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Abstract—An edge switch is an operation on a network (graph)
where two edges are selected randomly and one of their end
vertices are swapped with each other. Usually, a sequence of
these operations are performed to generate network perturbations
having the same degree sequence of the original network. Edge
switch operations have important applications in graph theory
and network analysis, such as in generating random networks
with a given degree sequence, modeling and analyzing dynamic
networks (e.g., peer-to-peer networks), studying various dynamic
phenomena over a network (e.g., disease dynamics over a social
contact network). The growth of real-world networks motivates
the need to develop efficient parallel algorithms for performing
a large sequence of edge switch operations. The dependencies
among successive edge switch operations and the requirement of
keeping the graph simple (i.e., no self-loops or parallel edges) as
the edges are switched lead to significant challenges in designing a
parallel algorithm. Addressing these challenges requires complex
synchronization and communication among the processors. In
this paper, we present a distributed memory parallel algorithm
for switching edges in massive networks (networks with billions
of edges) and achieve a speedup factor of 85 with 1024 processors.

One of the steps in our edge switch algorithm requires the
computation of multinomial random variables in parallel. The
paper presents the first non-trivial parallel algorithm for the
problem. The algorithm achieves a speedup of 925 using 1024
processors.
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I. INTRODUCTION

Edge switch, also known as edge swap, edge flip, edge
shuffle, edge rewiring etc., is an operation that swaps the end
vertices of the edges in a network. We refer such an edge
switch operation simply as “edge-switch”. Many variations of
this problem have been studied [6, 9, 10, 13, 15, 18, 20, 21, 23]
with many real-world applications. In the most commonly used
edge-switch, two randomly selected edges (a, b) and (c, d) are
replaced with edges (a, d) and (b, c) respectively, i.e., the end
vertices of the selected edges are swapped with each other.
This process is repeated as many times as desired. It is easy
to see that this edge-switch preserves the degree of each vertex.

Edge-switch problem has many important applications. It
can be used in generating random networks with a given degree
sequence. There has been a lot of work on random graph
generation, because of the popularity of network models in
diverse applications. Most of the prior work involves sequential
algorithms, and much of it is restricted to regular graphs;
we briefly summarize the main approaches here. A popular
method for random graph generation is the configuration model

(also referred to as the “pairing” model) [17, 4, 25], which
involves creating stubs for vertices, choosing pairs of stubs at
random, and then connecting them by edges. Unfortunately,
this leads to parallel edges, unless the degrees are very small.
This basic approach has been modified in various ways to avoid
parallel edges in the case of regular graphs [25, 22, 16] (see
[4] for a good discussion). Blitzstein et al. [4] gives a simple
algorithm for generating random graphs with a given degree
sequence using sequential importance sampling, based on the
Erdős-Gallai characterization.

By using Havel-Hakimi method [12], a network can be
generated following a given degree sequence. Since Havel-
Hakimi method is deterministic, this method generates the
same network each time it is run with the same degree
sequence whereas there can be many different networks with
the same degree distribution. However, edge-switch can be
combined with Havel-Hakimi method to generate a random
network with a given degree sequence [10, 6, 9]. Once a net-
work is generated using Havel-Hakimi method, by randomly
switching the edges we can generate a random network with
the given degree sequence. The mixing time was shown to be
bounded by a large polynomial by Cooper et al. [6], which
was extended by Feder et al. [9] to variants of the edge-switch
process.

Edge-switch is also used in modeling and studying various
dynamic networks such as peer-to-peer networks [9]. Other
applications of edge-switch include generation of randomly
labeled bipartite graphs with a given degree sequence [15], in-
dependent realizations of graphs with a prescribed joint degree
distribution using a Markov chain Monte Carlo approach [18],
and studying the sensitivity of network topology on dynamics
over a network such as disease dynamics over a social contact
network [8].

Edge-switch can be paired with additional constraints such
as imposing a connectivity requirement, allowing or not allow-
ing parallel edges and loops, etc. NetworkX [11] has a sequen-
tial implementation of edge-switch that does not allow parallel
edges, but allows loops, and provides the option of imposing
connectivity constraints on the graph. A connectivity constraint
requires a graph to remain connected after edge-switch. Some
theoretical studies of edge-switch for restricted graph classes
can be found in literature, such as the study of mixing time
of the Markov chain introduced by this operation [6, 10].
However, no effort was given to design parallel algorithms
of edge-switch. For smaller graphs, sequential implementation
of edge-switch suffices. However, such an algorithm may not



work for massive networks for the following reasons: (i) a
massive network with billions of edges simply may not fit
in the memory of a single computing machine, and (ii) a
sequential algorithm may take a prohibitively long time. These
issues can be addressed by a distributed memory parallel
algorithm where the network is partitioned and each processor
contains one partition.

In this paper, we present a distributed memory parallel
algorithm for edge-switching in massive graphs with the con-
straint that the graph remains simple. The dependencies among
successive edge-switches and the requirement of keeping the
graph simple lead to significant challenges in designing a
parallel algorithm. To deal with these challenges, it requires
complex synchronization and communications among the pro-
cessors, which in turn makes it very challenging to gain any
speedup by parallelization. Our parallel algorithm achieves a
speedup of 85 with 1024 processors. It can perform 115 billion
edge-switches in a very large power-law network with 10
billion edges in less than 3 hours using 1024 processors. This
algorithm requires generating multinomial random variables
in parallel, which is also a non-trivial problem. To the best
of our knowledge, there is no existing parallel algorithm for
generating multinomial random variables. We present a parallel
algorithm for generating multinomial random variables, which
achieves a speedup of 925 using 1024 processors.

The rest of the paper is organized as follows. Section II
describes the preliminaries and notations used in the paper. The
edge-switch problem and the sequential algorithm are briefly
explained in Section III. We present the parallel algorithm of
edge-switch in Section IV and the algorithm for generating
multinomial random variables in Section V. Finally, we con-
clude in Section VI.

II. PRELIMINARIES AND NOTATIONS

We are given a simple graph G = (V,E), where V is the
set of vertices, and E is the set of edges. A simple graph
is an undirected graph with no self-loops and parallel edges.
A self-loop is an edge from a vertex to itself. Parallel edges
are two or more edges connecting the same pair of vertices.
There are total n = |V | vertices labeled as 0, 1, 2, . . . , n − 1,
and m = |E| edges in the graph G. If (u, v) ∈ E, we say
u and v are neighbors of each other. The neighbors of a
vertex u ∈ V are stored in the adjacency list of u, denoted
as N(u), i.e., N(u) = {v ∈ V |(u, v) ∈ E}. The degree
of u is du = |N(u)|. The terms node and vertex, graph
and network, neighbor list and adjacency list, loop and self-
loop are used interchangeably throughout the paper. We use
H,K,M and B to denote hundreds, thousands, millions and
billions, respectively; e.g., 1M stands for one million.

Edge-switch: An edge-switch replaces two edges e1 =
(u1, v1) and e2 = (u2, v2), picked uniformly at random from
E, by new edges e3 = (u1, v2) and e4 = (u2, v1), as shown
in Fig. 1. If u1 = v2 or u2 = v1, then the above edge-switch
creates self-loops. The edge-switch creates parallel edges, if
edge (u1, v2) or (u2, v1) have existed in the graph.

Visit Rate: Due to edge-switches, some edges of the given
graph G are changed (visited), and some edges that do not
participate in any edge-switch remain unchanged (not visited).
We define visit rate as the fraction of edges of G that have been

changed by a sequence of edge-switches. If m′ is the number
of edges of G that have been changed due to edge-switches,
then visit rate x = m′

m .
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Fig. 1: Edge-switch.

Binomial Distribution: Suppose that N independent trials
are to be performed, where each trial results in a success with
probability q, and in a failure with probability (1 − q). If
X represents the number of successes that occur among N
trials, then X is said to be a binomial random variable. The
distribution of X is a binomial distribution with parameters N
and q, and denoted by equation (1). The probability of getting
exactly i successes in N trials is given in equation (2).

X ∼ B(N, q) (1)

Pr{X = i} =

(
N

i

)
qi(1− q)

N−i (2)

Multinomial Distribution: Let N be the number of indepen-
dent trials to be performed, where each trial has ℓ possible
outcomes 0, 1, . . . , ℓ − 1 with probability q0, q1, . . . , qℓ−1 re-
spectively, such that qi ≥ 0 for 0 ≤ i ≤ ℓ− 1 and

∑
i qi = 1.

Let the random variable Xi indicates the number of times
the outcome i appears among N independent trials. Then
X = ⟨X0, X1, . . . , Xℓ−1⟩ has a multinomial distribution with
parameters N, q0, q1, . . . , qℓ−1, and denoted as follows.

⟨X0, X1, . . . , Xℓ−1⟩ ∼ M(N, q0, q1, . . . , qℓ−1) (3)

Computation Model: We develop algorithms for distributed
memory parallel systems. Each processor has its own local
memory. The processors do not have any shared memory
and can communicate with each other and exchange data by
message passing.

III. SEQUENTIAL EDGE-SWITCH

Problem Statement: Given a simple undirected graph G =
(V,E), and a visit rate x ∈ (0, 1], perform t random edge-
switches to achieve the given visit rate x.

A random edge-switch comprises of choosing a pair of
edges e and e′ uniformly at random from the set of edges in
the graph. As a result t is a random variable. In this paper,
we do not enforce the condition that the graph is connected
after each edge-switch. Enforcing this would require testing
connectivity after each such switch and is substantially more
computationally expensive.

A. Determining the Number of Edges to Switch for a Given
Visit Rate

During an edge-switch, a selected edge can be categorized
as one of the following two types. (i) Original edge: an
edge that has not participated in any of the previous edge-
switches and is still unchanged. (ii) Modified edge: any edge



participating in an edge-switch is replaced by a new edge, and
such a new edge is called a modified edge.

Calculating the expected value of t for a given x is
similar to the coupon collector problem [1]. Our goal is to
have m′ = mx modified edges in the graph by switching a
sequence of t pairs of edges. The rest (m−m′) of the edges
remain unchanged. Let at some point there are already (i− 1)
modified edges in the graph. From this point to have the i-th
modified edge we need ti number of edges to be switched. The
probability of selecting the i-th original edge from the graph,
given there are (i − 1) modified edges, is pi =

m−(i−1)
m . Let

T be the total number of edges that are switched to have mx
modified edges. Here, T and ti are random variables, and ti has
geometric distribution with expectation 1

pi
. Using the linearity

of expectation,

E(T ) =
mx∑
i=1

E(ti) =
mx∑
i=1

1

pi
=

mx∑
i=1

m

m− (i− 1)

= m

 m∑
i=1

1

i
−

m(1−x)∑
i=1

1

i


= m

(
Hm −Hm(1−x)

)
(4)

where Hm is the m-th harmonic number. Since every edge-
switch involves two edges, t = − 1

2m ln(1−x) for x < 1, and
t = 1

2m lnm for x = 1.

Note that we can mark the modified edges and always
select two original edges for the next edge-switch. In such
a case for a visit rate x to have mx modified edges, we
simply need to perform mx/2 edge-switches. For a specific
application, one can do so. If we do not allow a modified
edge to participate in any later edge-switch, the process may
not produce many networks with the same degree sequence.
Unrestricted and independent random choice of the edges help
us obtain a random graph from the space of the graphs with
the same degree sequence.

Furthermore, visit rate can also be defined in many other
ways and converted to t. At the end, our parallel algorithm
can be used to perform t edge-switches, irrespective of how t
is obtained.

B. Keeping the Graph Simple

As the edge-switch problem deals with simple graph, we
need to make sure that none of the edge-switches create self-
loops or parallel edges. Edge-switch between edges (u1, v1)
and (u2, v2) creates

• Parallel edge: if u1 ∈ N(v2), v2 ∈ N(u1), u2 ∈
N(v1) or v1 ∈ N(u2).

• Self-loop: if u1 = v2 or u2 = v1.

An edge-switch does not make any change to the graph
if the pair of edges remain the same after switching the
edges, and we say such an edge-switch is useless. Edge-switch
between (u1, v1) and (u2, v2) is useless if u1 = u2 or v1 = v2.
For an edge-switch, two edges are selected and switched if
the switch is not useless and does not create parallel edges or
loops.

C. Switching Edges Sequentially

A sequence of t pairs of edges are switched such that
the resultant graph remains simple. The graph, specifically
the edge set, dynamically changes with edge-switches. Let
G′ = (V,E′) be such a graph where E′ is the current
set of edges at a given time. Algorithm 1 shows the pseu-
docode of switching edges sequentially. The adjacency list
of a vertex can be stored using a balanced binary tree.
Searching such an adjacency list of a vertex u to determine
possibility of parallel edge creation takes O(log du) time. If
(u1, v1) and (u2, v2) are the edges participating in the i-
th edge-switch, then the time to perform t edge-switches is
O
(∑t

i=1

∑
j∈{u1,v1,u2,v2} log dj

)
≤ O(t log dmax), where

dmax is the maximum degree of a vertex in the graph.

Algorithm 1 SEQUENTIAL EDGE-SWITCH (G, x)
1: if x = 1 then t← 1

2m lnm
2: else t← − 1

2m ln(1− x)
3: for i = 1 to t do
4: (u1, v1), (u2, v2)← two uniform random edges ∈ E′

5: if u1 = u2, v1 = v2, u1 = v2, u2 = v1, u1 ∈ N(v2), or
u2 ∈ N(v1) then

6: go to line 4
7: Replace (u1, v1) and (u2, v2) by (u1, v2) and (u2, v1)

respectively

IV. PARALLEL EDGE-SWITCH

In this section, we propose an efficient distributed memory
parallel algorithm of edge-switch. Let p be the number of
processors, and they are denoted by P0, P1, . . . , Pp−1. We are
given a simple graph G = (V,E) and a visit rate x. The graph
is partitioned and distributed among the processors. We need
to consider two cases for an edge-switch: (a) both edges may
belong to the same processor, called local switch; (b) the edges
may belong to different processors; referred as global switch.
In the later case, the processors need to communicate with
each other in order to complete the edge-switch. We explain
the details below in the following order: (i) data structures,
(ii) partitioning, (iii) switching a pair of edges by a single
processor, (iv) simultaneous edge-switches by all processors,
(v) properties of parallel edge-switch and (vi) experimental
results.

A. Data Structures

A graph can be stored as adjacency lists or an adjacency
matrix. In an adjacency matrix, the existence of any edge
can be determined in constant time, however it takes O(n2)
memory. Our algorithm uses adjacency lists which takes
O(m + n) memory. Usually, N(u) contains all neighbors of
u. Instead, we keep the neighbors with labels higher than u,
i.e., N(u) = {v ∈ V |(u, v) ∈ E, u < v}; this is referred as
reduced adjacency list. Below we explain the advantages of
using reduced adjacency list.

(i) If an adjacency list contains all neighbors of a vertex,
every edge (u, v) can be picked up in two ways, one from
N(u) and another from N(v). N(u) and N(v) may belong to
two different processors. The same edge (u, v) can be picked
from two different processors and participate in two different



edge-switches at the same time leading to an inconsistency.
Reduced adjacency list ensures that any edge (u, v) can be
picked up only from one processor. Although it is possible to
avoid such inconsistency by keeping all neighbors in the list,
it will incur more communication cost.

(ii) Every edge-switch involves four vertices’ adjacency
lists update, one update for each end vertex of an edge.
Reduced adjacency list minimizes the number of updates to
only two or three vertices’ adjacency lists leading to efficiency.
The details are discussed later in Section IV-C.

However, a difficulty arises from using reduced adjacency
list. If N(u) contains all the neighbors of u, any edge (u1, v1)
can be picked up as (u1, v1) from N(u1) (considering as
ordered pair), and as (v1, u1) from N(v1). The probability
of being picked each way is 1

2m . If (u1, v1) and (u2, v2)
(considering no ordering) are two edges selected for edge-
switch, then the new edges are either (u1, v2) and (u2, v1),
or (u1, u2) and (v1, v2) depending on edges being selected
from which vertices’ adjacency lists. However, in a reduced
adjacency list, (u1, v1) is selected from N(u1) and (u2, v2)
is selected from N(u2), assuming u1 < v1 and u2 < v2,
the new edges become (u1, v2) and (u2, v1). We then miss
the chance of generating the edges (u1, u2) and (v1, v2). This
is adjusted by replacing the selected edges by (u1, u2) and
(v1, v2) with probability 1

2 , called straight switch, and by
(u1, v2) and (u2, v1) with probability 1

2 , called cross switch,
as shown in Fig. 2.

u2 v2

u1 v1

Cross switch with prob. 1
2Before edge-switch

u1 v1

v2u2

or

u1 v1

u2 v2

Straight switch with prob. 1
2

Fig. 2: Straight and cross edge-switch.

B. Partitioning

For a given simple graph G = (V,E), we partition V
into p disjoint subsets, V0, V1, . . . , Vp−1, such that

∪
i Vi =

V . The graph is partitioned such that the vertices are sorted
in ascending order of their labels among the processors, one
vertex’s reduced adjacency list belongs to a unique processor,
and each processor contains roughly the same number of edges
(mp ). Each processor Pi contains a set of edges, Ei = {(u, v) ∈
E|u ∈ Vi, u < v},

∪
i Ei = E and Ei

∩
Ej = ∅ for i ̸= j. As

the graph is dynamically changing with edge-switches, let us
denote E′

i to be the current set of edges in Pi at a given time.

C. Switching a Pair of Edges by a Single Processor

A simple approach of performing one edge-switch is that
processor Pi picks one pair of edges uniformly at random from
the entire graph (i.e., selecting two processors from [0, p− 1]
and request them for edges) and switch them through message
passing among the processors. However, this approach incurs
significant synchronization and communication costs. Instead,
Pi selects one edge (u1, v1) uniformly at random from its
current edge set E′

i, and another edge (u2, v2) from the entire
graph, i.e., Pi selects a processor Pj with probability

|E′
j |

|E|
and requests Pj to select an edge (u2, v2) from E′

j uniformly

at random. If Pi = Pj , then it is a local switch, otherwise
it is a global switch. The high level overview of an edge-
switch is given in Algorithm 2. The selected edges are switched
only if the graph remains simple and the edge-switch is not
useless. During the course of an edge-switch process, if any
processor Px detects violation of any constraints, Px notifies
all other processors that are involved in that edge-switch. Then,
the initiating processor (Pi for the above example) repeats the
edge-switch process to switch a new pair of edges.

Algorithm 2 SWITCHING A PAIR OF EDGES

1: Processor Pi executes the following for an edge-switch:

2: e1 ← a uniform random edge in E′
i

3: Pj ← a random processor in [0, p− 1], where probability
of choosing Px is |E′

x|
|E|

4: if Pi = Pj then
5: Choose an edge e2 from E′

i to switch with edge e1
6: Switch the edges e1 and e2 (Pi may communicate with

a different processor Pk requesting to add a new edge)
7: else
8: Send message < e1, request to pick an edge from E′

j >
to Pj

9: Upon receipt of the above message, Pj executes the
following:

10: Choose an edge e2 from E′
j to switch with edge e1

11: Pi and Pj work together to switch e1 and e2 (Pj may
communicate with a different processor Pk requesting
to add a new edge)

Local Switch: Pi selects two edges (u1, v1) and (u2, v2)
from E′

i uniformly at random such that the edge-switch does
not create loops and it is not useless. Pi decides whether it
will be a straight or a cross switch with equal probability. If
it is a cross switch, Pi checks whether (u1, v2) and (u2, v1)
create parallel edges. If not, Pi removes (u1, v1) and (u2, v2),
adds (u1, v2) and (u2, v1), thus completing the edge-switch
process. If the edge-switch is a straight switch, Pi determines
Pk such that min(v1, v2) ∈ Vk. If Pi = Pk, Pi checks whether
(u1, u2) and (v1, v2) create parallel edges. If not, Pi removes
(u1, v1) and (u2, v2), adds (u1, u2) and (v1, v2) and completes
the edge-switch process. If Pi ̸= Pk, Pi checks whether
(u1, u2) creates parallel edges. If not, Pi sends a message
to Pk requesting to add (v1, v2). If (v1, v2) does not create
parallel edges, Pk adds (v1, v2) and sends a message to Pi

indicating the updates at Pk. Upon receiving this message, Pi

removes (u1, v1), (u2, v2) and adds (u1, u2).

Global Switch: In a global switch, two edges are selected
from two different processors, say Pi and Pj , i < j. Assum-
ing Pi initiates the edge-switch process, Pi selects an edge
e1 = (u1, v1) ∈ E′

i uniformly at random. Pi sends a message,
containing the edge e1 and a request to select an edge from
E′

j , to Pj . Upon receiving this message from Pi, processor Pj

selects e2 = (u2, v2) ∈ E′
j uniformly at random, and decides

whether the edge-switch will be a straight or a cross switch
with equal probability. At this point, Pj knows the new edges
that will be added to the graph after removing e1 and e2; we
refer these new edges as potential edges until the updates take
place. Let us describe the cross switch in detail.



Processor Pj checks whether u2 = v1 and v1 = v2 to
detect a loop and a useless edge-switch respectively. If it does
not create a loop and is not useless, Pj determines Pk such
that min(u2, v1) ∈ Vk. We need to consider the following three
cases.

(i) If Pk = Pj , Pj checks whether (u2, v1) creates parallel
edges. If not, then Pj sends v2 to Pi. Pi checks whether
(u1, v2) creates parallel edges. If the graph remains simple,
Pi removes edge (u1, v1), adds edge (u1, v2), and sends a
message to Pj indicating the updates at Pi. Upon receiving
this message, Pj removes (u2, v2) and adds (u2, v1), thus
completing the edge-switch process.

(ii) If Pk = Pi, Pj sends a message, containing e2 and a
request to add both the new edges to Pi. Processor Pi checks
whether (u1, v2) and (u2, v1) create parallel edges. If not, Pi

removes (u1, v1), adds edges (u1, v2) and (u2, v1), and sends a
message to Pj indicating the updates at Pi. Then Pj completes
the edge-switch by removing (u2, v2).

(iii) If Pi ̸= Pk ̸= Pj , Pj sends (u2, v1) and v2 to Pk. Pk

checks whether (u2, v1) creates parallel edges. If not, Pk sends
v2 to Pi. Pi checks whether (u1, v2) creates parallel edges. If
not, Pi removes (u1, v1), adds (u1, v2), and sends messages
to Pj and Pk indicating the updates taken place at Pi. Then
Pj removes edge (u2, v2), and Pk adds edge (u2, v1), thus
completing the edge-switch process.

Similar approach is followed for a straight switch and for
i > j. The data structure we use eliminates the following two
constraints: (i) u1 = u2, and (ii) u1 = v2 if i < j, or u2 = v1
if i > j.

D. Simultaneous Edge-switches by All Processors

In the sequential algorithm, pairs of edges are selected
sequentially, one pair after another. As the edges are selected
randomly, the number of edges selected from each partition Ei

may not be equal. To have an equivalent parallel algorithm, we
need to select the same number of edges from each partition Ei

as the sequential algorithm would do. In the parallel algorithm,
for each edge-switch, processor Pi selects the first edge from
its own partition Ei and the second edge from the entire graph.
Let Xi be the number of first edges selected from partition
Ei by a sequential algorithm. A sequential algorithm does
not need to know Xi in advance. However, for the parallel
algorithm, Xi for each i need to be determined in advance so
that processor Pi knows how many edge-switches it needs to
perform where the first edge is selected from its own partition
Ei.

For any edge-switch, the probability that the first edge
is selected from Ei is qi = |Ei|

|E| for i = 0, 1, . . . , p − 1,
and we have

∑p−1
i=0 qi = 1. Then it is easy to see that the

random variables Xi for i = 0, 1, . . . , p− 1 are multinomially
distributed with parameters (t, q0, q1, . . . , qp−1); i.e.,

⟨X0, X1, . . . , Xp−1⟩ ∼ M(t, q0, q1, . . . , qp−1) (5)

The time complexity of the best known conditional dis-
tributed method [7] for generating multinomial variables is
θ(t). Thus to have an efficient parallel algorithm for edge-
switch, we also need an efficient parallel algorithm for gen-
erating multinomial random variables. To the best of our

knowledge, there is no existing parallel algorithm for this
problem. In Section V, we present an efficient parallel algo-
rithm for computing multinomial random variables that runs
in O( t

p + p log p) time.

Each processor Pi simultaneously performs Xi number of
edge-switches. After completing one edge-switch, Pi proceeds
to its next edge-switch, while serving other processors’ re-
quests in the mean-time. Below we discuss some issues that
arise from performing edge-switches simultaneously.

(a) Even after maintaining all the constraints to keep a
graph simple, parallel edges can be created in a different way.
As multiple pairs of edges are switched by multiple processors
simultaneously, a same new edge can be created by multiple
processors at the same time. For example, more than one
instance of an edge (u, v) is created simultaneously if more
than one of the following four edge-switches are performed
simultaneously by different processors, where ‘−’ denotes
an end vertex of an edge. (i) Cross edge-switch between
(u,−) and (−, v). (ii) Cross edge-switch between (−, u) and
(v,−). (iii) Straight edge-switch between (u,−) and (v,−).
(iv) Straight edge-switch between (−, u) and (−, v). Keeping
track of potential edges at each processor ensures no parallel
edges will be created in the above mentioned way.

(b) The number of edges changes (i.e., increases or de-
creases) among the processors with edge-switches. Hence, the
initial assumption of picking edges from different processors
with constant probabilities (i.e., qi = |Ei|

|E| ) does not hold
with progress in edge-switches. On the other hand, updating
the probability values after every edge-switch incurs a huge
amount of communication costs, leading the algorithm to slow
down significantly. To deal with this difficulty, our algorithm
performs edge-switches in a number of steps and the probabil-
ity values are updated at the end of each step. We denote step-
size to be the number of edge-switches performed by all the
processors in a step. With a reasonable step-size, we achieve a
close approximation. The experimental results are shown later
in Section IV-F5.

Summarizing the Parallel Algorithm of Edge-switch: First
t is calculated for a given x. Let s be the step-size, and q
be the probability vector ⟨q0, q1, . . . , qp−1⟩. Edge-switches are
performed in ⌈ ts⌉ steps. All the processors perform s number
of edge-switches in one step. If t%s ̸= 0, (t− s⌊ ts⌋) number
of edge-switches are performed in the last step. The summary
of the parallel algorithm is given below.

1) Multinomial Distribution: First s is multinomially
distributed among p processors with q to determine Si, the
number of edge-switches that each processor Pi will perform
in the current step. This takes O( sp + p log p) time.

2) Performing Edge-switches: Pi picks one edge e1
from E′

i, and the other edge e2 from the entire graph, and
performs edge-switch as described before in Section IV-C.
Each processor Pi performs such Si number of edge-switches
simultaneously. For an edge-switch, a constant amount of
message passing is required; edges are updated in constant
time and checking for parallel edges takes O(log dmax) time.
Thus, performing Si edge-switches at Pi takes O(Si log dmax)
time.

3) Updating Probability Vector and Termination: After



completing Si edge-switches in the current step, Pi sends
end-of-step signals (messages) to each processor that requires
O(log p) time. Pi continues to serve requests from other
processors until receiving end-of-step signals from every pro-
cessor, i.e., the end of current step. At the end of each
step, Pi receives |E′

j | from each Pj through message passing
and it takes O(log p) time. Pi updates q with the received
|E′

j |s in O(p) time. Then, s number of edge-switches are
again multinomially distributed among p processors using the
updated q for the next step and edge-switches are performed.
This process continues until t pairs of edges are switched.

E. Properties of Parallel Edge-switch

In this section, we examine some stochastic properties of
the parallel edge-switch process and study how stochastically
similar it is to the sequential edge-switch process.

Recall that in the sequential edge-switch process, one pair
of edges is selected uniformly at random, and the edges
are switched before selecting the next pair of edges. After
completing the i-th edge-switch, one or both of the two new
edges generated by the i-th switch can be selected for the
(i + 1)-th edge-switch. In the parallel edge-switch process,
multiple pairs of edges are selected and switched simultane-
ously by different processors, and thus, the edges generated
simultaneously by multiple processors cannot be selected for
a simultaneous edge-switch (restricting its choice). It raises
the question of whether these two processes are stochastically
equivalent or how close are they stochastically? We try to
answer this question by studying the similarity of their effect,
i.e., the resultant graphs generated by these two edge-switch
processes beginning with the same initial graph.

The stochastic equivalence of the sequential and parallel
edge-switch processes can be defined as follows. Let Gt

s and
Gt

p be the resultant graphs after performing t number of edge-
switches by the sequential and parallel edge-switch processes,
respectively, where both processes begin with the same initial
graph G. We say the two processes are stochastically equiva-
lent if Pr{Gt

s = G′} = Pr{Gt
p = G′} for all graphs G′ with

the same degree sequence as G.

Theoretical analysis of the above stochastic equivalence
seems to be difficult. Experimental analysis can also be pro-
hibitively time consuming. As the space of the graphs with a
given degree sequence can be very large, estimating probabil-
ities of generating G′ by a reasonable number repetitions of
the edge-switch processes can be very error prone.

Instead, we measure “similarity” of the two stochastic
processes. We say the sequential and parallel processes are
similar if they satisfy the following two conditions.

1) The distribution of the number of edges switched
among different partitions (i.e., subsets of edges) is
the same in both Gt

s and Gt
p, the resultant graphs

of the sequential and parallel processes, respectively.
This goal is achieved by the use of multinomial
distribution as described before in Section IV-D.

2) At the end of the edge-switch processes, the distribu-
tion of the number of edges across different sets of
vertices is the same for both sequential and parallel

processes. Let ns(Vi, Vj) and np(Vi, Vj) be the num-
ber of cross edges between the sets of vertices Vi and
Vj in the resultant graphs Gt

s and Gt
p, respectively.

For any positive integer t, after switching t pairs of
edges, the distribution of ns(Vi, Vj) and np(Vi, Vj),
for all i, j, are same.

The resultant graphs, Gt
s and Gt

p, are divided into r
partitions (i.e., 0 ≤ i, j ≤ r−1), with each partition having an
equal number of vertices. The edge difference across different
sets of vertices between Gt

s and Gt
p is computed using equation

(6). We define error rate between Gt
s and Gt

p as shown in
equation (7), where the maximum value of the edge difference
can be 2m. Due to randomness, some error rate can be
observed even between two resultant graphs, Gt

s1 and Gt
s2,

generated by the sequential process in two different runs. If
the error rate between Gt

s and Gt
p is roughly equal to the error

rate between Gt
s1 and Gt

s2, then the sequential and parallel
processes are said to be similar. The experimental results are
explained in Section IV-F5.

Edge difference =
∑
i,j≥i

|ns(Vi, Vj)− np(Vi, Vj)| (6)

Error rate =
Edge difference

2m
× 100% (7)

F. Experimental Results

In this section, we present strong and weak scaling of our
parallel algorithm, demonstrate the similarity of the sequential
and parallel algorithms, and analyze the trade off between step-
size, error rate and speedup.

1) Experimental Setup: We use a high performance com-
puting cluster of 64 Intel Sandy Bridge compute nodes (Dell
C6220). Each computing node consists of dual-socket Intel
Sandy Bridge E5-2670 2.60GHz 8-core processor (16 cores
per node) and 64GB of 1600MHz DDR3 RAM. The com-
puting nodes are interconnected by Qlogic QDR Infiniband
interconnects. To implement our algorithm, we use MPICH2
implementation (version 1.9) of MPI.

TABLE I: Datasets used in the experiments

Network Type of network Vertices Edges Avg. Degree
New York Social Contact 20.38M 587.3M 57.63
Los Angeles Social Contact 16.33M 479.4M 58.66
Miami Social Contact 2.1M 52.7M 50.4
Flickr Online Community 2.3M 22.8M 19.83
LiveJournal Social 4.8M 42.8M 17.83
Small World Random 4.8M 48M 20
Erdős-Rényi Erdős-Rényi Random 4.8M 48M 20
PA-100M Pref. Attachment 100M 1B 20
PA-1B Pref. Attachment 1B 10B 20

2) Datasets: We use both real-world and artificial networks
for the experiments. A summary of the networks is provided in
Table I. New York, Los Angeles, and Miami are realistic, yet
synthetic social contact networks [3]. Each vertex represents
a person in that city, and each edge represents any ‘physical’
contact between two persons within a 24 hour time period.
Flickr is an image based online community network [19].
LiveJournal is a social network blogging site [19]. Small world
graph is generated using Watts-Strogatz small world graph
model [24], Erdős-Rényi is generated using Erdős-Rényi graph
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changes similarly with edge-switches by
the sequential and parallel algorithms.

model [5], and PA is generated using Preferential Attachment
graph model [2].

3) Strong Scaling: Fig. 3 showcases the strong scaling of
the parallel algorithm of edge switch. We use visit rate x = 1
and step-size = t

100 . We have experimented with eight different
graphs, and achieved a maximum speedup of 85 using 1024
processors for the LiveJournal graph.

4) Weak Scaling: The weak scaling of our parallel algo-
rithm is shown in Fig. 4. In one experiment, we increase the
graph size with the increase of processors, and use Preferential

Attachment graphs with (p × 0.1M) vertices and an average
degree of 20. In another experiment, we use a fixed Preferential
Attachment graph with 102.4M vertices and 1.024B edges. In
both the experiments we use t = p×10M and step size = t

1000 .
Ideally, the parallel runtime should remain constant. However,
in practice, the communication increases with the increase of
processors, leading to a higher runtime. Our algorithm shows
good weak scaling as the runtime increases linearly in both
the cases.



5) Similarity of the Parallel and Sequential Algorithm and
Determining Suitable Step-size: We use visit rate x = 1, and
r = 20 partitions to measure error rate for all the experiments,
unless otherwise specified. Fig. 5 shows better strong scaling
is achieved for larger step-size on the Miami graph. For a
particular step-size, error rate remains roughly constant with
the increase of processors on the Miami graph, as shown in
Fig. 6. The effects of step-size on speedup and error rate for
the Miami graph are shown in Fig. 7 and Fig. 8 respectively.
Both the speedup and error rate increase with the increase of
step-size.

By keeping the error rate to a minimum, we want to achieve
as much speedup as possible. From Fig. 8, we observe that
with up to a 2M step-size, the error rate between the resultant
graphs generated by the sequential and parallel algorithms is
roughly same as the error rate between the resultant graphs
generated by two different runs of the sequential algorithm.
Hence, 2M can be a suitable step-size for the Miami graph,
since the error rate is minimal, and a good speedup factor of
50 using 1024 processors is achieved at the same time. If we
further increase the step-size, both the speedup and error rate
increase. For example, using a step-size of 9.4M , the error rate
is a negligible 0.4%, however a higher speedup factor of 62 is
achieved using 1024 processors. Fig. 9 and 10 shows the effect
of step-size on speedup and error rate for different graphs.
Suitable step-size may vary from graph to graph, depending
on the graph size and type of the graph. For example, the
error rate is roughly constant for different step-sizes on Erdős-
Rényi and LiveJournal graphs, though it varies for Flickr and
Miami graphs as shown in Fig. 10. A suitable step-size for
Flickr, Miami, LiveJournal and Erdős-Rényi graphs can be
1.5M , 2M , 4M and 8M respectively. In general, if we use a
lower step-size, say 2M , for any medium-sized graph (having
more than 20M edges), we expect to have a very small error
rate along with a good speedup. The above experiments show
that the sequential and the parallel edge-switch processes are
similar with a suitable step-size.

We also analyze how some network properties change with
edge-switches by sequential and parallel algorithms. We use
Miami, LiveJournal, and Flickr graphs with a step-size of 2M ,
and vary the visit rate from 0.1 to 1. Fig. 11 and 12 shows
that the average clustering coefficient and average shortest
path distance of a graph change exactly the same way with
edge-switches by the sequential and parallel algorithms. Small
variation in average shortest path distance is observed due to
using approximate computation, since the exact computation
is very time consuming.

Our algorithm is able to perform more than 115B edge
switches on a Preferential Attachment graph with 1B vertices
and 10B edges in less than 3 hours using 1024 processors.
The sequential algorithm is not even able to load such a large
graph.

V. BINOMIAL AND MULTINOMIAL DISTRIBUTION

In this section we present a parallel algorithm for comput-
ing multinomial distribution of very large numbers. First we
briefly review the current state-of-the-art sequential algorithm.

A. Sequential Algorithm for Computing Multinomial Distribu-
tion

One simple approach for computing multinomial random
variables is to perform N independent trials, where the
outcome of each trial can be 0, 1, . . . , ℓ − 1 with proba-
bility q0, q1, . . . , qℓ−1, respectively. This algorithm takes at
least Ω(N log ℓ) time. An efficient state-of-the-art algorithm
is conditional distributed method [7], which runs in O(N)
time. This method generates multinomial random variables
⟨X0, X1, . . . , Xℓ−1⟩ by iteratively generating ℓ binomial ran-
dom variables

Xi ∼ B

N −
i−1∑
j=0

Xj ,
qi

1−
i−1∑
j=0

qj

 (8)

Inverse transformation method (BINV) [14] is the best
known algorithm for computing binomial random variables.
To generate a binomial random variable X with parameters N
and q, it takes O(X) time. Note that the expected value of X
is Nq.

The algorithms for the inverse transformation method
(BINV) [14] to compute binomial random variables and condi-
tional distributed method [7] to compute multinomial random
variables are shown in Algorithm 3 and 4, respectively. For
additional details, see [14] and [7].

Algorithm 3 BINOMIAL(N, q)
1: if q = 1 then return N
2: i← 0 {i is the binomial random variable}
3: Generate u ∼ U(0, 1) uniformly at random
4: Q← (1− q)

N , S ← Q
5: while S < u do
6: i← i+ 1
7: Q← Q

(
N−i+1

i

) (
q

1−q

)
8: S ← S +Q
9: return i

Algorithm 4 MULTINOMIAL(N, q0, q1, . . . , qℓ−1)
1: Xs ← 0, Qs ← 0
2: for i = 0 to ℓ− 1 do
3: if Qs < 1 then
4: Xi ← BINOMIAL

(
N −Xs,

qi
1−Qs

)
5: Xs ← Xs +Xi

6: Qs ← Qs + qi
7: else Xi ← 0
8: return ⟨X0, X1, . . . , Xℓ−1⟩

The conditional distributed method shown in Algorithm 4
runs in

∑ℓ−1
i=0 O(Xi) = O(N) time. In the next section, we

present an efficient parallelization of Algorithm 4.

B. Parallel Algorithm for Computing Multinomial Distribution

Based on the conditional distributed method shown in
Algorithm 4, we propose a parallel algorithm for computing
multinomial distribution X ∼ M(N, q), where q denotes



probability vector ⟨q0, q1, . . . , qℓ−1⟩. One tempting approach to
parallelize the conditional distributed method is to distribute
the generation of Xi, 0 ≤ i < ℓ (Line 4 of Algorithm 4)
among the processors. However, a difficulty arises from the
sequential nature of computing Xis due to the dependencies
of Xi on Xi−1 for all i > 0. We overcome this difficulty
by exploiting some properties of binomial and multinomial
random variables, as described below.

Let Ni, for 0 ≤ i < k, be some integers such that N =
k−1∑
i=0

Ni. If Xi ∼ B(Ni, q), then

X =

k−1∑
i=0

Xi ∼ B

(
k−1∑
i=0

Ni, q

)
= B(N, q) (9)

The above property of the binomial random variables leads
to the following property of the multinomial random variables.
If

⟨X0,i, X1,i, . . . , Xℓ−1,i⟩ ∼ M(Ni, q0, q1, . . . , qℓ−1)

for 0 ≤ i < k, then

⟨X0, X1, . . . , Xℓ−1⟩ ∼ M(N, q0, q1, . . . , qℓ−1) (10)

where Xj =
k−1∑
i=0

Xj,i for 0 ≤ j < ℓ and N =
k−1∑
i=0

Ni.

Now we describe the parallel algorithm for computing
multinomial distribution, which uses the above property. First,
we explain the case of p = ℓ. Our algorithm divides the
number of trials N into p almost equal small number of trials
Ni, and assign Ni to Pi. Then each processor Pi computes
the multinomial distribution of Ni using the same probability
vector q. At the end, the results of all the processors are
aggregated. The pseudocode is given in Algorithm 5, where
processor Pi holds the multinomial random variable Xi at the
end of computation.

Algorithm 5 PARALLEL MULTINOMIAL(N, q0, . . . , qℓ−1)
1: Each processor Pi executes the following in parallel:

2: if i < N%p then Ni ← ⌊Np ⌋+ 1

3: else Ni ← ⌊Np ⌋
4: ⟨X0,i, X1,i, . . . , Xℓ−1,i⟩ ∼ M(Ni, q0, q1, . . . , qℓ−1)
5: Send Xj,i to processor Pj

6: Upon receiving Xi,k from every processor Pk:

7: Xi ←
p−1∑
k=0

Xi,k

For p ̸= ℓ, the algorithm is same up to the multinomial
distribution computation of Ni at Pi, i.e., lines 1-4 of Algo-
rithm 5. The only difference is how the generated multinomial
random variables will be stored among the processors. The
variables can be stored in many ways, e.g., all the Xis can
be gathered to the root processor P0, or they (Xis) can be
distributed among the processors in a round robin fashion, i.e.,
assigning Xi to processor P(i%p), etc. Xi is always computed
by summing up all the Xi,ks (0 ≤ k < p), after receiving them
from all the processors.

The parallel computation is almost perfectly load balanced
among the processors since each processor computes multino-
mial distribution of N

p independently, taking O(Np ) time. The
communication cost at the end takes O(ℓ log p) time. Hence,
the time complexity of this algorithm is O

(
N
p + ℓ log p

)
. The

algorithm is almost perfectly parallelized because the number
of processors, p (which is in the range of hundreds or at most
thousands), and the number of outcomes ℓ, are significantly
smaller than the number of trials N (which is in the range
of billions), in general case. Algorithm 5 computes binomial
distribution for ℓ = 2.

During binomial random variable generation, the computa-
tion of (1− q)N (Line 4 of Algorithm 3) results in underflow
occurrence for large values of N , e.g., billions. Using long
double data type cannot solve this underflow occurrence for
large N . In addition, some round off errors may appear.
We deal with these difficulties by using the property of the
binomial distribution again, i.e., we divide N into small Nis
such that

∑
i Ni = N , compute X using equation (9). The

upper threshold value of Ni is set such that no underflow
occurs, that is,

(1− q)Ni ≥ z (11)

Ni ≤
− log z

log(1− q)
≤ − log z

2q
(12)

where z is the smallest positive real number that can be
represented by the data type (e.g., float, double) used and
q < 1.

C. Performance Analysis of the Parallel Algorithm

In this section, the speedup of the parallel algorithm of
multinomial distribution is demonstrated by strong scaling and
weak scaling.

1) Strong Scaling: The strong scaling of the parallel al-
gorithm is illustrated in Fig. 13. We keep the problem size
fixed (N = 10000B, ℓ = 20 and qi = 1

ℓ ), and achieve a
speedup of 925 using 1024 processors. The speedup increases
almost linearly with the increase of processors. The parallel
algorithm can compute multinomial distribution of 10000B in
71 seconds using 1024 processors.

2) Weak Scaling: Fig. 14 shows the weak scaling of our
parallel algorithm. We use ℓ = p (i.e., total number of
processors), N = p×20B (i.e., 20B per processor), and equal
probability values, qi = 1

ℓ . The parallel run time is almost
constant indicating a very good weak scaling.

VI. CONCLUSION

We have devised a new parallel algorithm of edge-switch,
that can generate massive scale random graphs by achieving a
target visit rate. It can be used in studying various properties
of large dynamic networks. We have experimentally shown
that the parallel algorithm is similar to the sequential algo-
rithm. In addition, we have developed a parallel algorithm
for computing multinomial random variables that is almost
perfectly parallelized. This algorithm can be of independent
interest and prove useful in parallelizing many stochastic
processes. We believe that the two parallel algorithms will
contribute significantly in dealing with big data, one of the
most challenging problems in today’s research world.
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