γρ(v)), v doubles ρ and starts the next phase. If at any point of

time v finds a node of higher rank, it then terminates its exploration.

55

Since all of the nodes explore their neighborhoods simultaneously, many nodes may

have overlapping ρ-neighborhoods. This might create congestion of the messages in

some edges that may result in increased running time of the algorithm, in some cases

by a factor of Θ(n). Consider the network given in Fig. 4.1. If r(v) < r(ui) for all i,

when ρ ≥ 2 and λ ≥ 2, an exploration message sent to v by any ui will be forwarded

to all other uis. Note that the values for ρ and λ for all uis may not necessarily be

the same at a particular time. Thus, the congestion at any edge (v, ui) can be as

much as the number of such nodes ui, which can be, in fact, Θ(n) in some graphs.

However, to improve the running time of the algorithm, we keep congestions on all

edges bounded by O(1) by sacrificing the quality of the NNT, but only by a constant

factor. To do so, v decides that some lower ranked uis can connect to some higher

ranked uis and informs them instead of forwarding their message to the other nodes

(details are given below). Thus, v forwards messages from only one ui and this avoids

the congestion. As a result, a node may not connect to the nearest node of higher

rank. However, our algorithm guarantees that the distance to the connecting node

is not larger than four times the distance to the nearest node of higher rank. The

detailed description is given below.

1. Exploration of ρ-neighborhood to find a node of higher rank:

Initiating exploration. Initially, each node v sets ρ ← 1 and λ ← 1. Node v

explores the nodes in Γρ,λ(v) in a BFS-like manner to find if there is a node x ∈ Γρ,λ(v)

such that r(v) < r(x). v sends explore messages < explore, v, r(v), ρ, λ, pd, l > to all

u ∈ Nρ(v). In message < explore, v, r(v), ρ, λ, pd, l >, v is the originator of the explore

message; r(v) is its rank, ρ is its current phase value; λ is its current round number

in this phase; pd is the weight of the path traveled by this message so far (from v to

the current node), and l is the number of links that the message can travel further.

Before v sends the message to its neighbor u, v sets pd ← w(v, u) and l ← λ− 1.

Forwarding explore messages. Any node y may receive more than one ex-

plore message from the same originator v via different paths for the same round.

Any subsequent message is forwarded only if the later message arrives through a

56

shorter path than the previous one. Any node y, after receiving the message <

explore, v, r(v), ρ, λ, pd, l > from one of its neighbors, say z, checks if it previously

received another message < explore, v, r(v), ρ, λ, pd′, l′ > from z′ with the same orig-

inator v such that pd′ ≤ pd. If so, y sends back a count message to z with count =

0. The purpose of the count messages is to determine the number of nodes explored

by v in this round. Otherwise, if r(v) < r(y), y sends back a found message to v

containing y’s rank. Otherwise, If Nρ−pd(y)− {z} = φ or l = 0, y sends back a count

message with count = 1 and sets a marker counted(v, ρ, λ) ← TRUE. The purpose

of the marker counted(v, ρ, λ) is to make sure that y is counted only once for the

same source v and in the same phase and round of the algorithm. If r(v) > r(y),

l > 0, and Nρ−pd(y)− {z} 6= φ, y forwards the explore message to all of its neighbors

u ∈ Nρ−pd(y)− {z} after setting pd ← pd + w(y, u) and l ← l − 1.

Controlling Congestion. If at any time step, a node v receives more than

one, say k > 1, explore messages from different originators ui, 1 ≤ i ≤ k, v for-

wards only one explore message and replies back to the other uis as follows. Let

< explore, ui, r(ui), ρi, λi, pdi, li > be the explore message from originator ui. If

there is a uj such that r(ui) < r(uj) and pdj ≤ ρi, v sends back a found mes-

sage to ui telling that ui can connect to uj where the weight of the connecting path

w(Q(ui, uj)) = pdi + pdj ≤ 2ρi. In this way, some of the uis are replied back a found

message and their explore messages will not be forwarded by v.

Now, there are at least one ui left, to which v did not send the found message

back. If there is exactly one such ui, v forwards its explore message; otherwise, v

takes the following actions. Let us be the node with lowest rank among the rest of

the uis (i.e., those uis which were not sent a found message by v), and ut, with t 6= s,

be an arbitrary node among the rest of uis. Now, it must be the case that ρs is

strictly smaller than ρt (otherwise, v would send a found message to us), i.e., us is in

an earlier phase than ut. This can happen if in some previous phase, ut exhausted its

ρ-value with smaller λ-value leading to a smaller number of rounds in that phase and

a quick transition to the next phase. In such a case, we keep ut waiting for at least

57

one round without affecting the overall running time of the algorithm. To do this, v

forwards explore message of us only and sends back wait messages to all ut.

Each explore message triggers exactly one reply (either found, wait, or count mes-

sage). These reply-back messages move in similar fashion as of explore messages but

in the reverse direction and they are aggregated (convergecast) on the way back as

described next. Thus those reply messages also do not create any congestion in any

edge.

Convergecast of the Replies of the explore Messages. If any node y forwards

the explore message < explore, v, r(v), ρ, λ, pd, l > received from z for the originator

v to its neighbors in Nρ−pd(y) − {z}, eventually, at some point later, y will receive

replies to these explore messages, from the nodes in Nρ−pd(y) − {z}. Each of these

replies is either a count message, a wait message, or a found message. Once y receives

replies from all nodes in Nρ−pd(y)−{z}, it takes the following actions. If at least one

of the replies is a found message, y ignores all wait and count messages, and sends

the found message to z toward the originator v. If there are more than one found

messages, select the one with the minimum path weight and ignore the rest. Now,

if there is no found message and at least one wait message, y sends back only one

wait message to z toward the originator v and ignore the count messages. If all of

the replies are count messages, y adds the count values of these messages and sends a

single count message to v with the aggregated count. Also, y adds itself to the count

if the marker counted(v, ρ, λ) = FALSE and sets counted(v, ρ, λ) ← TRUE. At the

very beginning, y initializes counted(v, ρ, λ) ← FALSE. The count messages (also

the wait and found messages) travel in the opposite direction of the explore messages

using the same paths toward v. Thus, these reply-back messages form a convergecast

as opposed to the (controlled) broadcast of the explore messages.

Actions of the Originator after Receiving the Replies of the explore mes-

sages. At some time step, v receives replies of the explore messages originated by

itself from all nodes in Nρ(v). Each of these replies is either a count message, a wait

message, or a found message. If at least one of the replies is a found message, v is

58

done with the exploration and makes the connection as described in Item 2 below.

Otherwise, if there is a wait message, v again initiates exploration with the same ρ

and λ. If all of them are count messages, v calculates the total count by adding the

count values of these messages and does the following:

(a) if λ = 1, v initiates exploration with λ ← 2 and the same ρ (2nd round of the

same phase);

(b) if λ > 1 and the total count for this round is larger than that of the previous

round, v initiates exploration with λ ← 2λ and the same ρ (next round of the

same phase);

(c) otherwise, v initiates exploration with λ ← 1 and ρ ← 2ρ (first round of the

next phase).

2. Making Connection:

Let u be a node with higher rank that v found by exploration. If v finds more

than one node with rank higher than the rank of itself, then v selects the nearest

one among them (break the ties arbitrarily). Let Q(v, u) be the path from v to u.

The path Q(v, u) is discovered when u is found in the exploration process initiated

by v. During the exploration process, the intermediate nodes in the path simply keep

track of the predecessor and successor nodes in the path Q(v, u) for this originator

v. The edges in Q(v, u) are added in the resulting spanning tree as follows. To

add the edges in Q(v, u), v sends a connect message to u along this path. Let

Q(v, u) =< v, . . . , x, y, . . . , u >. Note that by our choice of u, all of the intermediate

nodes in this path have rank lower than r(v). When the connect message passes

through the edge (x, y), node x uses (x, y) as its connecting edge regardless of the

ranks of x and y. If x is still doing exploration to find a higher ranked node, x stops

the exploration process as the edge (x, y) serves as x’s connection. If x is already

connected using a path, say < x, x1, x2, . . . , xk >, the edge (x, x1) is removed from

the tree, but the rest of the edges in this path still remains in the tree. Once u receives

the connect message originated by v, u sends a rank-update message back to v. All

59

p

3

3

3

3

1111

q

3y

v2u y1
x y

Figure 4.2. A possible scenario of creating cycle and avoiding it. Nodes
are marked with letters. Edge weights are given in the figure. Let r(u) =
11, r(v) = 12, r(p) = 13, r(q) = 14, and ranks of the rest of the nodes are
smaller than 11. u connects to v, v connects to p, and p connects to q.

nodes in the path Q(v, u) including v upgrade their ranks to r(u); i.e., they assumes

a new rank which is equal to the rank of u.

It might happen that in between exploration and connection, some node x in the

path Q(v, u) changed its rank due to a connection by some originator other than v.

In such a case, when the connect message originated by v travels through x, if x’s

current rank is larger than r(v), x accepts the connection as the last node in the

path and returns a rank-update message with r(x) toward v instead of forwarding the

connect message to the next node (i.e., y) toward u. This is necessary to avoid cycle

creation.

Each node has a unique rank and it can connect only to a node with higher rank.

Thus if each node can connect to a node of higher rank using a direct edge (as in a

complete graph), it is easy to see that there cannot be any cycle. However, in the

above algorithm, a node u connects to a node of higher rank, v, r(u) < r(v), using

a path Q(u, v), which may contain more than one edge and in such a path, ranks of

the intermediate nodes are smaller than r(u). Thus the only possibility of creating a

cycle is when some other connecting path goes though these intermediate nodes. For

example, in Fig. 4.2, the paths P (u, v) and P (p, q) both go through a lower ranked

node x.

60

In Fig. 4.2, if p connects to q using path < p, x, q > before u makes its connection,

x gets a new rank which is equal to r(q). Thus u finds a higher ranked node, x, at

a closer distance than v and connects to x instead of v. Note that if x is already

connected to some node, it releases such connection and takes < x, q > as its new

connection, i.e., q is x’s new parent. Now y2 uses either (y2, x) or (y2, v), but not

both, for its connection. Thus there is no cycle in the resulting graph.

Now, assume that u already made its connection to v, but p is not connected yet.

At this moment, x’s rank is upgraded to r(v) which is still smaller than r(p). Thus

p finds q as its nearest node of higher rank and connects using path < p, x, q >. In

this connection process, x removes its old connecting edge (x, y2) and gets (x, q) as

its new connecting edge. Again, there cannot be any cycle in the resulting graph.

If x receives the connection request messages from both u (toward v) and p (toward

q) at the same time, x only forwards the message for the destination with highest

rank; here it is q. u’s connection only goes up to x. Note that x already knows

the ranks of both q and v from previous exploration steps. In the next section, a

formal and robust proof is given to show that there is no cycle in the resulting NNT

(Lemma 4.2.4).

4.2.4 Analysis of the Algorithm

In this section, we analyze the correctness and performance of the distributed

NNT algorithm. The following lemmas and theorems show our results.

Lemma 4.2.1 Let, during exploration, v found a higher ranked node u and the path

Q(v, u). If v’s nearest node of higher rank is u′, then w(Q) ≤ 4d(v, u′).

Proof: Assume that u is found when v explored the (ρ, λ)-neighborhood for some

ρ and λ. Then d(v, u′) > ρ/2, otherwise, v would find u′ as a node of higher rank

in the previous phase and would not explore the ρ-neighborhood. Now, u could be

found by v in two ways. i) The explore message originated by v reaches u and u sends

back a found message. In this case, w(Q) ≤ ρ. ii) Some node y receives two explore

61

messages originated by v and u via the paths R(v, y) and S(u, y) respectively, where

r(v) < r(u) and w(S) ≤ ρ; and y (on behalf of u) sent a found message to v (see

“Controlling Congestion” in Item 1). In this case, w(Q) = w(R) + w(S) ≤ 2ρ, since

w(R) ≤ ρ. Thus, in both cases, we have w(Q) ≤ 4d(v, u′). ¤

Lemma 4.2.2 The algorithm adds exactly n− 1 edges to the NNT.

Proof: Let a node v connect to another node u using the path Q(v, u) = < v, . . .,

x, y, z, . . ., u >. When a connect message goes through an edge, say (x, y) (from

x to y), in this path, the edge (x, y) is added to the tree. We say the edge (x, y)

is associated to node x (not to y) based on the direction of the flow of the connect

message. If, previously, x was associated to some other edge, say (x, y′), the edge

(x, y′) was removed from the tree. Thus each node is associated to at most one edge.

Except the leader s, each node x must make a connection and thus at least one

connect message must go through or from x. Then, each node, except s, is associated

to some edge in the tree.

Thus each node, except s, is associated to exactly one edge in the NNT; and s

cannot be associated to any node since a connect message cannot be originated by

or go through s; s can only be the destination (the last node in the path) since s has

the highest rank.

Now, to complete the proof, we need to show that no two nodes are associated to

the same edge. To show this, we use the following lemma.

Lemma 4.2.3 Whenever x is associated to the edge (x, y), at that point of time,

r(x) ≤ r(y).

Proof: Node x become associated to the edge (x, y) only after a connect message

passes through (x, y) from x to y. When the connect message went through (x, y)

from x to y, r(x) and r(y) became equal. Later if another connect message increases

r(x), then either r(y) is also increased to the same value or x become associated to

some edge other than (x, y). Thus, while keeping (x, y) associated to x, it must be

true that r(x) ≤ r(y). [The end of the proof of Lemma 4.2.3] ¤

62

Only the nodes x and y can be associated to the edge (x, y). Let x be associated

to the edge (x, y). By Lemma 4.2.3, r(x) ≤ r(y). Then any new connect message

that might make (x, y) associated to y, by passing the connect message from y to x,

must pass through x toward some node with rank higher than r(y) (i.e., this connect

message cannot terminate at x). This will make x associated to some edge other than

(x, y). Therefore, no two nodes are associated to the same edge. ¤

Lemma 4.2.4 The edges in the NNT added by the given distributed algorithm does

not create any cycle.

Proof: Suppose to the contrary that < v0, v1, v3 . . . , vk, v0 > be a cycle created by

the edges added to the NNT. Then either one of the following must be true.

• vi is associated to (vi, vi+1) for 0 ≤ i ≤ k − 1, and vk is associated to (vk, v0).

• vi is associated to (vi, vi−1) for 1 ≤ i ≤ k, and v0 is associated to (v0, vk).

For both cases, by Lemma 4.2.3, we have r(v0) = r(v1) = . . . = r(vk). Here, we

have a contradiction. The ranks of all nodes in this cycle can never be the same.

Initially, the ranks are distinct. Later, when a node u connects to the node v via the

connecting path Q(u, v), the ranks of the nodes in the path Q(u, v) are upgraded to

r(v). Notice that the rank of a node cannot be decreases. It can only be increased. It

is easy to see that a connecting path cannot contain any cycle. The above cycle must

be created by at least two connecting paths. Let Q(u, v) be the last connecting path

that completes this cycle, and vi and vj be the first and last node in the path Q(u, v)

among the nodes that are common both in this path and the cycle. The path Q(u, v)

goes beyond vi; that means r(v) > r(vi). Since r(vi) = r(vj), r(v) > r(vj); this

implies that v 6= vj and the path Q(u, v) goes beyond vj. As a result, this connecting

path (u, v) will upgrade the ranks of vi and vj to r(v), which is higher than the ranks

of the other nodes in the cycle. This leads to a contradiction. Thus, there cannot be

any cycle in the NNT. ¤
From Lemmas 4.2.2 and 4.2.4 we have the following theorem.

63

Theorem 4.2.1 The above algorithm produces a tree spanning all nodes in the graph.

We next show that the spanning tree found by our algorithm is an O(log n)-

approximation to the MST (Theorem 4.2.2).

Theorem 4.2.2 Let the NNT be the spanning tree produced by the above algorithm.

Then the cost of the tree c(NNT) ≤ 4dlog nec(MST).

Proof: Let H = (VH , EH) be a complete graph constructed from G = (V,E) as

follows. VH = V and weight of the edge (u, v) ∈ EH is the weight of the shortest

path P (u, v) in G. Now, the weights of the edges in H satisfy the triangle inequality.

Let NNTH be a nearest neighbor tree and MSTH be a minimum spanning tree on

H. We can show that c(NNTH) ≤ dlog nec(MSTH) (Theorem 2.2.1).

Let NNT ′ be a spanning tree on G, where each node connects to the nearest node

of higher rank via a shortest path. By Lemma 4.2.1, we have c(NNT) ≤ 4c(NNT ′).

Further, it is easy to show that c(NNT ′) ≤ c(NNTH) and c(MSTH) ≤ c(MST).

Thus, we have

c(NNT) ≤ 4c(NNTH) ≤ 4dlog nec(MSTH) ≤ 4dlog nec(MST).

¤
Remark: With the help of Theorem 2.13 in [60], an alternative upper bound of

12dlog wmax

wmin
ec(MST) for c(NNT) can be achieved, where wmax and wmin are the

maximum and minimum edge weights, respectively. This bound is independent of

the number of nodes n, but depends on the weights of the edges.

Theorem 4.2.3 The running time of the above algorithm is O(D + L log n).

Proof: Time to elect leader is O(D). The rank choosing scheme takes also O(D)

time.

In the exploration process, ρ can increase to at most 2W ; because, within distance

W , it is guaranteed that there is a node of higher rank (Observation 4.2.2). Thus,

the number of phases in the algorithm is at most O(log W) = O(log n).

64

In each phase, λ can grow to at most 4L. When L ≤ λ < 2L and 2L ≤ λ < 4L,

in both rounds, the count of the number of nodes explored will be the same. As a

result, the node will move to the next phase.

Now, in each round, a node takes at most O(λ) time; because the messages travel

at most λ edges back and forth and at any time the congestion in any edge is O(1).

Thus any round takes time at most

log(4L)∑

λ=1

O(λ) = O(L).

Thus time for the exploration process is O(L log W). Total time of the algorithm

for leader election, rank selection, and exploration is O(D + D + L log n) = O(D +

L log n). ¤

Theorem 4.2.4 The message complexity of the algorithm is O(|E| log L log n) =

O(|E| log2 n).

Proof: The number of phases in the algorithm is at most O(log L). In each phase,

each node executes at most O(log W) = O(log n) rounds. In each round, each edge

carries O(1) messages. That is, number of messages in each round is O(|E|). Thus

total messages is O(|E| log L log n). ¤

4.3 Exact vs. Approximate MST and Near-Optimality of NNT Algorithm

Comparison with Distributed Algorithms for (Exact) MST. There can be a

large gap between the local shortest path diameter L and Ω̃(
√

n), which is the lower

bound for exact MST computation. In particular, we can show that there exists a

family of graphs where NNT algorithm takes Õ(1) time, but any distributed algo-

rithm for computing (exact) MST will take Ω̃(
√

n) time. To show this we consider

the parameterized (weighted) family of graphs called J K
m defined in Peleg and Ra-

binovich [56] (see Section 4.1 and 5.3 in [56] for a description of how to construct

J K
m). (One can also show a similar result using the family of graphs defined by Elkin

65

in [12].) The size of J K
m is n = Θ(m2K) and its diameter Θ(Km) = Θ(Kn1/(2K)).

For every K ≥ 2, Peleg and Rabinovich show that any distributed algorithm for the

MST problem will take Ω(
√

n/BK) time on some graphs belonging to the family.

The graphs of this family have L = Θ(mK) =
√

n. We modify this construction as

follows: the weights on all the highway edges except the first highway (H1) is changed

to 0.5 (originally they were all zero); all other weights remain the same. This makes

L = Θ(Km), i.e., same order as the diameter. One can check that the proof of Peleg

and Rabinovich is still valid, i.e., the lower bound for MST will take Ω(
√

n/BK) time

on some graphs of this family, but NNT algorithm will take only Ω̃(L) time. Thus

we can state:

Theorem 4.3.1 For every K ≥ 2, there exists a family of n−vertex graphs in which

NNT algorithm takes O(Kn1/(2K)) time while any distributed algorithm for computing

the exact MST requires Ω̃(
√

n) time. In particular, for every n ≥ 2, there exists a

family of graphs in which NNT algorithm takes Õ(1) time whereas any distributed

MST algorithm will take Ω̃(
√

n) time.

Such a large gap between NNT and any distributed MST algorithm can be also

shown for constant diameter graphs, using a similar modification of a lower bound

construction given in Elkin [12] (which generalizes and improves the results of Lotker

et al [61]).

Near (existential) optimality of NNT algorithm. We show that there exists a

family of graphs such that any distributed algorithm to find a H(≤ log n)-approximate

MST takes Ω(L) time (where L is the local shortest path diameter) on some of these

graphs. Since NNT algorithm takes Õ(D + L), this shows the near-tight optimality

of NNT (i.e., tight up to a polylog(n) factor). This type of optimality is called ex-

istential optimality which shows that our algorithm cannot be improved in general.

To show our lower bound we look closely at the hardness of distributed approxima-

tion of MST shown by Elkin [12]. Elkin constructed a family of weighted graphs

Gω (Figure 1, Section 3.1 in [12]) to show a lower bound on the time complexity of

66

any H−approximation distributed MST algorithm (whether deterministic or random-

ized). We briefly describe this result and show that this lower bound is precisely the

local shortest path diameter L of the graph. The graph family Gω(τ,m, p) is parame-

terized by 3 integers τ,m, and p, where p ≤ log n. The size of the graph n = Θ(τm),

the diameter is D = Θ(p) and the local shortest path diameter can be easily checked

to be L = Θ(m). Note that graphs of different size, diameter, and LSPD can be

obtained by varying the parameters τ,m, and p. (We refer to [12] for the detailed de-

scription of the graph family and the assignment of weights.) We now slightly restate

the results of [12] (assuming the CONGEST (B) model):

Theorem 4.3.2 [12] 1. There exists graphs belonging to the family Gω(τ, m, p) hav-

ing diameter at most D for D ∈ 4, 6, 8, . . . and LPSD L = Θ(m) such that any

randomized H-approximation algorithm for the MST problem on these graphs takes

T = Θ(L) = Ω((n
H·D·B)1/2−1/(2(D−1)) distributed time.

2. If D = O(log n) then the lower bound can be strengthened to Θ(L) = Ω(
√

n
H·B·log n

).

Using a slightly different weighted family G̃ω(τ,m) parameterized by two param-

eters τ and m, where size n = τm2, diameter D = Ω(m) and LSPD L = Θ(m2), one

can strengthen the lower bound of the above theorem by a factor of
√

log n for graphs

of diameter Ω(nδ).

The above results show the following two important facts:

1. There are graphs having diameter D << L where any H-approximation algo-

rithm requires Ω(L) time.

2. More importantly, for graphs with very different diameters — varying from a

constant (including 1, i.e., exact MST) to logarithmic to polynomial in the size of n

— the lower bound of distributed approximate-MST is captured by the local shortest

path parameter. In conjunction with our upper bound given by the NNT algorithm

which takes Õ(D+L) time, this implies that the LPSD L captures in a better fashion

the complexity of distributed O(log n)-approximate-MST computation.

67

4.4 Special Classes of Graphs

We show that in unit disk graphs (a commonly used model for wireless networks)

L = 1, and in random weighted graphs, L = O((log n)) with high probability. Thus

our algorithm will run in near-optimal time of Õ(D(G)) on these graphs.

Unit Disk Graph (UDG). Unit disk graph is an euclidian graph where there is an

edge between two nodes u and v if and only if general dist(u, v) ≤ R for some R (R

is typically taken to be 1). Here dist(u, v) is the euclidian distance between u and v;

that is the weight of the edge (u, v). Theorem 4.4.1 shows that for any UDG, L = 1.

For a 2-dimensional UDG, the diameter D can be as large as Θ(
√

(n)).

Theorem 4.4.1 In any UDG, the local shortest path diameter L is 1.

Proof: For any node v, W (v) ≤ R by definition of UDG. Now if there is node u

such that d(u, v) ≤ R, then dist(u, v) ≤ R by the triangle inequality. Thus, (v, u)

is in E and the edge (v, u) is the shortest path from v to u; as a result, l(v, u) = 1.

Therefore, for any v, L(v) = maxu∈ΓW (v)(v) l(v, u) = 1, and L = maxv∈V L(v) = 1. ¤
Graph with Random Edge Weights. Consider any graph G (topology can be

arbitrary) with edge weights chosen randomly from [0, 1] following any arbitrary dis-

tribution (i.e., each edge weight is chosen i.i.d from the distribution). The following

theorem shows that L and S is small compared to the diameter for such a graph.

Theorem 4.4.2 Consider a graph G where the edge weights are chosen randomly

from [0, 1] following any (arbitrary) distribution with a constant (independent of n)

mean. Then: (1) L = O(log n) with high probability (whp), i.e., probability at least

1 − 1/nΩ(1); and (2) the shortest path diameter S = O(log n) if D < log n and

S = O(D) if D ≥ log n whp.

Proof: Let the edge weights are randomly drawn from [0, 1] with mean µ. For any

node v, W (v) ≤ 1. Consider any path with m = k log n edges, for some constant k.

68

Let the weights of the edges in this path be w1, w2, · · · , wm. For any i, E[wi] = µ.

Since 1
2
µk log n ≥ 1 for sufficiently large k, we have

Pr{
m∑

i=1

wi ≤ 1} ≤ Pr{
m∑

i=1

wi ≤ 1

2
µk log n} = Pr{µ− 1

m

m∑
i=1

wi ≥ 1

2
µ}.

Using Hoeffding bound [62] and putting k = 6
µ2 ,

Pr{µ− 1

m

m∑
i=1

wi ≥ 1

2
µ} ≤ e−mµ2/2 =

1

n3
.

Thus if it is given that the weight of a path is at most 1, then the probability that

the number of edges ≤ 6
µ2 log n is at most 1

n3 . Now consider all nodes u such that

d(v, u) ≤ W (v). There are at most n− 1 such nodes and thus there are at most n− 1

shortest paths leading to those nodes from v.

Thus using union bound, Pr{L(v) ≥ 6
µ2 log n} ≤ n× 1

n3 = 1
n2 .

Using L = max{L(v)} and union bound, Pr{L ≥ 6
µ2 log n} ≤ n× 1

n2 = 1
n
.

Therefore, with probability at least 1− 1
n
, L is smaller than or equal to 6

µ2 log n.

Proof of part 2 is similar. ¤

4.5 Conclusion and Future Work

We presented and analyzed a simple approximation algorithm for constructing

a low-weight spanning tree. We also presented its efficient implementation in an

arbitrary network of processors.

The local nature of the NNT-scheme seems to be suitable for designing an efficient

distributed dynamic algorithm, where the goal is to maintain an NNT of good quality,

as nodes are added or deleted. Moreover, it is interesting to see whether the ideas

in this chapter can be extended to design an efficient distributed algorithm for the

more challenging problem of finding a k-connected subgraph. These look promising

for future work.

69

5 DISTRIBUTED ALGORITHMS FOR CONSTRUCTING APPROXIMATE

MINIMUM SPANNING TREES WITH APPLICATIONS TO WIRELESS

SENSOR NETWORKS

In this chapter, we design and analyze a class of simple and local distributed al-

gorithms called Nearest Neighbor Tree (NNT) algorithms for energy-efficient con-

struction of MSTs in a wireless ad hoc setting. We show provable bounds on the

performance with respect to both the quality of the spanning tree produced and the

energy needed to construct them. For uniform distribution of nodes, we show that

our algorithms give a constant approximation; we also show that the energy needed

to construct these approximate spanning trees is within a constant factor of the min-

imum possible energy that is needed to construct a MST. We also perform extensive

simulations of our algorithms. We tested our algorithms on both uniformly random

distributions of nodes, and on realistic distributions of nodes in an urban setting. Sim-

ulations validate the theoretical results and show that the bounds are much better in

practice.

5.1 Overview

5.1.1 Introduction and Motivation

The classical distributed MST algorithm due to Gallager, Humblet, and Spira

(henceforth referred to as the GHS algorithm) [11] uses Θ(n log n+|E|) messages, and

is essentially optimal with respect to the message complexity. There are distributed

algorithms that find the MST (for e.g., see [12,13]) and are essentially optimal in terms

of time complexity: they run in O(Diam(G)+nε) time, and there are matching lower

bounds. However, these time-optimal algorithms involve a lot of message transfers

70

(much more than GHS). Even for a wireless network modeled by a unit disk graph

(or even a ring) any distributed algorithm to construct a MST needs Ω(n log n) mes-

sages [6,14]. Despite their theoretical optimality, these algorithms are fairly involved,

require synchronization and a lot of book keeping; such algorithms are impractical

for ad hoc and sensor networks [6]. For example, consider sensor networks — an

ad hoc network formed by large numbers of small, battery-powered, wireless sensors.

In many applications, the sensors are typically “sprinkled” liberally in the region of

interest and the network is formed in an ad hoc fashion by local self-configuration.

Since each sensor usually knows only its (local) neighbors, the network management

and communication has to be done in a local and distributed fashion. Additionally,

because of battery limitations, energy is a very crucial resource. A distributed al-

gorithm which exchanges a large number of messages can consume a relatively large

amount of energy (and also time) is not suitable in an energy-constrained ad hoc wire-

less sensor network. This is especially true in a dynamic setting – when the network

needs to be reconfigured (e.g., due to mobility or failures) frequently and quickly.

Reconfiguration is also necessary to evenly distribute the energy consumption among

all the nodes [5] and thus to increase network lifetime.

Thus it is necessary to develop simple, local, distributed algorithms which are

energy-efficient, and preferably also time-efficient, even at the cost of being sub-

optimal (see e.g., [6–8] for such algorithms in the context of wireless sensor networks —

discussed more below). This adds a new dimension to the design of distributed algo-

rithms for such networks. Thus we can potentially tradeoff optimality of the solution

to work done by the algorithm. In a sensor network, the total energy required (“en-

ergy complexity”) in a distributed algorithm typically depends on the time needed,

the number of messages exchanged, and the radiation energy needed to transmit the

messages over a certain distance (see e.g., [8, 63, 64]). The radiation energy needed

to transmit a message is typically assumed proportional to some work function f

(typically square or some small power) of the distance between the sender and the

71

receiver [5, 22, 65]. Thus it becomes important to measure efficiency of a distributed

algorithm in terms of energy, besides the number of messages.

While there has been a lot of recent work on local algorithms for construction of

low-weight connected subgraphs in the context of wireless ad hoc networks (motivated

by topology control and energy-efficient routing) [66–70], to the best of our knowledge,

there has been little work on localized construction of exact or approximate MSTs,

especially in the context of wireless ad hoc networks. A structure is low weight if its

total edge length is within a small factor of the total edge length of the MST (but

the structure may have cycles). It is easy to show that MST cannot be constructed

in a purely localized manner, i.e., each node cannot determine which edge is in the

defined structure by using only the information of the nodes within some constant

hops. For example, Li, Hou, and Shia [7] proposed a method to build what they call

a local minimum spanning tree (LMST) that is guaranteed to be connected, and has

bounded degree, but is not a low-weight structure. In fact, the paper by X. Li et

al. [6] mentions the difficulty in constructing an MST and gives a localized algorithm

to construct a low-weight connected subgraph (that can have cycles) for topology

control in wireless ad hoc networks.

In this chapter, we study a class of simple, local, distributed, approximation algo-

rithms called the Nearest Neighbor Tree (NNT) algorithms that are provably good:

they build slightly sub-optimal trees with low energy complexity and are easy to

maintain dynamically. A fundamental step in all existing algorithms for the MST is

cycle detection: given an edge, one needs to determine whether the edge would form

a cycle with the edges already chosen. This deceptively simple operation leads to a

big overhead: a significant amount of book keeping and message passing needs to be

done in order to maintain the components, and answer such queries. Our algorithms

bypass such a step completely by a very simple idea: each node chooses a unique

rank, a quantity from a totally ordered set, and a node connects to the nearest node

of higher rank. Observe that this immediately precludes cycles, and the only infor-

72

mation that needs to be exchanged is the rank; also, this information does not have

to be updated continuously over the course of the algorithm.

5.1.2 MST and Work Complexity

Formally, our focus is the following geometric weighted minimum spanning tree

problem: given an arbitrary set N of points (nodes) 1 in a plane 2, find a tree T

spanning N such that
∑

(u,v)∈T dα(u, v)) is minimized where d(u, v) is the length of

the edge (u, v) ∈ T according to some norm (we use the Euclidean norm) and α

is a small positive number. The motivation for this objective function comes from

energy requirements in a wireless communication paradigm (see also next Section):

to transmit a signal over a distance r, the required radiation energy is proportional to

rα, where typically α is 2 and can range up to 4 in environments with multiple-path

interferences or local noise [5,22]. Thus, given a spanning tree T , the cost (or quality)

of a spanning tree T is defined by Qα(T) =
∑

e∈T |e|α; e denotes an edge of T and

our goal is to find a tree that minimizes the cost for a given α. It can easily be shown

(e.g., using Kruskal’s algorithmic construction [26]) that the MST which minimizes
∑

(u,v)∈T d(u, v) also minimizes
∑

(u,v)∈T dα(u, v) for any α > 0. In the rest of the

chapter, we use the terms cost and quality interchangeably.

Two important applications of the MST in wireless networks are broadcasting

and data aggregation. The MST can be used as broadcast tree to minimize radiation

energy consumption since it minimizes
∑

(u,v)∈T dα(u, v). It was shown in [71–73]

that broadcasting based on MST consumes energy within a constant factor of the

optimum. In data aggregation, the idea is to combine the data coming from different

sources enroute to eliminate redundancy and minimize the number of transmissions

and thus saving energy; the common aggregate functions are minimum, maximum,

average, etc [9]. One popular paradigm for computing aggregates is to construct a

1E.g., these may represent sensors. We assume that these have unique labels or ids.
2We consider the 2-dimensional setting for concreteness; our results can be generalized for higher
dimensions.

73

(directed) tree rooted at the sink where each node forwards its (locally) aggregated

data collected from its subtree to its parent [10,74–76]. Again, in such cases, MST is

the optimal data aggregation tree, since it works exactly as a reverse broadcast tree.

Since energy is an important constraint in the setting of sensor networks, a lot of

work has focused on constructing low energy subgraphs (see e.g., [8, 31]). However,

it is counterproductive to use a lot of resources (e.g. time and energy) in order to

compute a low energy subgraph, e.g., an MST — the energy used by the algorithm

is also an important measure. Motivated by this, in addition to the traditional time

and message complexity of distributed algorithms, we consider a complexity term

called work complexity defined as w =
M∑
i=1

rα
i where ri is the transmission distance

for message i and M is the number of messages exchanged by the nodes to run

the algorithm/protocol (this is implicit in many papers, see e.g., the survey of [14]).

Thus total radiation energy is directly proportional to the work done by the algo-

rithm. Number of messages and work together determines the total energy (energy

consumption in transceiver electronics + radiation energy) consumed in running the

algorithm/protocol.

5.1.3 Our Contributions and Results

Our main contribution is a detailed theoretical and experimental study of a simple

and local class of algorithms to construct an approximate MST, especially in the

context of ad hoc and sensor networks. Our algorithms, called the Nearest Neighbor

Tree (NNT) algorithms use a very simple idea to avoid cycle formation: each node

(independently) chooses a distinct rank, and connects to the closest node of higher

rank. Depending on how ranks are chosen we study two types of NNT algorithms:

Random-NNT (ranks are chosen randomly) and Coordinate-NNT (Co-NNT in short;

ranks are based on coordinate information)3. Given the simple and local nature of

3Both are well motivated: when nodes don’t know their geometric coordinates, Random-NNT is
natural (in contrast most previous work (e.g., [6,14,31] assume that nodes know their coordinates or
their relative locations) but if nodes know their coordinate location (say, using GPS) then Co-NNT
is more suitable.

74

this construction, it is quite surprising to expect trees of reasonable properties. We

study both the theoretical and empirical properties of such NNT trees, and show that

they have many properties that make them practical in a sensor network setting. Our

main results are: (i) The tree produced by such an algorithm (called the NNT tree)

has low cost, compared to the MST, (ii) The NNT paradigm can be used to design

a simple dynamic algorithm for maintaining a low cost spanning tree, and (iii) The

time, message and the work complexities of the NNT algorithms are close to optimal

in several settings.

We theoretically analyze the performance of both these NNT algorithms in two

scenarios :(1) nodes placed arbitrary on the plane, and (2) nodes are distributed

uniformly at random, in a unit square (this is a popular probabilistic model for ad hoc

wireless networks, e.g., see [77]); this model also allows us to analytically quantify the

energy complexity of our algorithms in a realistic setting. Our performance analysis

is with respect to the following metrics: the quality of the spanning tree produced by

the algorithm, and the message, time, and work needed by the algorithm to construct

the tree. We now summarize our results in more detail below.

Quality bounds: In Chapter 2, we showed a very general result (Theorem 2.2.1)

that any NNT tree (i.e., irrespective of how ranks are chosen) has cost within an

O(log n)-factor of the MST. In fact, this bound is true even if points are located in

a metric space. This bound immediately suggests the use of the NNT scheme to

construct and maintain low cost spanning trees in sensor network type of settings,

because of the very local nature of this construction. For higher values of α, powers

of the distances do not satisfy the triangle inequality. However, we show that the

cost of a virtual tree, constructed by using the shortest path for edges of high weights

is within O(log n)-factor of the optimal; this is discussed in more detail in Sections

2.3 and 5.5.3. Our bounds are tight, in the sense that there are instances where they

cannot be improved, using these type of algorithms.

When the points are distributed uniformly at random in the unit square, we get

much better bounds on the quality of the NNT trees. We show that Random-NNT

75

gives an O(1) and O(log n) approximation, respectively, for the case of α = 1 and

α = 2, respectively. In contrast, Co-NNT gives an O(1) approximation for both

α = 1 and α = 2. Thus, in an average sense, the NNT algorithms give much better

bounds on both the cost and energy of the tree, with Co-NNT being much better

than Random-NNT - this shows that at a cost of increased information (i.e., about

the coordinates), we can get better approximations.

Maintaining a low cost tree dynamically: We show that the degree of a node

is O(log n) with high probability. This property of low node degree can be used to

design a simple dynamic algorithm for maintaining a Random-NNT tree. We show

that the expected number of rearrangements, i.e., number of nodes whose outgoing

edge must change, as a result of a node insertion or deletion is O(log k), where k is the

number of insertions and deletions. Each such rearrangement involves recomputing

the NNT neighbor of some node. Our algorithm does not require any complicated

data structures or severe constraints on the sensors. The dynamic aspect of the NNT

scheme makes them very useful in a sensor network setting, where it is very common

for nodes to fail, or become alive asynchronously.

Message, time, and work complexity: In the uniform random setting, we show

that NNT algorithms have significantly lower message, time, and work complexity

compared to other distributed algorithms which compute the exact MST. We show

that the average work complexities for Co-NNT and Random-NNT are O(1) and

O(log n), respectively, for α = 2. These work complexities are within a constant of

optimum, because for the case of points distributed uniformly in a unit square, the

cost of the MST equals these values, within constant factors (see e.g., [23]) and this

lower bounds the work complexity of any algorithm that constructs it. We also show

that for both NNT algorithms, the expected message complexity is O(n) (on average)

and time complexity is O(log2 n) (with high probability) which are essentially the best

possible.

Simulation results: We also performed extensive simulations of our algorithms.

We tested our algorithms on both uniformly random distributions of points, and on

76

realistic distributions of points in an urban setting obtained from TRANSIMS [78].

Experimental results show that the work and number of messages for NNT algorithms

are significantly smaller than that for an optimal MST algorithm, while the quality

of the NNT tree is very close to MST. For example, for the TRANSIMS data, we

found that the cost of the tree found by the NNT algorithms is within a factor of 2 of

the MST, but there is more than a ten-fold saving on the work and about a five-fold

saving on the number of messages sent.

5.1.4 Network Model

We consider a wireless network composed of n nodes distributed (either arbitrar-

ily or uniformly randomly) in a two-dimensional plane. We assume that all nodes

have distinct identifiers. For the general algorithms, we assume that each node has

an omni-directional antenna and a single transmission can be received by any node

within its vicinity (called local broadcasting), which is assumed to be a disk of appro-

priate radius centered at the node. (However, we assume directional antenna only

for dynamic algorithm given in Section 5.4.) We utilize this broadcasting property to

reduce the communications needed in our algorithm. If the maximum transmission

power is not enough to communicate with a node directly, then it can communicate

through multihop wireless links by using intermediate nodes to relay the message.

To simplify the presentation of our algorithms we assume that each node can com-

municate directly with all other nodes. In fact, in our algorithms, most of the nodes

need to communicate with only a small number of nearby neighbors, but some nodes

may need to communicate with distant nodes (as mentioned earlier, it is impossible

to construct a MST in a purely localized manner [6]). This may not be possible if the

maximum power level (maximum communication range) of a node is not enough to

reach a node at that distance. In such a case, a node uses multi-hop communication

by using other nodes to relay the message; we will elaborate on this later (cf. Section

5.5.3).

77

5.1.5 Other Related Work

We briefly discuss other work most relevant to our work.

X. Li et al. [6] give a local algorithm to construct a low-weight subgraph that has

many desirable properties: connectivity (but may have cycles), sparseness, spanner,

bounded degree, and planarity. A structure is called low-weight if its weight is within a

constant factor of the total edge weight of MST; however it need not be acyclic. Their

model is similar to ours; however, they assume the nodes need to know coordinate

or at least relative positions, whereas for Random NNT, no coordinate information

is needed. Their algorithm takes O(n) messages which is asymptotically optimal.

However their low-weight structure is not a tree and can not be used for applications

where a tree is needed, e.g., data aggregation. Moreover their structure is low-weight

only if the weight of an edge is interpreted as the distance between two nodes (and

not as αth power of the distance, for some α > 1). The energy consumption using this

structure is within O(nα−1). Further, although they use only two-hop information,

the number of nodes within the two-hop range can be as much as O(n). Thus each

node basically explores O(n) node information, while in our algorithm, each explores

expected O(log n) closest neighbors.

N. Li et al. [7] devised a localized algorithm to build similar structure called local

minimum spanning tree (LMST). They use only one hop neighbor information to

build LMST. However LMST is not a low-weight structure even for α = 1 [6].

Kempe et al. [79] presented an algorithm to construct an approximate Euclidean

MST using spatial gossip mechanism. They considered n nodes are located at points

spaced (approximately) uniformly in RD. This algorithm achieves an O(log n) ap-

proximation of the cost of MST on the expectation, where the cost of an edge is the

Euclidean distance between two nodes (α = 1). They did not show any approximation

factor for α > 1 in which case approximation ratio can be significantly larger than

O(log n). Both random and coordinate NNT achieve O(1) approximation to MST for

α = 1. To avoid cycle formation, independent random numbers by the nodes are used

78

(similar to random NNT). However their algorithm cannot guarantee that a node is

connected to the nearest possible node and thus getting a worse approximation fac-

tor. Moreover, the message and thus energy complexity for the algorithm itself can

be very large. To run the Kempe and Kleinberg algorithm, the expected number of

messages exchanged is O(nf(n) log n) where f(n) is some poly-logarithmic function

of n, which can even be larger than number of messages in GHS algorithm. Finally,

Kempe and Kleinberg algorithm is not local, whereas our attempt is to develop a

local distributed algorithm to reduce energy complexity.

5.2 A Local Distributed Algorithm for Construction of (Approximate) MST

in Chapter 2, we showed a very general result that the cost of any NNT tree

(i.e., using any ordering of the nodes) is within O(log n) of the cost of the MST on

G. In this chapter, based on the NNT-Scheme described in Chapter 2, we present

and analyze an NNT algorithm for wireless network using wireless local broadcast

model and considering nodes are uniformly distributed in a unit suare. In addition

to the random raking (see Chapter 2), In this chapter we introduce and analyze the

following ranking of the nodes based on the coordinates.

Coordinate-NNT (or in short, Co-NNT):

1. Assume that V is a set of points in a plane. rank(v) = (x(v), y(v)), i.e., the

coordinate of v.

2. For two nodes v and w, rank(w) > rank(v) if x(w) > x(v) or if x(w) = x(v)

and y(w) > y(v).

We assume that n nodes are uniformly distributed in a unit square. In this set-

ting, we measure the quality of the tree produced by NNT, Qα(T) =
∑

(u,v)∈T

dα(u, v),

work w =
M∑
i=1

rα
i , number of messages, and the time complexities of NNT algorithms.

Although our analysis generalizes to any α, for clarity we consider α = 1 and 2. In

order to quantify the time, message and work complexity, we need to formalize the

79

steps of finding the closest NNT neighbor; this is done in Figure 5.1. To simplify

the presentation and analysis of our algorithm, we assume that each node can com-

municate directly with all other nodes by suitably increasing its transmission radius.

However, it turns out that most of the nodes need to communicate with only a small

number of nearby neighbors, but some nodes may need to communicate with distant

nodes. If the maximum power level of a node is not enough to reach a node at that

distance, a node uses multi-hop communication by using other nodes to relay the

message; we discuss such an implementation in Section 5.5.3.

The algorithm consists of exchanging three types of messages: request, available,

and connect among the nodes. Each node begins with broadcasting a request for

connection message. Considering a unit square, each node broadcasts request mes-

sages successively in phases to the distances 2√
n
, 4√

n
, 8√

n
, . . . , until it finds a node with

higher rank. We assume that these phases are synchronized; i.e., if there is a node

of higher rank within the transmission radius of a phase, the reply from that higher

ranked node is received by the end of the phase. The highest ranked node among

all the nodes, can never find a node with higher rank. This node stops transmitting

request message when it reaches the maximum possible distance between any two

nodes. Request messages carry rank information (coordinates or random number).

The other nodes who can hear the message check their relative rank and send back

an available message if their rank is higher. The sender of the request message selects

the nearest node from the senders of available messages if more than one available

message is received and thus it finds the nearest higher ranked node.

When coordinates are not available (e.g., for Random-NNT), senders can include

the transmission power levels in the available messages and the recipient can deter-

mine the relative distances of the senders from these power levels and the signal-

strengths of the received messages. Finally, the node sends a connect message to the

nearest higher ranked node, that creates an edge between these two nodes.

It is known that E[Q1(MST)] is asymptotically Θ(
√

n) and E[Q2(MST)] is

asymptotically Θ(1) [23, 80, 81]. We show that for Co-NNT, E[Q1] = O(
√

n) and

80

/* The algorithm is executed by each node u independently and simultaneously. Mes-

sages are written in the format 〈msg name, sender, [recipient], [other info]〉. When a

message is broadcasted, the recipient is not specified. l is the maximum possible

distance between any two nodes.*/

i ← 1

Repeat

Set transmission radius (power level) ri ← 2i√
n

If ri > l, set ri ← l

Broadcast 〈request, u, rankinfo〉 // rankinfo is the random number p(u) & ID

// for Random-NNT

// and coordinates (xu, yu) for Co-NNT

i ← i + 1

until (receipt of an available message) or (ri = l)

For all v, upon receipt of 〈request, v, rankinfo〉 do

if rank(v) > rank(u),

set transmission radius to distance(u, v)

send 〈available, u, v〉 to v

Upon receipt of “available” message(s):

Select the nearest node v from the senders

Send 〈connect, u, v〉 to v

Figure 5.1. Distributed NNT algorithm for wireless networks.

E[Q2] = O(1) giving an approximation factor of O(1) for both of them. For Random-

NNT, E[Q1] = O(
√

n) and E[Q2] = O(log n) giving approximation factors of O(1)

and O(log n) respectively.

We also show that the expected work complexities for Random-NNT and Co-

NNT (for α = 2) are O(log n) and O(1) respectively. In conjunction with the quality

81

Q2(MST), this is asymptotically optimal. We show that for both NNT algorithms,

the expected number of messages is O(n) and time complexity is O(log2 n) W.H.P.,

which are also essentially the best possible.

The following lemmas and theorems prove the above claims.

5.2.1 Random-NNT

Theorem 5.2.1 For a Random-NNT, E[Qα] is O(lg n) for α = 2, O(n1−α/2) for

α < 2, and O(1) for α > 2.

Proof: Consider an arbitrary node u, and concentric circles centered at u with

radius ri = 2i√
n

for i = 1, 2, . . . , m. Considering a unit square, maximum distance

between any two nodes is
√

2. Thus, rm−1 <
√

2 ≤ rm, i.e., the maximum number

of circles m < 1
2
lg n + 3

2
. Let Ci be the set of nodes in the circle with radius ri,

Ri = Ci − Ci−1 for i ≥ 2, and Ri = Ci for i = 1. For a node v ∈ Ri, distance

d(u, v) ≤ ri.

Let Ai be the event that u connects to a node v ∈ Ri. By Lemma 2.4.1, the

probability that u connects to any node between jth nearest neighbor (NN) and

(k − 1)st NN is
∑k−1

i=j
1

i(i+1)
= 1

j
− 1

k
, where j ≤ k. For i ≥ 2, |Ci−1| ≥ 1 since Ci−1

contains at least one node, which is u. Probability that a particular node, other than

u, is in Ci−1 is p ≥ 1
4
πr2

i−1 = 22iπ
16n

(for a node at the corner or next to the border,

probability p can be as low as 1
4

of the area of the circle with radius ri−1). Thus for

i ≥ 2,

Pr{Ai} =
n∑

j=1

n∑

k=j

(
1

j
− 1

k

)
Pr{|Ci−1| = j ∧ |Ci| = k}

≤
n∑

j=1

1

j
Pr{|Ci−1| = j}

=
n∑

j=1

1

j

(
n− 1

j − 1

)
pj−1(1− p)n−j

=
1

np
{1− (1− p)n} ≤ 1

np
≤ 16

22iπ
.

82

E[dα(u, v)] ≤ Pr{A1}rα
1 +

m∑
i=2

Pr{Ai}rα
i

≤ rα
1 +

m∑
i=2

16

22iπ
rα
i

= n−α/2

{
2α +

16

π

m∑
i=2

2(α−2)i

}
.

By linearity of expectation for n nodes, E[Qα] = nE[dα(u, v)].

If α = 2,

E[Qα] ≤ 8

π
lg n +

24

π
+ 4 = O(lg n)

. If α 6= 2,

E[Qα] ≤
{

2α − 22+2α

π(2α − 4)

}
n1−α/2 +

21+5α/2

π(2α − 4)
.

Thus for α < 2, E[Qα] = O(n1−α/2) and for α > 2, E[Qα] = O(1). ¤

Theorem 5.2.2 Expected work complexity of Random-NNT algorithm E[W] is O(lg n)

for α = 2, O(n1−α/2) for α < 2, and O(1) for α > 2.

Proof: Again consider an arbitrary node u. First transmission radius for request

message is r1 = 2
√

1
n

and for the ith transmission, ri = 2ri−1 = 2i
√

1
n
. Then, the

maximum number of transmissions, m < 1
2
lg n + 3

2
. Let Ci be the set of nodes in the

circle centered at u with radius ri and Ri = Ci−Ci−1, the set of nodes in the ith ring.

Let A(v, u, i) be the event that v replies to u in phase i. For i ≥ 2, the event A(v, u, i)

occurs iff v ∈ Ri and rank(v) > rank(u) > rank(s) for all s ∈ Ci−1. The probability

that a particular node is in Ci−1 is p ≥ π22i

16n
, and Pr{v ∈ Ri} ≤ 3p. Letting |Ci−1| = k,

we have Pr{∀s∈Ci−1
[rank(v) > rank(u) > rank(s)] |v ∈ Ri} = 1

k(k+1)
. Then for i ≥ 2,

Pr{A(v, u, i)} ≤ 3p
n−1∑

k=1

1

k(k + 1)

(
n− 2

k − 1

)
pk−1(1− p)n−k−1

≤ 3

n(n− 1)p
≤ 48

π(n− 1)22i
.

Pr{A(v, u, 1)} = Pr{v ∈ C1, rank(v) > rank(u)}
≤ 4π

n
· 1

2
=

2π

n
.

83

Potentially, there are n−1 nodes that can reply to u. Thus by linearity of expectation,

expected work done by the all replies to u is less than or equal to

(n− 1)

{
2π

n
rα
1 +

m∑
i=2

48

π(n− 1)22i
rα
i

}
≤ n−α/2

{
2π2α +

48

π

m∑
i=2

2i(α−2)

}
(5.1)

Now we calculate the work done by the request and connect messages. Let Ti denotes

the event that u needs ith transmission. Pr{T1} = 1. For i ≥ 2, u needs ith

transmission if and only if rank of u is the largest among all nodes in Ci−1. Thus,

Pr{Ti} =
n∑

k=1

1

k

(
n− 1

k − 1

)
pk−1(1− p)n−k ≤ 16

22iπ

In each phase, there is 1 request message, and at most 1 connect message by u. Thus

expected work done by u for request and connect messages is

m∑
i=1

Pr{Ti}2rα
i ≤ n−α/2

{
2× 2α +

32

π

m∑
i=2

2i(α−2)

}
(5.2)

From Eq. 5.1 and 5.2, expected total work for node u,

E[Wu] ≤ n−α/2

{
2(π + 1)2α +

80

π

m∑
i=2

2i(α−2)

}

Expected work by the algorithm, E[W] = nE[Wu]. Thus,

E[W] ≤ n1−α/2

{
2(π + 1)2α +

80

π

m∑
i=2

2i(α−2)

}
(5.3)

This gives the desired result stated in the theorem. ¤

Corollary 5.2.1 For i ≥ 2, number of nodes that needs ith transmission is n Pr{Ti} ≤
16n
4iπ

and expected number of required transmissions by a node to find a higher ranked

node is
m∑

i=1

Pr{Ti} ≤ 1 + 4
3π

(1− 1
2n

) ≤ 1 + 4
3π

< 1.425.

Theorem 5.2.3 Expected message complexity of Random-NNT algorithm is O(n).

Proof: If we consider work needed for every message is 1, i.e., when α = 0, the

total work is simply the number of messages, M , exchanged in the algorithm. Thus

from Equation 5.3, putting α = 0 in the right hand side, we get

E[M] ≤ n

{
2(π + 1) +

80

π

m∑
i=2

2−2i

}
= O(n).

¤

84

Theorem 5.2.4 Running time of Random-NNT algorithm is O(log2 n) with high

probability.

Proof: We assume that transmission of each message takes one unit of time and

while one node is transmitting a message, no other node in its transmission radius

(transmission range) is allowed to transmit.

The radius of the first transmission by each node is r1 = 2√
n
. The expected

number of nodes within this radius, E[|C1|] ≤ πr2
1n = 4π. Using the following

standard Chernoff bound ([82]),

Pr{x ≥ (1 + δ)µ} <

(
eδ

(1 + δ)1+δ

)µ

with x = |C1|, µ = E[|C1|] and δ = c log n
µ

− 1, we can show that with high probability,

|C1| < c log n for sufficiently large constant c, and each node receives at most c log n

available messages. Thus total time to complete the first phase is at most (c log n)2 =

O(log2 n) W.H.P.

Now consider an ith transmission phase to distance ri = 2i√
n
. After the (i − 1)st

phase, the distance between any two unconnected nodes is at least ri−1; otherwise,

one node has lower rank than the other and would connect to that in some previous

phase. Thus the maximum number of unconnected nodes in any circle with radius

ri is O(1) (this is the maximum number of nodes that can be packed in a circle with

radius 2d, for any d, such that distance between any two nodes is at least d. Notice

that there can be at most one node in any square with side d/2). Next we show that

each such unconnected node receives at most O(log n) available messages W.H.P.

Consider an arbitrary node u. Let Ci = y. Assume that y ≥ 60 log n. (If y <

60 log n, then u receives O(log n) available messages with probability 1.) Let x denotes

the number of nodes in Ci−1. For any node v, Pr{v ∈ Ci−1|v ∈ Ci} ≥ 1
4

(inequality,

instead of equality, comes from the fact that u can be close to the borders). Thus

85

E[x] ≥ y/4 ≥ 15 log n. Since the position of the nodes are independent and identically

distributed, using standard Chernoff bound ([82]) with δ = 1
2

and µ = E[x], we have

Pr{x < y/8} ≤ Pr{x < (1− δ)µ}
<

(
e−δ

(1− δ)1−δ

)µ

≤ 1

n2.3

Let z = |Ri| = y − x. Then Pr{z ≥ 7y/8} = Pr{x < y/8} < 1
n2.3 . Since u is at the

ith transmission phase, it is known that u has the largest rank among the x nodes in

Ci−1. Now u receives exactly t available messages iff exactly t out of z nodes in Ri

have higher ranks than u. The probability of such event is

(
z

t

)
t!(y − t− 1)!

y!
≤

(
z

y

)t

Let A be the event that u receives more than 20 log n available messages, and B be

the event that z < 7y/8.

Pr{A} ≤
z∑

t=d20 log ne

(
z

y

)t

≤ y

y − z

(
z

y

)20 log n

Pr{A|B} <
8

n2.6

Pr{A} ≤ Pr{A|B}+ Pr{B̄} <
1

n2.3
+

8

n2.6

Excluding the first phase, there are at most 1
2
(lg n + 1) phases. By union bound

(i.e., Boole’s inequality [82]), the probability that each of n nodes receives more than

20 log n replies in each phase is less than

1

2
(lg n + 1)n

(
1

n2.3
+

8

n2.6

)
= O(1/n1.2)

Thus with probability at least 1−O(1/n1.2), total time taken by all 1
2
(lg n+1) phases

is 1
2
(lg n + 1)×O(1)× 20 log n = O(log2 n). ¤
We note that only a very few nodes may need to go far to find a node of higher

rank. Most of the nodes are connected to the closer neighbors. From Corollary 5.2.1,

we see that the number of nodes that need ith transmission is decreasing exponentially

with i. Average number of transmissions by a node is at most 1.425. Thus almost

86

. . .

x, 1

x, 2

x, y

x, y

u

k+1, y

k+1, 2

k+2, 1

k+2, 2

k+2, y

k+
1, 2

k+
1, y

k+
2, 1

k+
2, 2

k+
2, y

 k+1, 1

k+
1, 1

Figure 5.2. Division of the unit square into
√

n×√n smaller squares and
their rearrangement. Here x = y =

√
n. Node u resides in column k. The

cells in columns k +1, k +2, . . . ,
√

n have been rearranged in a single row.

all of the nodes get connected after the first few transmissions. The radii for the first

few transmissions are 2√
n
, 4√

n
, etc., which are very small and decreasing with n. This

shows that the proposed algorithm is highly scalable and local in nature. However,

if the maximum transmission range of a node is not large enough, those few nodes

may not be able to get connected. One way to handle this, is to connect by using

multihop communication as described in Section 5.5.3.

5.2.2 Coordinate NNT

We show analogous theorems for Co-NNT. The following theorems give time,

message, work complexities, and quality of Co-NNT.

Theorem 5.2.5 The expected quality of the tree constructed by Co-NNT algorithm

for α = 1 and 2 are O (
√

n) and O (1) respectively.

Proof: We upper bound the expected distance that a node needs to connect to

some other node. For the purpose of analysis, let us subdivide the unit square into
√

n×√n small squares (Fig. 5.2). The length of a side of each small square is b = 1√
n
.

Consider an arbitrary node u. Assume that each node selects the nearest node

from the nodes that are in a column at the right of the column containing u. We

further rearrange the cells in these columns, along with the nodes in it, in a single

row as shown in Fig. 5.2. In this new arrangement, we are moving the nodes further

87

away and increasing the distances among the nodes; and thus increasing the length

of the edges comparing to the original Co-NNT. As a result, the expected quality of

the original Co-NNT is less than that of the Co-NNT in this new arrangement. Node

u connects to a node in the ith next cell, if the next i− 1 cells are empty and there

is a node in the ith next cell. The probability that the next i − 1 cells are empty is
(
1− i−1

n

)n−1
. Let P ′ be the probability that there is a node in the ith next cell, and

Pi be the probability that u connects to a node v in the ith next cell.

Pi =
(
1− i−1

n

)n−1
P ′ ≤ (

1− i−1
n

)n−1 ≤ e−
i−1
n

(n−1) ≤ e−
i−1
2

E[dα(u, v)] ≤
n−1∑
i=1

(ib)αPi ≤
n−1∑
i=1

(
i√
n

)α

e−
i−1
2

E[Qα] = nE[dα(u, v)] ≤ n1−α/2
n−1∑
i=1

iα
(

1√
e

)i−1

E[Q1] ≤
√

n
√

e
n−1∑
i=1

i
(

1√
e

)i

= O(
√

n)

E[Q2] ≤
√

e
n−1∑
i=1

i2
(

1√
e

)i

= O(1)

¤

Theorem 5.2.6 The expected work complexity of Co-NNT algorithm, for α = 1 and

2 are O (
√

n) and O (1) respectively.

Proof: Again we subdivide the area into cells and consider the rearrangement of

the cells in a single row as described in the proof of Theorem 5.2.5. Transmission

radius for ith phase is 2i√
n
. Length of each cell is b = 1√

n
. Thus a node, u, need ith

transmission if the next 2i−1 cells are empty. Let Ti be the event that u needs ith

transmission. Pr{T1} = 1 and for i ≥ 2,

Pr{Ti} =

(
1− 2i−1

n

)n−1

≤ e−2i−1/2

The number of available messages u receives in phase i is the number of nodes in

2i − 2i−1 = 2i−1 cells that are covered by the transmission i but not by transmission

88

i− 1. For i ≥ 2, the expected number of such nodes in these 2i−1 cells, given that the

first 2i−1 cells are empty, is

2i−1

n− 2i−1
(n− 1) ≤ 2i−1 n

n− 2i−1
= 2i−1

(
1 +

2i−1

n− 2i−1

)
≤ 2i−1

(
1 + 2i−1

)
.

The expected number of replies in the first transmission is 2
n
(n− 1) ≤ 2. In addition,

in each phase, there are at most one request message and one connect message by u.

Thus expected work by u,

E[Wu] ≤ (2 + 2)(2b)α Pr{T1}+

dlg ne∑
i=2

{
2 + 2i−1

(
1 + 2i−1

)}
(2ib)α Pr{Ti}

≤ 4
2α

nα/2
+

2α

nα/2

∞∑
i=2

(2 + i + i2)iα
(

1√
e

)i

Total work by n nodes, E[W] = nE[Wu]. Thus,

E[W] ≤ 2αn1−α/2

{
4 +

∞∑
i=2

(2 + i + i2)iα
(

1√
e

)i
}

(5.4)

Putting α = 1 and 2, we have the desired result. ¤

Theorem 5.2.7 The expected message complexity of Co-NNT algorithm is O(n).

Proof: Again, if we consider work for every message is 1, i.e., when α = 0, total

work is equal to the number of messages M . Thus from Equation 5.4, by putting

α = 0 in the right hand side, we get E[M] = O(n). ¤

Theorem 5.2.8 Running time of distributed Co-NNT algorithm is O(log2 n) with

high probability.

Proof: A part of the proof of this theorem is similar as the proof of the Theo-

rem 5.2.4. Using the same argument as in Theorem 5.2.4, 1) running time for the

first phase of Co-NNT algorithm is O(log2 n) W.H.P., 2) after (i − 1)st phase, the

maximum number of unconnected nodes in any circle of radius ri is constant, O(1).

Next we show that in phase i, each unconnected node receives O(log n) available mes-

sages W.H.P. The number of unconnected nodes in Ci and the number of available

89

u

u

u

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Figure 5.3. The figure shows three cases where u is a node in the unit
square. In phase i, radius of the circle centered at u is ri = 2i/

√
n. Only

the nodes in the shaded region reply back to u in phase i.

90

messages received by an unconnected node jointly determine the running time of ith

phase. Assume a vertical line through node u (the dotted line in Fig. 5.3) divides the

plane that contains the unit square (the unit square containing the sensor nodes) into

two half-planes. Let Bi denotes the common region (the shaded region in Fig. 5.3)

among the right half-plane, the disk with radius ri centered at u, and the unit square.

Let ai be the area of the region Bi. Using simple geometry, it can easily be shown

that 2ai−1 ≤ ai ≤ 4ai−1 for any position of u in the unit square. Let ni be the number

of nodes in Bi excluding u. Now we consider two cases.

Case ai ≤ 12 log n
n−1

: Then E[ni] ≤ 12 log n. By Chernoff bound ([82]) with µ = E[ni]

and δ = 36 log n
µ

− 1,

Pr{ni ≥ 36 log n} = Pr{ni ≥ (1 + δ)µ}
< (eδ(1 + δ)−(1+δ))µ

≤ (e/(1 + δ))(1+δ)µ

≤ 1/n3.

The number of replies u receives in phase i cannot be more than ni. Thus the

probability that u receives more than 8 log n replies is at most 1/n3.

Case ai > 12 log n
n−1

: Then ai−1 ≥ ai

4
> 3 log n

n−1
. In this case, the probability that u

needs ith transmission, i.e., the probability that Bi−1 is empty, is

(1− ai−1)
n−1 ≤ e−(n−1)ai−1 < 1/n3.

Thus with probability at least 1 − 1
n3 , either u does not need phase i or number of

replies in phase i is O(log n). This statement holds simultaneously for all of O(log n)

phases for all n nodes with probability at least 1− 1
n

(by union bound). Thus, W.H.P.,

running time of each phase i ≥ 2 is O(log n) and total time is O(log2 n). ¤

91

5.3 Work Complexity of GHS Algorithm

The authors of GHS algorithm [11] shown the message and time complexity of the

algorithm as we discussed earlier in this section. Here we compute the lower bound

for work complexity of GHS algorithm. First we need the following lemma.

Lemma 5.3.1 Let ri be the distance of ith nearest neighbor for an arbitrary node.

Then E[r2
i] = ci

n
= Θ

(
i
n

)
, for some constant c and 1

π
≤ c ≤ 2.

Proof: To get the lower bound, consider any node u in the unit square. Now

consider a circle centered at u with unit area, i.e., πR2 = 1 where R is the radius of

the circle. Let Asc be the region that is common to both the unit square and the

circle, As the region in the square but not in the circle, and Ac the region in the

circle but not in the square. Since both the circle and the square have equal area

(unit area), the area of As is equal to the are of Ac. Now consider a rearrangement

(repositioning) of the nodes: keep the nodes in Asc as they are and move all nodes in

As to Ac; place the moved nodes in Ac following uniform distribution. Now it is easy

to see that the distance to the ith nearest neighbor of u in the original arrangement

of the nodes is greater than or equal to that in the new arrangement.

Now, the probability that a particular node (other than u) is within distance r

from u (in the new arrangement) is πr2

πR2 = r2

R2 . Then the probability that there are at

least i nodes within distance r,

Ci(r) = 1−
i−1∑

k=0

(
n− 1

k

)(
r2

R2

)k (
1− r2

R2

)n−k−1

.

The probability density function,

Pi(r) =
d

dr
Ci(r)

= −
i−1∑

k=0

(
n− 1

k

)
k

2r

R2

(
r2

R2

)k−1 (
1− r2

R2

)n−k−1

+
i−1∑

k=0

(
n− 1

k

)
(n− k − 1)

2r

R2

(
r2

R2

)k (
1− r2

R2

)n−k−2

.

92

Let Tk = the first term inside the above sum =
(

n−1
k

)
k 2r

R2

(
r2

R2

)k−1 (
1− r2

R2

)n−k−1

.

Then,

Tk+1 =

(
n− 1

k + 1

)
(k + 1)

2r

R2

(
r2

R2

)k (
1− r2

R2

)n−k−2

=

(
n− 1

k

)
(n− k − 1)

2r

R2

(
r2

R2

)k (
1− r2

R2

)n−k−2

.

Now T0 = 0, thus

Pi(r) = −
i−1∑

k=0

(Tk − Tk+1) = Ti.

E[r2
i] ≥

∫ R

0

r2Pi(r)dr

= iR2

(
n− 1

i

) ∫ R

0

2r

R2

(
r2

R2

)i (
1− r2

R2

)n−i−1

dr

= iR2

(
n− 1

i

) i∑

k=0

(
i

k

)
(−1)k 1

k + n− i
.

Since n− i > 0, using the identity
n∑

k=0

(
n
k

) (−1)k

k+x
= x−1

(
x+n

n

)−1
(page 188 in [46]),

E[r2
i] ≥ iR2

(
n− 1

i

)
1

(n− i)
(

n
i

)

=
iR2

n
=

i

nπ
.

To get the upper bound, we consider a node u in a corner of the unit square and a

circle centered at u and with radius R′ =
√

2, the length of a diagonal of the square.

If we redistribute the nodes in this circle uniformly, the average distance to the ith

nearest neighbor can only increase. Thus, E[r2
i] ≤ iR′2

n
= 2i

n
. ¤

Theorem 5.3.1 The expected work complexity of GHS algorithm is Ω(log2 n).

Proof: We analyze work complexity for test/accept/reject messages only (the detail

of GHS algorithm can be found in [11]). By the end of exection of the algorithm,

each node tests all of its adjacent edges by using test/accept/reject messages through

93

these edges one by one. To have a connected graph with high probability the required

number of neighbors is c log n [77], for some constant c. Thus each node send test

messages to these c log n neighbors. Using Lemma 5.3.1, the expected work by a node

is at least
∑c log n

i=1
i

nπ
= Ω(log2 n

n
). For n nodes, by linearity of expectation, total work

w = n× Ω(log2 n
n

) = Ω(log2 n).

Notice that if a node can communicate with all these neighbors using a single

transmission, the work complexity would be Ω(log n). However, that is not possible

since there are log n phases in the algorithm, and in each phase, a node need to send

at least one test message to find the minimum out going edge. ¤

Theorem 5.3.2 The expected work complexity of GHS algorithm to run on Yao graph

is Ω(log n).

Proof: To find this lower bound, we consider initiate and report messages. These

messages travel along the MST edges. Thus, the work done by these messages in one

phase is Θ(1); that is, the total work done in log n phases is Θ(log n). Even if the

initiate message is broadcasted using a single message by the leader of a fragment, the

total work for these messages is still Θ(log n). At the ith phase, the average number

of fragments is n
2i , therefore, there are n

2i transmissions by the n
2i leaders. Again, there

are average 2i nodes in each fragments. Thus, in the ith phase, the leader need to

transmit to at least to the distance of 2ith nearest neighbor. By using Lemma 5.3.1,

total work ≥
log n∑
i=1

n
2i

2i

nπ
= 1

π
log n. ¤

5.4 Dynamic Algorithm for NNT

The local nature of the NNT algorithms naturally allows for simple dynamic

versions, where the goal is to maintain a tree of good quality, as nodes are added or

deleted. From Theorem 3.4.1, it follows that as long as we maintain an NNT tree,

the cost remains within the bounds proven in the previous theorems.

The measure we focus on, in the dynamic setting, is the expected number of

rearrangements, when a node is added or deleted. We define the term number of

94

rearrangements to be the number of the edges in the tree to be deleted plus the

number of edges to be added to the tree, to maintain NNT, due to addition or

deletion of a node.

The dynamic Random-NNT algorithm is described below. We partition the 2π

angle around each node into 6 sectors and assume that the closest node in each cone

can be determined - this could be done, for instance, by using directional antennas

(such an assumption is made in several papers, e.g. [64]). For any node v, if nnt(v)

exists, i.e., v is not the highest ranked node, we say that a charge of 1 is placed on

every point u in the closed ball B(v, d(v, nnt(v))). Let Q(v) denote the set of nodes

in closed ball B(v, d(v, nnt(v))) and L(v) = {u|v ∈ Q(u)}. The dynamic algorithm is

given in Figure 5.4.

Next we analyze the number of rearrangements needed for each insertion and

deletion. The complexity of a rearrangement depends on the model, as discussed

earlier. We first need the following lemma, which bounds the charge placed on any

node.

Lemma 5.4.1 Let V be a set of points in the plane on which the Random-NNT

algorithm is run. If node v connects to node w, we say that a charge of 1 is placed

on every point u in the closed ball B(v, d(v, w)) (whether or not there is an actual

node at point u). Then, the total charge at any fixed point u is O(log n), with high

probability.

Proof: Consider any point u, and partition the 2π angle around u into 6 cones, each

of angle π/3. Consider one such cone. We prove that the total charge from points

in this cone on u is O(log n), with high probability. Order the points in the cone as

v1, v2, . . ., based on increasing distance from u (Fig. 5.5). Node vi places a charge on

u only if rank(vi) > rank(vj), for all 1 ≤ j < i. The probability of occurring this

event is at most 1/i (the probability that a particular number is the largest among i

identical random numbers is 1/i). Thus, the total expected charge on u from these

points is at most
∑n−1

i=1 (1/i) ≤ log n.

95

• If a node v is added:

1. v chooses a random rank.

2. v checks its neighbors v1, v2, . . . in non-decreasing order of the weight d(v, vi),

till it finds the closest neighbor vj of higher rank.

3. v adds each vi, i ≤ j in Q(v) and sends a message to vi to add it in L(vi).

4. v finds the closest node in each of the 6 wedges.

5. For each of these closest points, w, v sends an update message to every node

in L(w).

6. If u receives an update message from some node v:

(a) Let u1, u2, . . . be the neighbors of u in increasing order of distance from u,

and let u is currently connected to uk.

(b) If d(u, v) ≤ d(u, uk) and rank(v) > rank(u), u removes u` from Q(u) and

itself from L(u`), ∀j < ` ≤ k, where v = uj. Further u connects to v,

instead of uk, and adds v to Q(u) and itself to L(v).

(c) If d(u, v) ≤ d(u, uk) and rank(v) < rank(u), u adds v to Q(u) and itself

to L(v).

• If a node v is deleted:

1. v deletes itself from L(w) for each w ∈ Q(v).

2. v sends a delete message to each node u ∈ L(v).

3. A node u after receiving a delete message from v, deletes v from Q(u). If

nnt(u) = v, u starts checking the neighbors from v onwards till it finds the

closest one of higher rank.

Figure 5.4. Dynamic Algorithm for Random-NNT.

96

i

3

2v
1v v

v

u

Figure 5.5. Each wedge around node u is 60◦. v1, v2, v3 . . . are the nodes
in one wedge in increasing order of distance from u.

97

In order to bound the maximum charge on any node, we use a variant of the

Chernoff bound (Lemma 5.4.2) that holds in the presence of dependencies among the

variables.

Lemma 5.4.2 ([47]) Let X1, X2, . . . , Xl ∈ {0, 1} be random variables such that for

all i, and for any S ⊆ {X1, . . . , Xi}, Pr[Xi+1 = 1|∧j∈S Xj = 1] ≤ Pr[Xi+1 = 1].

Then for any δ > 0, Pr[
∑

i Xi ≥ µ(1 + δ)] ≤ (eδ

(1+δ)1+δ)
µ, where µ =

∑
i E[Xi].

Let E(v) be the event that node v places a charge on u. In order to use the

Chernoff bound, we need to show that, for any i, and any subset S ⊂ {v1, . . . , vi},
Pr[E(vi+1)|

∧
w∈S E(w)] ≤ Pr[E(vi+1)].

First, suppose d(w, vi+1) ≥ d(w, u) for each w ∈ S. Then, the events
∧

w∈S E(w)

do not place any constraint on rank(vi+1), relative to rank(vj), j ≤ i, and therefore,

Pr[E(vi+1)|
∧

w∈S E(w)] = Pr[E(vi+1)].

Next, suppose d(w, vi+1) < d(w, u) for some w ∈ S. Then occurrence of the event

E(w) implies that rank(w) > rank(vi+1). Further d(vi+1, w) < d(w, u) ≤ d(vi+1, u).

Therefore, Pr[E(vi+1)|
∧

w∈S E(w)] = 0 ≤ Pr[E(vi+1)].

Next, we apply the Chernoff bound with δ = 5 log n
µ

− 1, where µ is the expected

charge on u. Since µ ≤ log n, δ > 0. Let X be the total charge on u. Then,

Pr{X ≥ 5 log n} = Pr{X ≥ (1 + δ)µ}
< (eδ(1 + δ)−(1+δ))µ

≤ (e/(1 + δ))(1+δ)µ ≤ 1/n3.

Thus, with probability at least 1−1/n3, charge on u is O(log n). Using union bound,

this holds simultaneously for all nodes with probability at least 1− 1/n2. ¤

Corollary 5.4.1 Degree of any node v in the NNT is O(log n) W.H.P.

Proof: Degree of a node cannot be larger than the charge on the node. Thus the

corollary immediately follows from Lemma 5.4.1. ¤

98

Theorem 5.4.1 For a sequence of k node insertions or deletions, the number of

rearrangements per insertion or deletion is O(log k) W.H.P.

Proof: When a node v is deleted, only the nodes u such that nnt(u) = v needs to

find a new parent to connect to. Let D(v) be the degree of v. Deletion of v results

in deletion of D(v) edges and addition of D(v) − 1 new edges. Thus the number

of rearrangement is 2D(v) − 1 = O(log k) W.H.P. (Corollary 5.4.1). When a node

v is added, a node u ∈ L(v) may need to change its connection. For any other

node w 6∈ L(v), d(w, nnt(w)) < d(w, v) and such node w does not need to change

its connecting edge. Thus, due to addition of v, the number of rearrangements is at

most 2|L(v)| = O(log k) W.H.P. (Lemma 5.4.1). ¤

5.5 Simulation Results

We perform extensive simulations of our algorithms to understand their empirical

performance. Our experimental setup is the following:

Number of Nodes: Varying from 50 to 5000.

Node distributions: Uniformly random distributions in the unit square and several

realistic distributions of points in an urban setting obtained from TRANSIMS [78].

Number of Runs: 50

Measures: We compare the NNT trees and the MST, with respect to the quality

Qα(T) =
∑

(u,v)∈T dα(u, v) for α = 1 and 2. We also compare the performance of the

NNT algorithms and GHS, with and without the Yao graph information, with respect

to the following measures: (i) Number of messages, and (ii) Work, W =
∑M

i=1 rα
i for

α = 2. The GHS algorithm is message optimal in the point-to-point setting, and

achieves this by means of a complicated synchronization.

To be fair to GHS which does not exploit geometry per se (to compare with Co-

NNT, which uses coordinate information of the nodes) we run the GHS algorithm on

the Yao graph (see e.g., [14, 83]). Yao graph is constructed as follows: the 2π angle

around each node u is divided into six wedges of equal size (Fig. 5.6), and the edge

99

u

Figure 5.6. Construction of Yao graph. Each wedges is 60◦. Node u have
an edge with the nearest node in each wedge.

between u and the nearest node (if any) in each wedge is included in Yao graph. A

Yao graph is sparse (each node has degree at most 6) and contains the MST [83].

Running GHS on Yao graph reduces message complexity to O(n log n).

In our simulations, we ignore the effects of the MAC layer. Our main results are

enumerated below, and validate our theoretical results in earlier sections.

1. The Co-NNT algorithm always outperforms the Random-NNT algorithm, with

respect to the quality, number of messages and the work.

2. Both Directional and Random-NNT give a very good approximation to the

MST- in particular, Co-NNT is always within about 10% of the MST.

3. For α = 2, Random-NNT does not give a very good approximation, but Co-

NNT remains within a factor of 2.

4. The number of messages and the work done by both Directional and Random-

NNT is very close, and significantly smaller than that by GHS or GHS with the

Yao graph.

5. When the power level of nodes is bounded, and a node cannot reach its NNT

neighbor, we use a multihop shortest path to make this connection. We observe

that number of messages and work for NNT algorithms in this multihop setting

increases only by a constant factor over the non-multihop setting and still remain

significantly smaller than those of the GHS algorithm.

100

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

Su
m

 o
f

th
e

ed
ge

s,
 Q

1

n (x 100)

RND-NNT
CO-NNT

MST

Figure 5.7. Sum of the lengths of the edges, Q1(T), for MST, Random-
NNT, and Co-NNT.

5.5.1 Quality of the Spanning Trees

We present the simulation results of the quality Qα(T) for α = 1 and 2. As Figure

5.7 shows, both Random-NNT and Co-NNT compare very well with the MST. As

shown earlier, the MST cost is Θ(
√

n) for α = 1, and both NNTs seems to be within

a small constant factor of this value; Figure 5.8 demonstrates this by showing the

values as a fraction of
√

n, and the plot for the NNTs are straight lines.

Figure 5.9 shows Q2(T), the sum of squares of the edge lengths, for the NNT

algorithms and the optimum. Quality Q2 for both the MST and Co-NNT are constant,

and Q2(Co−NNT) is within a factor of 2 of Q2(MST) . However, the value of Q2

for Random-NNT increases with n as the asymptotic bound is O(log n)- this becomes

clear from Figure 5.10.

5.5.2 Work and Message Complexities to Construct the Spanning Trees

In this section, we compare work w for α = 2 and number of messages needed by

the algorithms. The NNT algorithms are compared with GHS, both with and without

101

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

Su
m

 o
f

th
e

ed
ge

s,
 Q

1

Square root of n

RND-NNT
CO-NNT

MST

Figure 5.8. Sum of the lengths of the edges, Q1(T), plotted with
√

n for
MST, Random-NNT, and Co-NNT.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40 45 50

Su
m

 o
f

th
e

sq
ua

re
d

ed
ge

s,
 Q

2

n (x 100)

RND-NNT
CO-NNT

MST

Figure 5.9. Sum of the squares of the edge lengths, Q2(T) for MST,
Random-NNT, and Co-NNT.

102

 1.5

 2

 2.5

 3

 3.5

 4

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Su
m

 o
f

th
e

sq
ua

re
d

ed
ge

s,
 Q

2

log n

RND-NNT

Figure 5.10. Q2(T) for Random-NNT with respect to log n.

103

the Yao graph. The input to the GHS algorithm must be a connected graph to obtain

MST. To have a connected graph, with high probability, in a wireless ah-hoc network,

when the nodes are uniformly distributed, each node must be connected to the nodes

which are within distance Θ(
√

log n
n

) [77]. We consider the radius of the neighborhood

to be 1.6
√

log n
n

, the minimum required for connectivity. Since each node sends at least

one message to each of its neighbor (test message - to check if the neighbor is in the

same fragment), cost of GHS algorithm increases as the number of neighbors of the

nodes increases. Here we note that the way GHS algorithm works, it needs to test

the neighbors sequentially. Thus it cannot take advantage of broadcasting. Even if

we consider that a node tests all of its neighbors by broadcasting a single message to

all of its neighbors, each neighbor must reply to this test message individually. Thus

number of messages related to testing the neighbors is still no less than the number

of neighbors.

To determine the neighbors, each node can broadcast a message to distance

1.6
√

log n
n

and consider another node as a neighbor if the node can hear the mes-

sage from the other node. However, we did not incur any cost on GHS algorithm

to find the neighbors (thus favoring GHS). We assumed that each node knows its

neighbors and their distances. In addition, we also simulate GHS on the Yao graph.

Each node finds its Yao neighbors first, then executes GHS algorthm.

Fig. 5.11 depicts the number of messages needed to construct the tree. We see

that the number of messages for NNT algorithms is significantly smaller than GHS.

Moreover, the number of messages for NNT algorithms increases linearly. On the

other hand, the number of messages for GHS increases at a slightly higher rate. In

fact, message complexity for GHS is O(n log n).

Required work for NNT algorithms is also significantly less than that of GHS al-

gorithm (Fig. 5.12). In addition, with the number of nodes, work for NNT algorithms

increases in a lower rate than GHS. In terms of both number of messages and work,

GHS with Yao graph is more efficient than GHS without Yao graph. However, it is

still much less efficient than NNT algorithms.

104

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40 45 50

of

 m
es

sa
ge

s,
 M

 (
x

10
0)

n (x 100)

RND-NNT
CO-NNT

GHS
GHS YAO

Figure 5.11. Number of messages needed to construct the spanning trees.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

W
or

k,
 W

n (x 100)

RND-NNT
CO-NNT

GHS
GHS YAO

Figure 5.12. Work done by the algorithms.

105

Analytically, we know that for α = 2, the work complexities for Co-NNT, Random-

NNT, and GHS and GHS-YAO are O(1), O(log n), Ω(log2 n) (Throrem 5.3.1), and

Ω(log n)(Theorem 5.3.2) respectively. We can also observe these results from exper-

imental data. Let work w = c loga n. Then log w = log c + a log log n. Thus if we

plot log w vs. log log n the graph is an straight line and the slope of the line is a, the

power of log. In Fig. 5.13, the slope for GHS is greater than 2. For GHS-YAO, the

slope is about 1 and for Random-NNT, it is less than 1. For Co-NNT the slope is 0

which indicates work is O(1).

5.5.3 Implementing NNT Algorithms in a Multihop Setting

As mentioned earlier, in the basic NNT scheme few nodes have to go a large

distance to connect to their nearest node of higher rank. In a practical setting, the

maximum power levels of nodes are limited and hence cannot directly communicate

with distant nodes in a single hop. In this case, we connect via shortest paths. Given

a node u, to find its nearest neighbor of higher rank, the node uses a shortest path

finding algorithm implemented in a multihop manner. In our implementation, we

use a multihop algorithm based on a straightforward distributed implementation of

Dijkstra’s shortest path algorithm [13]. Although, clearly, the number of messages

will be more in a multihop implementation, all the messages are transmitted through

short distances and hence we expect the work complexity to be comparable to the

non-multihop (direct connection) setting. Our simulation results show that this is

indeed the case.

Fig. 5.14 and 5.15 present the simulation results for multihop algorithm using

uniform distribution of the nodes. In this simulation, we assume that the maximum

transmission range of a node is Θ(
√

log n
n

), which is necessary to have a connected

graph. We see that number of messages and work for NNT algorithms in this multihop

setting increases only by a constant factor over the non-multihop setting (results

presented above) and still significantly smaller than those of GHS algorithm.

106

 2

 3

 4

 5

 6

 7

 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

lo
g

w

log log n

RND-NNT
CO-NNT

GHS
GHS YAO

Figure 5.13. Slope of the lines indicate the powers of log in work com-
plexity.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40 45 50

of

 m
es

sa
ge

s
M

 (
x

10
0)

n (x 100)

RND-NNT
CO-NNT

GHS
GHS YAO

Figure 5.14. Number of messages needed to construct the trees in Multi-
hop Communication.

107

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

W
or

k
W

n (x 100)

RND-NNT
CO-NNT

GHS
GHS YAO

Figure 5.15. Work needed to construct the spanning trees in Multi-hop
Communication.

Figure 5.16. The distribution of nodes in one of the snapshots.

108

5.5.4 Experiments on Real Data

We consider a distribution of points in a section of downtown Portland, OR,

measuring 2900m × 2950m approximately 9 square KM. The distribution of points,

corresponding to cars on the roadway, was obtained from the TRANSIMS simula-

tion [78], which does a very detailed modeling of urban traffic, combining a variety

of data sources, ranging from census data to activity surveys to land use data. We

use three snapshots, at one minute intervals. The number of nodes (or cars) in these

snapshots are different as some cars are moving in and out of this section. The distri-

bution of nodes at one of the snapshots is shown in Fig. 5.16. Experimental results on

these three snapshots are given in Table 5.1. Where the original data was in meters,

we converted into KM. Work is computed for α = 2.

We see that work and number of messages are significantly larger for GHS al-

gorithm. Work is about 10 times larger and number messages is about 5 times

larger than NNT algorithms. On the other hand, both Q1 and Q2 for Co-NNT is

within 2-approximation. Although approximation for Q2 in Random-NNT is large,

for Q1, Random-NNT also provides a close approximation. In this experiment, we

only considered the Yao graph assuming that the nodes know their coordinates. If

the coordinates are not available, for GHS algorithm input need to be a complete

graph (each node is a neighbor of the others) to make sure connectivity since the

points does not follow any particular (say uniform) distribution. Thus GHS would

incur large work and messages. In that case, Random-NNT will still be a good choice

over GHS, by sacrificing quality.

5.6 Implementation of NNT-Scheme in a Wireless Sensor Network Modeled as a

Unit Disk Graph

In a disk graph model [14], we are given a connected graph G = (V, E); V is the

set of the sensor nodes and (u, v) ∈ E, i.e., u and v are neighbors of each other, if

and only if d(u, v) ≤ R, where d(u, v) is the distance between nodes u and v, and

109

T
ab

le
5.

1
E

x
p
er

im
en

t
re

su
lt

s
fo

r
S
n
ap

sh
ot

1,
2,

an
d

3

S
n
ap

sh
ot

1
S
n
ap

sh
ot

2
S
n
ap

sh
ot

3

Q
1

Q
2

W
or

k
M

sg
Q

1
Q

2
W

or
k

M
sg

Q
1

Q
2

W
or

k
M

sg

C
o-

N
N

T
38

.7
2

6.
77

90
.5

4
48

32
39

.3
9

8.
18

92
.2

8
46

47
38

.3
2

6.
25

83
.4

2
46

68

R
n
d
-N

N
T

50
.7

5
14

.1
3

13
1.

42
52

41
52

.9
7

20
.1

2
13

7.
91

52
50

52
.5

7
18

.4
7

14
8.

88
52

29

G
H

S
-Y

ao
33

.1
6

3.
73

12
71

.1
1

20
59

2
33

.5
2

3.
82

10
83

.9
9

20
41

7
33

.2
7

3.
78

10
83

.9
9

20
41

7

110

R is the transmission radius of the nodes. We assume a wireless broadcast model,

i.e., when v transmit a message, all node u, such that d(u, v) ≤ R can receive the

message and the edges are bidirectional. We also assume that each node knows only

its neighbors and can communicate with them only. The distributed NNT algorithm

runs on G. Initially each node v knows only its own ID(v) and the following algorithm

is executed by each node simultaneously. At the end of the execution of the algorithm,

both u and v knows whether (u, v) is an edge in Random-NNT. Typically, in a sensor

network, a special node called sink gathers data from the sensors and supposed to

be the root of the tree. Thus we assume that there is a special node s, the sink, is

designated to the root of NNT4.

Our NNT algorithm is very local in nature. Each node uses information (random

number and ID) from its immediate neighbors only. Using this information each node

u can decide deterministically whether (u, v) is an edge of NNT. This local nature

makes NNT algorithm message-optimal and energy-efficient.

5.6.1 The Algorithm

The algorithm is executed in two phases. In the first phase, the nodes choose their

ranks randomly as follow. This phase is initiated by the sink s. The sink generates

a random number, p(s) and sends this number along with its ID to its neighbors in

one transmission. A neighbor v of the sink s, after receiving p(s), picks a random

number p(v) smaller than p(s), and transmit p(v) and ID(v) to all of its neighbors.

This process is repeated by every node in the graph. Notice that at some point, every

node in the graph will receive a message from at least one of its neighbor if the given

unit disk graph is connected and some nodes may receive more than one messages. As

soon as a node u receives the first message from a neighbor v, it generates a random

number p(u) so that it is smaller than p(v), and transmits p(u) and ID(u) to its

neighbors. If u receives another message later from another neighbor v′, u simply

4If there is no such node is designated, a leader election algorithm can be executed before running
the distributed NNT algorithm.

111

stores p(v′) and ID(v′), and do nothing else. p(u) and ID(u) constitute u’s rank

r(u). At the end of the first phase, each node knows the ranks of all of its neighbors.

Once u receives messages from all of its neighbors, it executes the second phase of

the algorithm.

It is easy to see that at the end of the first phase, i) each node knows the ranks

of all of its neighbors, ii) each node u, except the sink s, has at least one neighbor v

such that rank(u) < rank(v), and iii) the sink has the highest rank.

In the second phase, each node u 6= s selects the nearest5 node w among its

neighbors such that r(u) < r(w) and sends a message to w to inform that (u,w) is

an edge in the spanning tree.

5.6.2 Analysis

Theorem 5.6.1 The above algorithm produces an NNT correctly.

Proof: To prove the correctness of the above algorithm it is sufficient to show that

(i) each node u, except the root s, connects to another node w such that r(u) < r(w)

and (ii) there is no node w′ such that r(u) < r(w′) and d(u,w′) < d(u,w).

To show part (i), observe that in the second phase of the algorithm u choose a

node only with higher rank than its own. Further, at the end of the first phase, it is

guaranteed that each node u has at least one neighbor with higher rank. u chooses its

random number p(u) after receiving a message from one of its neighbor v satisfying

p(u) < p(v), which implies r(v) < r(u).

To show part (ii), observe that in the second phase of the algorithm, u chooses

the nearest of all neighbors with higher rank. Thus if such a node w′ exists, u would

pick w′ instead of w. ¤
5If the distances of the neighbors are not known before executing the algorithm, a node can determine
the distance of all of its neighbors from the signal strengths of the messages received from them in
the first phase.

112

Quality of the NNT. When nodes are uniformly distributed, to have a connected

graph with high probability, it is necessary and sufficient that R be Θ(
√

log n
n

) [77].

Thus, we assume R = Θ(
√

log n
n

).

Since each node has at least one neighbor with higher rank, the length of any edge

of an NNT is at most R. Then Qα(NNT) ≤ (n − 1)Rα = O(n1−α/2 logα/2 n); that

is E[Q1(NNT)] = Θ(
√

n log n) and E[Q2(NNT)] = O(log n). Since E[Q1(MST)] =

Θ(
√

n) and E[Q2(MST)] = Θ(1), we have approximation ratio of O(
√

log n) and

O(log n) for α = 1 and 2 respectively.

Message Complexity. In each phase each node transmit exactly one message.

Thus total message is at most 2n = O(n), which is essentially message-optimal. At

least Ω(n) transmissions are necessary to build any spanning tree over n nodes.

Work Complexity. Each node transmit a message to a distance of at most R.

Hence total work for 2n message is W ≤ 2nR2 = O(log n).

Time Complexity. Let D be the diameter of the given unit disk graph. It can

be shown that the number of nodes within distance R from any point is O(log n)

with high probability. Then the running time for the first phase is O(D + log n)

WHP, and the running time for the second phase is O(log n) WHP. Thus, total time

is O(D + log n) WHP.

5.7 Conclusion and Further Work

We have shown that the NNT paradigm is a simple and local scheme for construct-

ing and maintaining low cost trees in a sensor network setting. It does not require

any complex synchronization, and is naturally robust. We study various properties,

such as quality, degree and dynamic complexity for different NNT trees, both from a

theoretical and an empirical perspective, and it shows very promising results.

Among the questions for further work, the most interesting ones are: (i) Improve

the time and message complexity of the NNT algorithms for arbitrary point distribu-

tions, (ii) For the energy analysis, we make the simplifying assumption that each node

113

can connect directly to all nodes. It will be nice to analyze the algorithm without

this assumption, i.e., nodes have only limited transmission range and hence cannot

directly communicate to all nodes. Hence, nodes connect to the shortest paths by

multihop communication. (iii) Quantify the tradeoff between the amount of local

information needed, and the quality of the tree produced, and (iv) It will be nice to

compare the performance of NNT with the best algorithm that achieves the same

approximation ratio. For example, one can try to find a good lower bound on the

energy/messages needed by any approximation algorithm that achieves O(log n) ap-

proximation ratio. To the best of our knowledge nothing is known about this for the

model addressed here. For example, a concrete open question is: what is the lower

bound on the energy complexity needed to compute a O(log n) approximate MST

under uniform distribution of nodes?

LIST OF REFERENCES

114

LIST OF REFERENCES

[1] M. Khan and G. Pandurangan. A fast distributed approximation algorithm for
minimum spanning trees. In Proceedings of the 20th International Symposium
on Distributed Computing (DISC), September 2006.

[2] M. Khan, G. Pandurangan, and V.S.A. Kumar. A simple randomized scheme
for constructing low-weight k-connected spanning subgraphs with applications
to distributed algorithms. Theoretical Computer Science, 2007. Article in press,
DOI: 10.1016/j.tcs.2007.05.028.

[3] M. Khan, G. Pandurangan, and V.S.A. Kumar. Distributed algorithms for
constructing approximate minimum spanning trees in wireless sensor networks.
IEEE Transactions on Parallel and Distributed Systems. To appear.

[4] M. Khan and G. Pandurangan. A fast distributed approximation algorithm for
minimum spanning trees. Distributed Computing. Article in press.

[5] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-specific
protocol architecture for wireless microsensor networks. IEEE Transactions on
Wireless Communications, 1(4):660–670, October 2002.

[6] X. Li, Y. Wang, W. Song, and O. Frieder. Localized low-weight graph and its
applications in wireless ad hoc networks. In Proceedings of INFOCOM, IEEE
International Conference, 2004.

[7] N. Li, J. Hou, and L. Sha. Design and analysis of an MST-based topology control
algorithm. In Proceedings of INFOCOM, IEEE International Conference, 2003.

[8] M. Cheng, M. Cardei, X. Cheng, L. Wang, Y. Xu, and D. Du. Topology control of
ad hoc wireless networks for energy efficiency. IEEE Transactions on Computers,
53(12):1629–1635, December 2004.

[9] B. Krishnamachari, D. Estrin, and S. Wicker. The impact of data aggregation
in wireless sensor networks. In Proceedings of the International Workshop on
Distributed Event-Based Systems, July 2002.

[10] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wire-
less sensor networks. In Proceedings of the First IEEE International Workshop
on Sensor Network Protocols and Applications, May 2003.

[11] R. Gallager, P. Humblet, and P. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Sys-
tems, 5(1):66–77, January 1983.

[12] M. Elkin. Unconditional lower bounds on the time-approximation tradeoffs for
the distributed minimum spanning tree problem. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), pages 331 – 340, June 2004.

115

[13] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[14] X. Li. Localized construction of low weighted structure and its applications in
wireless ad hoc networks. ACM Wireless Network, 11(6), November 2005.

[15] G. Kortsarz and Z. Nutov. Approximating min-cost connectivity problems.
Handbook on Approximation Algorithms and Metaheuristics, Ed. T. Gonzalez,
Chapman & Hall, 2006.

[16] A. Frank. Connectivity and network flows. Handbook of Combinatorics, pages
111–177, Eds. R. Graham, M. Grotschel and L. Lovasz, MIT Press, 1995.

[17] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Pub-
lishing Company, Boston, MA, 1996.

[18] J. Cheriyan, S. Vempala, and A. Vetta. Approximation algorithms for minimum-
cost k-vertex connected subgraph. In Proceedings of the 34th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 206–312, May 2002.

[19] G. Kortsarz and Z. Nutov. Approximating node connectivity problem via set
covers. In Proceddings of the 3rd International workhop on approximation al-
gorithms for combinatorial optimization (APPROX), pages 194–205, September
2000.

[20] G. Kortsarz and Z. Nutov. Approximation algorithm for k-node connected sub-
graphs via critical graphs. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC), pages 206–312, June 2004.

[21] E. Korach, S. Moran, and S. Zaks. The optimality of distributive constructions
of minimum weight and degree restricted spanning trees in a complete network
of processors. SIAM Journal of Computing, 16(2):231–236, 1987.

[22] K. Delin and S. Jackson. Sensor web for in situ exploration of gaseous biosigna-
tures. In Proceedings of IEEE Aerospace Conference, March 2000.

[23] J. Steele. Asymtotics for Euclidian minimal spanning trees on random points.
Probability Theory and Related Fields, 92:247–258, 1992.

[24] D. Rosenkrantz, R. Stearns, and P. Lewis. An analysis of several heuristics for the
traveling salesman problem. SIAM Journal of Computing, 6(3):563–581, 1977.

[25] M. Imase and B. Waxman. Dynamic Steiner tree problem. SIAM Journal of
Discrete Mathematics, 4(3):369–384, 1991.

[26] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.

[27] V. Vazirani. Approximation Algorithms. Springer Verlag, 2004.

[28] E. Korach, S. Moran, and S. Zaks. Optimal lower bounds for some distributed
algorithms for a complete network of processors. Theoretical Computer Science,
64:125–132, 1989.

[29] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed lo-
cally. In Proceedings of the Symposium on Principles of Distributed Computing
(PODC), July 2004.

116

[30] R. Rajaraman. Topology control and routing in ad hoc networks: A survey.
SIGACT News, 33:60–73, 2002.

[31] X. Li. Algorithmic, geometric and graphs issues in wireless networks. Journal of
Wireless Communications and Mobile Computing, 3(2):119–140, 2003.

[32] Z. Toroczkai and K. Bassler. Network dynamics: Jamming is limited in scale-free
systems. Nature, 428(6984):716, April 2004.

[33] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse net-
works. Distributed Computing, 14(2):97–100, 2001.

[34] A. Czumaj and A. Lingas. On approximability of the minimum-cost k-connected
spanning subgraph problem. In Proceedings of 10th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 74–83, January 2002.

[35] J. Cheriyan, M. Kao, and R. Thurimella. Scan-first search and sparse certificates:
an improved parallel algorithm for k-connectivity. SIAM Journal of Computing,
22(1):157–174, 1993.

[36] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and bi-
connected components (extended abstract). In Proceedings of the Symposium on
Principles of Distributed Computing (PODC), pages 28–37, August 1995.

[37] E. Jennings and L. Motyckova. Distributed algorithms for sparse k-connectivity
certificates. In Proceedings of the Symposium on Principles of Distributed Com-
puting (PODC), May 1996.

[38] S. Huang. A new distributed algorithm for the biconnectivity problem. In Pro-
ceedings of the International Conference on Parallel Processing, volume III, pages
106–103, 1989.

[39] W. Hohberg. How to find biconnected components in distributed networks. Jour-
nal of Parallel and Distributed Computing, 9(4):374–386, 1990.

[40] R. Diestel. Graph Theory. Springer-Verlag New York, Inc., 1997.

[41] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–96,
Ed. R. Rustin, Academic Press, New York, 1973.

[42] A. Frieze. On the vaule of a random minimum spanning tree problem. Discrete
Applied Mathematics, 10(1):47–56, 1985.

[43] J. Fill and J. Steele. Exact expectations of minimal spanning trees for graphs
with random edge weights. In Stein’s Method and Applications, pages 169–180,
Eds. A. Barbour and L. Chen, World Scientific Publications, 2005.

[44] D. Gamarnik. The expected value of random minimal spanning tree of a complete
graph. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms (SODA), January 2005.

[45] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Al-
gorithm and Probabilistic Analysis. Cambridge University Press, first edition,
2005.

117

[46] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-
tion for Computer Science. Addison-Wesley Publishing Company, Inc., second
edition, 1989.

[47] A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an ex-
tension of the chernoff-hoeffding bounds. SIAM Journal on Computing, 26:350–
368, 1997.

[48] Y. Afek and E. Gafni. Simple and efficient distributed algorithms for election in
complete networks. In Proceedings of the 22nd Annual Allerton Conference on
Communication, Control, and Computing, pages 689–698, 1984.

[49] P. Humblet. Selecting a leader in a clique in O(n log n) messages. In Proceedings
of the 23rd conference on decision and control, pages 1139–1140, 1984.

[50] F. Chin and H.F. Ting. An almost linear time and O(n log n + e) messages
distributed algorithm for minimum-weight spanning trees. In Proceedings of the
26th IEEE Symposium on Foundations of Computer Science (FOCS), pages 257–
266, 1985.

[51] E. Gafni. Improvements in the time complexity of two message-optimal election
algorithms. In Proceedings of the 4th Symposium on Principles of Distributed
Computing (PODC), pages 175–185, 1985.

[52] B. Awerbuch. Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election, and related problems. In Proceedings of the 19th
ACM Symposium on Theory of Computing (STOC), pages 230–240, May 1987.

[53] J. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal of Computing, 27:302–316, 1998.

[54] S. Kutten and D. Peleg. Fast distributed construction of k-dominating sets and
applications. Journal of Algorithms, 28:40–66, 1998.

[55] M. Elkin. A faster distributed protocol for constructing minimum spanning tree.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 352–361, 2004.

[56] D. Peleg and V. Rabinovich. A near-tight lower bound on the time complexity
of distributed MST construction. In Proceedings of the 40th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 253–261, 1999.

[57] M. Elkin. An overview of distributed approximation. ACM SIGACT News
Distributed Computing Column, 35(4):40–57, December 2004.

[58] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
1994.

[59] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-weight span-
ning tree construction in O(log log n) communication rounds. SIAM Journal of
Computing, 35(1):120–131, 2005.

[60] F. Kuhn and R. Wattenhofer. Dynamic analysis of the arrow distributed proto-
col. In Proceedings of the sixteenth annual ACM symposium on Parallelism in
algorithms and architectures (SPAA), pages 294–301, 2004.

118

[61] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed mst for constant diameter
graphs. In Proceedings of the 20th ACM Symposium on Principles of Distributed
Computing (PODC), pages 63–72, August 2001.

[62] W. Hoeffding. Probability for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[63] W. Song, Y. Wang, X. Li, and O. Frieder. Localized algorithms for energy efficient
topology in wireless ad hoc networks. In Proceedings of The ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), May 2004.

[64] R. Wattenhofer, L. Li, P. Bahl, and Y. Wang. Distributed topology control for
power efficient operation in multihop wireless ad hoc networks. In Proceedings
of the Conference on Computer Communications (INFOCOM), April 2001.

[65] L. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power consumption in packet
radio networks. Theoretical Computer Science, 243(1-2):289–305, July 2000.

[66] X. Li, G. Calinescu, and P. Wan. Distributed construction of planar spanner
and routing for ad hoc wireless networks. In Proceedings of the Conference on
Computer Communications (INFOCOM), June 2002.

[67] X. Li, P. Wan, Y. Wang, and O. Frieder. Sparse power efficient topology for
wireless networks. In Proceedings of the 35th Annual Hawaii International Con-
ference on System Sciences (HICSS), January 2002.

[68] R. Ramanathan and R. Rosales-Hain. Topology control of mutlihop wireless
networks using transmit power adjustment. In Proceedings of the Conference on
Computer Communications (INFOCOM), March 2000.

[69] Y. Wang and X. Li. Geometric spanner for wireless ad hoc networks. IEEE
Transactions on Parallel and Distributed Systems, 14(5):1–14, May 2003.

[70] Y. Wang, X. Li, and O. Frieder. Distributed spanner with bounded degree for
wireless ad hoc networks. IEEE Transactions on Computers, 53(12):1629–1635,
December 2004.

[71] C. Ambuhl. An optimal bound for the MST algorithms to compute energy
efficient broadcast trees in wireless networks. In Proceedings of the 32th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), pages
1139–1150, November 2005.

[72] P. Wan, G. Calinescu, X. Li, and O. Frieder. Minimum-energy broadcasting
in static ad hoc wireless networks. Wireless Networks, 8(6):607–617, November
2002.

[73] A. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the complexity
of computing minimum energy consumption broadcast subgraph. In Proceed-
ings of the 18th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), pages 121–131, June 2001.

[74] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
G. Ganesan. Building efficient wireless sensor networks with low-level naming.
In Proceedings of the 18th ACM Symposium on Operating Systems Principles,
October 2001.

119

[75] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. In Proceedings of
the ACM/IEEE International Conference on Mobile Computing and Networks
(MobiCom), August 2000.

[76] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of net-
work density on data aggregation in wireless sensor networks. In Proceedings of
the International Conference on Distributed Computing Systems (ICDCS), July
2002.

[77] F. Xue and P. Kumar. The number of neighbors needed for connectivity of
wireless networks. Wireless Networks, 10(2):169–181, March 2004.

[78] Transportation Analysis Simulation Systems, Los Alamos National Lab. tran-
sims.tsasa.lanl.gov.

[79] D. Kempe and J. Kleinberg. Protocols and impossibility results for gossip-based
communication mechanisms. In Proceedings of the 43rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), November 2002.

[80] J. Bearwood, H. Halton, and J. Hammersley. The shortest path through many
points. Proceedings of the Cambridge Philosophical Society, 55:299–327, 1959.

[81] F. Avram and D. Bertsimas. The minimum spanning tree constant in geometrical
probability and under the independent model: a unified approach. The Annals
of Applied Probability, 2(1):113–130, 1992.

[82] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[83] A. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

VITA

120

VITA

Maleq Khan received the Ph.D. in Computer Science from Purdue University,

the M.S. in Computer Science from North Dakota State University, and the B.S. in

Computer Science and Engineering from Bangladesh University of Engineering and

Technology. His research interests include the design and analysis of algorithms,

distributed algorithms, wireless sensor networks, communication networks, and data

mining. He received the Best Student Paper Award at the 20th International Sym-

posium on Distributed Computing (DISC 2006) held in Stockholm, Sweden. He was

awarded a Bilsland Dissertation Fellowship by Purdue University in 2006.

