
NAP: An Agent-based Scheme on Reducing Churn-Induced Delays for P2P Live
Streaming

Abstract

Peer-to-peer (P2P) multimedia streaming provides a scal-
able solution for IPTV. However, delays from channel switch
and streaming recovery are typically in the scale of 10-
60 seconds, which have hindered the extensive commercial
deployment of P2P systems. We call those two types of de-
lays, churn-induced delays. Obtaining assurances on churn-
induced delays in dynamic and heterogeneous network en-
vironments is a challenge. In this paper, we devise a simple,
yet efficient agent-based P2P streaming scheme, called NAP,
which reduces churn-induced delays. We first formulate the
problems of minimizing channel-switching delay and stream-
ing recovery delay. We then present the detailed methodology
of NAP. In addition, we develop a queuing model for the P2P
streaming scenario and analyze the properties of NAP based
on that model. Our numerical study reveals the effectiveness
of NAP, and shows that it significantly reduces churn-
induced delays, especially channel-switching delays.

1. Introduction

By way of efficient cooperation among end users, P2P
networks dramatically increase scalability, and thus exhibit a
growing popularity in the application domain of multimedia
streaming. As a result, many P2P live video systems, such as
PPLive, Coolstreaming, and Sopcast, have been successfully
deployed in the recent years, and most of them have over 100
channels, prevailing with millions of users [1], [2]. However,
recent measurement studies of P2P streaming indicate that
the detrimental impacts from node churn, long switching
delay, and playback lag are hindering the extensive com-
mercial deployment of P2P systems [3]. For example, IPTV
deployment volume from commercial service providers is
far below the industry expectation [4].

Besides playback lag, delays occurring in P2P stream-
ing may arise from two factors: node churn and channel
switching. Node churn represents the frequent event of peer
arrival or departure. Typically, peer departure can lead to
streaming interruption to the downstream peers, where delay
happens during the restoration of streaming connections [3].
We call such delay recovery delay. Another type of churn
is channel churn, which represents the event of channel
switching in a multi-channel P2P streaming system. It has

been observed that channel churn is much more frequent
than node churn [5], and can cause severe instability to
the system. In a multi-channel P2P streaming system, the
video content of each channel is distributed by a different
swarm of peers. Similar to node churn, when a peer switches
from channel A to channel B, its downstream peers need
to locate new data feed from other peers in the swarm of
A. Additionally, channel switching delay occurs as well
when this peer attempts new stream connections in the
swarm of B. As we can see, these types of delays stem
from the churns of node departure and channel switching.
We call such delays churn-induced delays. Currently, users
have been accustomed to delays under seconds, which are
typical in a cable TV system [5]. However, churn-induced
delays are significant in current P2P systems. For example,
measurement studies indicate that channel switching delays
are typically in the scale of 10-60 seconds [6]. From the
perspective of user experience, this is obviously undesirable.
Motivated by this, we propose NAP, a Novel, Agent-based
P2P scheme to reduce the churn-induced delay. For mini-
mizing playback lag, there exists a vast array of solutions,
such as [7], [8]. NAP can adopt any of these minimum-
playback-delay algorithms to yield low-delay streaming.

In this paper, we focus on reducing the churn-induced
delays, including recovery delay and channel switching
delay. We develop NAP, an agent based solution. Based on
the fact that churn-induced delays identically stem from the
time of re-connecting to new peers, NAP is devised with
preventive connections to all channels. Once an actual con-
nection is requested, time is saved in retrieving bootstrapping
information, and obtaining authorization and authentication.
However, maintaining preventive connections for all peers to
all channels makes it impractical due to significant number
of control signals and message overhead.Towards an efficient
control and reduced message overhead, we propose that for
each channel some powerful peers are selected as agents
to represent the peers in the channel. The agents distill the
bootstrapping peers with superior bandwidth and lifetime
expectation to quickly serve the viewer in the initial period
of streaming. Moreover, the agents pre-schedule the down-
loading plan about data chunk partition and streaming for
future viewers, and coordinate with each other to build the
preventive connections for peers represented by them. Since
agents work in a distributed manner whose amount fluctuates

adaptively to the network size, NAP exhibits massive scala-
bility. Due to space constraint, we will not discuss security
concerns in this paper. As we know, NAP can adopt existing
security schemes, which has been extensively studied in
previous works [9].

This paper focuses on reducing the churn-induced delays
and presents the theoretical bound on the efficiency of
NAP. Although similar schemes, called proxy methods, were
studied in [10], [11], previous research mainly focuses on
reliability and scalability, which does not work towards
delay optimization. In summary, the paper makes three
important contributions: (1) we develop NAP, an efficient
agent-based scheme towards reducing the churn-induced
delay in P2P streaming with reasonable message overheads;
(2) we develop a queuing theory model for NAP based on
P2P streaming scenario, which can also be generally applied
to other preemptive schemes after simple modification. By
virtue of this model, we analyze the theoretical properties
of NAP; and (3) we numerically analyze the performance of
NAP and show the improved delay properties of NAP based
on both queuing theory model and simulation results. Our
experimental results indicate that NAP can significantly re-
duce churn-induced delays, especially the channel-switching
delay.

The rest of this paper is organized as follows. Section 2
describes an overview of past and related works. In Sec-
tion 3, we formulate the problems of reducing churn-induced
delays, and present our agent-based solution – NAP. In
Section 4, we model the NAP and justify its performance
by the queuing theory model we develop for P2P scenario
specifically. The results of numerical studies in Section 5
validate the effective performance of NAP at the end of this
chapter. Section 6 concludes the paper.

2. Related Work

Previous works on IPTV show that the next channel that a
user may watch can be predicted using probability analysis
based on user’s past channel switching patterns [12]–[14].
For example, a viewer watching a live news channel may
switch to another news channel with high probability. Also,
it is highly probable that a viewer may switch to an adjacent
channel in the channel list when he or she is seeking some
interesting channel in sequence. Thus, several papers such
as [12], [13], on multicast IPTV systems propose to send
contents of the predicted next channels in parallel with the
currently viewed channel. Should the user switch to one of
the predicted channels, he or she can immediately watch
the next channel without delay. However, such a method
is bandwidth consuming in transmitting multiple streams,
which is not practical for current P2P streaming systems
due to limited upload and download bandwidth.

The problem of reducing churn-induced delay in P2P
streaming has close relationship to the problem of improving

the churn resilience, because a resilient system generally
has less streaming interruptions. In [5], Wu propose a
strategy, called view-upload decoupling (VUD), to reduce
the channel churn. The VUD-based P2P streaming approach
decouples peers’ viewing from their content uploading. In
other words, what a peer uploads is independent of what
it views [3]. The major advantages of VUD-based systems
are inherent robustness in the high-channel-churn environ-
ments and flexible cross-channel resource sharing capability.
The drawback of this approach is that VUD costs more
bandwidth overhead. To tackle this problem, Wu et al. [3]
propose a substream-swarming enhancement. Specifically,
each swarm only distributes a small portion of the stream,
called a substream, to viewers. The viewers need to collect
substreams from multiple swarms for a complete streaming.
This substream concept can improve the viewing perfor-
mance without significant bandwidth overhead. As we can
see, in VUD, the distribution swarms are more stable than
traditional systems, where peers deliver the same channel
content that they are viewing. As a churn-resilient scheme,
the channel-switching behavior of a peer in VUD will not
influence its downstream peers. Yet, VUD can neither reduce
the delay consumed at the peer that is switching the channel,
nor the delay from the node churn.

Instead of mitigating one type of delay, our strategy
focuses on retrenching the connection time for all cases of
churn-induced delays. Additionally, considering the promis-
ing advantages of VUD, NAP is capable of integrating our
scheme with VUD to obtain better performance.

3. NAP: An Agent-Based P2P Scheme

For churns in P2P live streaming systems, we can gen-
erally classify them into two categories: peer churn and
channel churn. Peer churn arises from peer arrival and de-
parture [1], and channel churn comes from channel switch-
ing [3]. In this section, we first formulate the problems
of reducing delays caused by the two types of churns:
node churn and channel churn, and then we describe the
methodology of NAP to reduce these delays.

3.1. On Reducing Delay from Channel Churn

We consider a peer-to-peer streaming system with Q
channels, where each channel is associated with a distinctive
streaming overlay. We denote the set of channels as C. Given
a channel Ci ∈ C, its streaming overlay can be modeled as
Gi = (Vi, Ei), where Vi is the set of vertices representing
peer nodes on this overlay, and Ei is the set of overlay edges
representing directed overlay streaming links. Each channel
Ci ∈ C is considered as a streaming session, originating
from a single source node Si to a set of receivers Ri, where
Vi = {Si} ∪ Ri. Suppose Si streams data at a constant
streaming rate of si units/second. If a peer p viewing channel

Figure 1: General Scheme: (1) Authentication and autho-
rization; (2) Peer list download; (3) Contact other peers,
retrieve chunk map and more lists of connection candidates,
and then schedule downloading plan.

Ci receives the aggregated stream at si units/second from its
parents, we call peer p as fully served [7]. We assume that
a fully served peer can smoothly play back the streaming
content at its original rate of si units/second [7].

To understand the switching delay problem, we first
describe the general channel switching scheme without
switching delay optimization [15]. As illustrated in Figure 1,
when switching to a new channel Ci, a peer p initiates
a connection with an AA server for Authentication and
Authorization [15]. Afterwards, it contacts with a bootstrap
server (BS), which is a server maintaining a partial list L
of current peers on the overlay of Ci. BS sends p a list
LR of random peers as the connection candidates for p,
where LR ⊂ L [15]. To distinguish from the bootstrapping
peers which is mentioned later in NAP, we call here the
list of peers retrieved from BS as ordinary peers. Then p
requests streaming from peers in LR. Active peers in LR

response with their IP addresses, data chunk information
and additional lists of connection candidates in the swarm.
If the cumulative available bandwidth from responding peers
in LR satisfies the streaming rate and the cumulative chunk
is complete, p schedules downloading plan and attempts the
streaming process with them.

If the above bootstrap procedure is successful, the overlay
mesh for channel Ci is updated, and subsequently p receives
the channel content from its upstream peers. Clearly, the
expected channel switching delay for peer p, denoted as dsw,
can be expressed by

dsw = dA + dls + dp + dsc, (1)

where dA is the expected time cost in authorization and
authentication before watching a channel, dls is the expected
delay to retrieve a peer list of the target channel from the
bootstrap server, dp is the expected time spent in initializing
the contact with those peers in the list, and dsc includes the
delay in exchanging data chunk information with responding
peers in the list, the time to schedule downloading different
chunks from specific peers and the communication delay to
receive the chunk data. We now define the problem formally:

Figure 2: NAP: (1) Peer registers at the agent; (2) Agents
periodically exchange information with each other, distill
bootstrapping peers and pre-schedule the downloading plan
based on chunk information on BP; (3) Peer downloads peer
list and list of agents in other channels; (4) When switches
channel, peer sends request to agent in that channel and also
contacts ordinary peers in the list simultaneously; (5) Agent
forwards request to bootstrapping peers; (6) Bootstrapping
peers directly send data to peer.

Definition 1: Minimum Channel Switching Delay
Problem (MCSD problem): Given the average time re-
quired to complete each step in channel switching pro-
cess, i.e., dA, dls, dp, and dsc as defined above, the MCSD
problem is to devise an overlay switching scheme which
minimizes the average channel switching delay with the
receiver successfully switching to the new channel.

Measurement studies have revealed the channel switch-
ing delay mainly arises from the bootstrap process [16].
Traditional channel switching protocol arranges the threads
of bootstrap and streaming in sequence. We can see those
two threads are independent with each other, which leads to
the feasibility of parallelizing the threads of boot strap and
streaming. In light of that, we propose a more time-efficient
protocol to leverage such characteristic. In an intuitive
scheme, peers can proactively start bootstrapping in other
channels, including getting authorization and retrieving list
of peers in the channel while viewing current channel, so that
it will be ready to switch channel. As we know, a typical
live streaming application, such as PPLive and UUSee, may
accommodate hundreds of channels [17]. It is not practical
for each peer to personally maintain bootstrapping in all the
other channels due to the expensive message overhead.

Towards a feasible solution for this problem, our protocol,
NAP, suggests a distributed agent-based bootstrap, where
each channel maintains a set of agents responsible for boot-
strapping in the channel for external peers. Agents in channel

Ci, denoted as Ai, are selected peers with predicated long
lifetime, more storage and communication capabilities in the
overlay. They collect the bootstrap information about avail-
able peers in the channel with periodical update, and then
exchange such information with agents in other channels.
It is worth mentioning that when updating, only changed
information is collected and distributed to other agents. As
shown in Figure 2, on the background of current streaming,
peer p, after joining the network, registers at one of the
agents a ∈ Ai in its current channel Ci and sends a the
request for proactive bootstrap to other channels

∪
j Cj ,

where j ̸= i. Agent a buffers and periodically forwards
such requests to the agents in the other channels. Those
agents in other channels authenticate and authorize p’s join
request. Once the request is approved, they notify a. Given
the bootstrapping information stored at a as Ia, a then sends
p a list of peers

∪
j D

j
p in the other channels, where Dj

p ⊂ Ia
and j corresponds to channel Cj . Since then, a updates such
bootstrapping information if change happens. Bootstrapping
data sent to p contains only a partial set of peers stored in
a’s list for each channel. A partial set of peers is sufficient
as long as the available bandwidth in each channel can
fully serve p’s streaming. In addition, an agent distills the
bootstrapping peers with superior bandwidth and lifetime
expectation from ordinary peers in its list to quickly serve
the viewer in the initial period of streaming. Moreover, the
agents pre-schedule the downloading plan for data chunk
partition and streaming for future viewers, and coordinate
with each other to build the preventive connections for peers
represented by them. We call such distilled peers in the
bootstrapping data for peer p as bootstrapping peers,denoted
as Bi

p for channel Ci. When p switches to a new channel Cj ,
it requests a service to the agent in Cj and simultaneously
request streaming from ordinary peers in Dj

p. The agent
forwards the service request to the bootstrapping peers in its
management for a quick assistance in the initial streaming
period. After bootstrapping peers starts streaming, they keep
looking for other ordinary peers to take over their streaming
job to p. So the agent can recycle back the bootstrapping
peers. By way of this proactive bootstrapping, channel
switching delays are reduced significantly.

To reduce the message overhead for updating data on
agents, bootstrapping peers in each channel can work only
for the initial streaming period T and during that time they
handover the streaming to other ordinary peers they found,
called handover peers. It is reasonable to evaluate T as the
expected time that bootstrapping peers need to find handover
peers. Because bootstrapping peers can be reused in this way,
agents do not need to update the bootstrapping peers as long
as they are still in the channel. To reduce the influence from
channel switching of bootstrapping peers, strategy of view-
upload decoupling (VUD) can be applied with NAP, where
what a peer uploads is independent of what it views [3].
Similar to agent selection, bootstrapping peers should have

predicted long lifetime and more bandwidth resources. We
further discuss the properties of bootstrapping peers and
agents in Section 4.

Furthermore, given a peer p that is not new in the
network, i.e., p has been viewing some channel in the
network, when switching channel, it only registers at the
new agent a but does not send bootstrap request since it has
done this previously. Bootstrapping data has time stamps.
On p’s registration, a compare the time stamp ta on its
bootstrapping data with tp that is stored in p. If ta > tp,
a updates the bootstrapping data to p.

3.2. On Reducing Delay from Peer Churn

In this section, we discuss the protocol to reduce the delay
from the other type of churn, i.e., peer churn. Peers can
randomly join or leave the overlay of current channel. For
most P2P live streaming applications, peer departures have
a greater detrimental effect on the delay than new peers
arrivals. Peer departures may lead to streaming interruption
to their downstream peers. In the paper, we focus on
reducing the delay from peer departure.

We call the departure-induced delay as recovery delay,
which occurs when downstream peers restore their streaming
connections. We denote the recovery delay delay as dre. It
can be carried out that

dre = dp + dsc. (2)

Comparing with switching delay in Equation (1), notice
that recovery delay has no dA and dls components since the
peer has already been authorized and owns the peer list in
current channel. We now define the problem:

Definition 2: Minimum Departure-induced Delay
Problem (MDD problem): The MDD problem is to devise
an overlay resilience scheme which minimizes the recovery
delay during peer departure.

Similar to MSCD problem, we can observe the feasibility
of parallelizing the threads of streaming and recovery in
this problem. Thus, we can reduce the delay by keeping
a proactive bootstrap to the overlay of current channel.
This can be accomplished by a simple modification on the
protocol described in Section 3.1. Specifically, given an
agent a for peer p that is viewing channel Ci, Ia stored
on a is extended to include its bootstrapping data to the
current channel Ci. Likewise, Di

p is stored and updated in
peer p as well.

3.3. Management of the Agents

The agents exchange information with each other. A
resilient way to realize these exchanges is a gossip-based
method. Due to the page limit, we do not focus on how to
implement an optimal gossip plan. In addition, an agent may

leave the network, so peers may not reach the agent when
they call for a service to the agent. To alleviate this problem,
heart-beat signals are exchanged among agents to timely
monitor the existence of the agent. In Section 5, we detail
the setting of heart-beat signal frequency. Once an agent
departure is detected, neighboring agents of the departed
agent initiate a process to select new agent. Neighboring
agents exchange the copies of bootstrapping information. So
when they select new agent, they put back such information
that was stored in the departed agent to the new agent.

4. Modeling and Analysis

In this section, we formally model and analyze NAP with
queuing theory. In contrast to the traditional Client/Server
paradigm and the general P2P file sharing application, the
high churn rate and live streaming restriction impose more
challenge in modeling a P2P streaming scheme. In the
following, we develop a queuing model for NAP considering
the failure and restore processes of agents and bootstrapping
peers. Although this queueing model is developed for NAP,
our study indicates it can also be generally applied to other
preemptive schemes after simple modification.

We call the newly arrived peers who did not view any
channels new peers to the network. For peers that have been
viewing channel content, we call them existing peers. We
model the arrival of new peers to a channel by a Poisson
process. In detail, suppose the expected number of new peer
arrivals in one time unit is λn, then the probability that there
are exactly k arrivals of new peers in t time units is equal
to

f(k;λn; t) =
(λnt)

k
e−λnt

k!
.

Likewise, we model arrivals of existing peers from any
other channel by Poisson process. Suppose the expected
number of existing peers switching from Ci to Cj in one
time unit is λi,j , the probability that there are exactly ki,j
of such arrivals in time units is expressed by

f(ki,j ;λi,j ; t) =
(λi,jt)

ki,je−λi,jt

ki,j !
.

Theorem 1: Given the expected lifetime of peers on chan-
nel Cj as 1/µj , the expected number of viewers on Cj ,
denoted as N j , is (

∑
i λi,j + λn)/µj in steady state, where

i ̸= j.
Proof:

The sum of two independent Poisson variables also
follows Poisson distribution. More precisely, if X1 ∼
Poisson(λ1) and X2 ∼ Poisson(λ2), then (X1 + X2) ∼
Poisson(λ1+λ2). Applying this rule iteratively, we have that
the arrival rates on Channel Cj follows Poisson(

∑
i λi,j +

λn).

The P2P streaming system is modeled as an M/G/∞
system here. Thus, according to the queuing theory, the
expected number of viewers is given by

N j = (
∑
i

λi,j + λn)/µj , when i ̸= j (3)

Thus, the theorem follows.
Suppose the lifetime of bootstrapping peers, denoted by

Ls, follows an exponential distribution, whose probability
density function (PDF) can be expressed by

fLs(t; γ) =

γe−γt if t ≥ 0,

0 if t < 0,

where 1/γ is the expected lifetime of bootstrapping peers.
As we know, agent will collect the bootstrapping infor-

mation in its channel and periodically update it. To simplify
the problem, we assume the update frequencies on all agents
are as same as F . Define the probability that a bootstrapping
peer is in the network when it is called to serve other peers
as availability.

Theorem 2: The expected availability of bootstrapping
peer is (1− e−γ/F)F/γ.

Proof: From the lifetime distribution of bootstrapping
peers, we can carry out the probability that it will stay for
at least time t by

Pr{Ls ≥ t} = 1− FLs(t; γ)

= e−γt, (4)

where FLs is the cumulative distribution function (CDF) of
Ls.

As we know, the exponential distribution is memoryless,
which means its conditional probability obeys

Pr{Ls ≥ TR + t|Ls > TR} = Pr{Ls ≥ t}. (5)

Let TR be update time when an agent is checking if
the bootstrapping peer is still in the network. If some
bootstrapping peers has left the network, an agent replaces
them with new ones. According to Equation (5), once a
bootstrapping peer is in the network on the update point,
the probability that it stays for at least time t is as same
as that of a newly joined bootstrapping peer. Thus, we can
apply the same Equation (4) for all bootstrapping peers.

It is obvious that the time of a service call for a bootstrap-
ping peer, i.e., t in Equation (4), is uniformly distributed
in the time interval [TR, TR + Ta] where Ta = 1/F .
Accordingly, the expected availability of a bootstrapping
peer on a service call, denoted as Av , is

Av =
1

Ta

∫ TR+Ta

TR

Pr{Ls ≥ TR + t|Ls > TR}dt

Figure 3: M/M/m/m+ k model

=
1

Ta

∫ Ta

0

Pr{Ls ≥ t}dt

=
1

Ta

∫ Ta

0

e−γtdt

=
1− e−γTa

γTa

=
(1− e−γ/F)F

γ
.

Thus, the theorem follows.

Corollary 1: Suppose the 1/γa is the expected lifetime of
agents and Fa is the frequency of heart-beat signal to check
if the agent is still in the network. The expected availability
of an agent Aais (1− e−γa/Fa)Fa/γa.

Suppose that agent can store at most m bootstrapping
peers and serve up to m + k new peer requests, where
m and k are both non-negative integers. To facilitate the
modeling of NAP, we make the following assumptions: 1)
the arrivals of new viewers to the agent follow a Poisson
process, denoted as Poisson(λ) where λ is the expected
arrival rate; 2) the service time of a bootstrapping peer,
i.e., the time it takes to hand over the current streaming to
other peers, follows an exponential distribution, denoted as
Exponential(µ) where 1/µ is the expected service time; 3)
the arrivals of new bootstrapping peers to the agent follow
Poisson(τ) where τ is the expected arrival rate.

Accordingly, we can model the bootstrapping system on
each agent by an M/M/m/m+k queue with bootstrapping
peer failure and repair. Figure 3 illustrates our multi-level
model, where color-shaded states means available bootstrap-
ping peers are all busy. Given a state (a, b), a represents the
number of viewers that are served or waiting to be served by
bootstrapping peers, and b describes the number of available
bootstrapping peers. To simplify the modeling, we assume
a bootstrapping peer can only serve one peer at a time,
i.e., J = 1. For other numbers of J , this model can also
work well after simple modifications on b and state transition
parameters.

We sequentialize the levels, i.e. rows, in M/M/m/m+ k

Figure 4: Isolated model on bth level

Figure 5: Single-column model

from bottom to top, beginning with 0. Thereby, bth level
consists of states that have b available bootstrapping peers.
Because bootstrapping peers are distilled with superior life-
time expectation from general peers, it is reasonable to
assume the arrival rate of general peers is much higher than
the departure rate of bootstrapping peers, i.e. λ ≫ γ. Thus,
we can closely approximate the steady-state probabilities by
the following strategy. First, we isolate out each level in state
graph as a single 1-level model, analyze it for the steady-
state probabilities, and then replace each row by a single
state in the original model, analyze this single-column model
and carry out the joint probabilities from both models. Fig-
ure 4 shows the isolated model on bth level. After replacing
each row by a single state in M/M/m/m+k model, we can
obtain Figure 5, where each state (b) represents the number
of available bootstrapping peers.

Theorem 3: The probability that a working bootstrapping
peer is immediately available for a service call is

m∑
b=1

b−1∑
n=0

(λ/µ)n(τ/γ)b

n!b![
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

Proof: First, we analyze the isolated 1-level model on
each row. On the bth level, the probability that a working
bootstrapping peer is immediately available once a viewer
calls for a service is the sum of probabilities on unshaded
states, including states (0, b), (1, b), ...and(b, b). To solve the
steady-state probabilities of the bth-level model, we use the
local balance on each state, i.e. the flow of probability into a
state equals the flow out of the same state. Let the probability
on state (n, b) be Pr (n, b). Thus, we have the following table
of state equilibriums.

State Equilibrium
(0, b) λPr (0, b) = µPr (1, b)
(1, b) λPr (1, b) = 2µPr (2, b)

...
...

(b, b) λPr (b, b) = bµPr (b+ 1, b)
(b+ 1, b) λPr (b+ 1, b) = bµPr (b+ 2, b)

...
...

(m+ k − 1, b) λPr (m+ k − 1, b) = bµPr (m+ k, b)

By solving the equilibriums in the table, we can carry out
the probability on state (n, b) by

Pr (n, b) =

1
n! (

λ
µ)

n Pr (0, b) if n ≤ b,

1
bn−bb!

(λµ)
n Pr (0, b) if n > b.

(6)

Second, we replace each row by a single state in the
original M/M/m/m + k model, and analyze this single-
column model. Obviously, the model in Figure 5 is a
M/M/m/m queue. Applying the same method, we can
obtain

Pr (0) =
1∑m

i=0
1
i! (

τ
γ)

i
;

Pr (b) =
1

b!
(
τ

γ
)b Pr (0).

Next, we apply normalization equation, i.e.∑m+k
i=0 Pr (i, b) = Pr (b). Therefore, the following

can be carried out

Pr (0, b) =
Pr (b)∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i

=
(τγ)

b Pr (0)

b![
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]

=
(τ/γ)b

b![
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

(7)

So in general, the probability that a working bootstrapping
peer is immediately available for service, denoted as As, can
be obtained by

As =
m∑
b=1

b−1∑
n=0

Pr (n, b)

=
m∑
b=1

b−1∑
n=0

(λ/µ)n(τ/γ)b

n!b![
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

Thus, the theorem follows.

Theorem 4: The probability that a viewer will be rejected
when the agent already has m+ k service requests is

m∑
b=0

(λ/µ)m+k(τ/γ)b

bm+k−b(b!)2[
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

Proof: The probability that a viewer will be rejected,
denoted as Pr(R), is the sum of probabilities on the right-
most states, i.e.,

Pr(R) =

m∑
b=0

Pr (m+ k, b).

Applying the results in Equation (6) and (7), we can have

Pr(R) =
m∑
b=0

(λ/µ)m+k(τ/γ)b

bm+k−b(b!)2[
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

Theorem 5: The probability that all bootstrapping peers
in an agent has left the network is

1∑m
i=0

1
i! (

τ
γ)

i

Proof: The probability that all bootstrapping peers are
offline, denoted as Pr(L), is the sum of probabilities on the
bottom states, i.e.,

Pr(L) =
m+k∑
n=0

Pr (n, 0)

= Pr(0)

=
1∑m

i=0
1
i! (

τ
γ)

i
.

The theorem follows.
Theorem 6: The probability that an agent is idle, i.e. no

viewer is now requesting bootstrapping service to it, is

m∑
b=0

(τ/γ)b

b![
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

Proof: Similarly, we can deduce the probability that an
agent is idle, denoted as Pr(I), is the sum of probabilities
on the left-most states, i.e.,

Pr(I) =
m∑
b=0

Pr (0, b)

=
m∑
b=0

(τ/γ)b

b![
∑m

i=0
1
i! (

τ
γ)

i][
∑b

i=0
1
i! (

λ
µ)

i +
∑m+k

i=b+1
1

bi−bb!
(λµ)

i]
.

The theorem follows.
Lemma 1: Let the expected number of viewers that are

served by the agent be nv , including those that are being
served or waiting to be served. We have

nv =
m∑
b=0

m+k∑
a=1

aPr(a, b).

Lemma 2: The throughput of the peers that is served by
the agent is

m∑
b=1

(
b−1∑
a=1

aµPr(a, b) +
m+k∑
a=b

bµPr(a, b)).

Proof: Throughput, denoted as x, is the number of
viewers that are served in an unit time, i.e. cumulative
service rate based on the service rate on each state. To obtain
the expected throughput, we should sum up the multiplica-
tion of service rate on each state and the probability of the
state, i.e.,

x =

m∑
b=1

(

b−1∑
a=1

aµPr(a, b) +

m+k∑
a=b

bµPr(a, b)).

Theorem 7: The expected waiting time of the viewer,
denoted as dw, i.e. the time a peer waits to be served by
a bootstrapping peer, is

∑m
b=0

∑m+k
a=1 aPr(a, b)∑m

b=1(
∑b−1

a=1 aµPr(a, b) +
∑m+k

b bµPr(a, b))
− 1

µ

Proof: According to Little’s law, the total service delay,
is nv/x, which is the sum of 1/µ, i.e. the expected time a
peer spends in service, and dw. Combining the results from
Lemma 1 and 2, we can carry out

dw =
nv

x
− 1

µ

=

∑m
b=0

∑m+k
a=1 aPr(a, b)∑m

b=1(
∑b−1

a=1 aµPr(a, b) +
∑m+k

b bµPr(a, b))
− 1

µ
.

Suppose that a peer will contact j agents for bootstrapping
services to avoid agent departure or busy status. To simplify
the complexity, we assume there is no bootstrapping agents
shared among these agents. The probability that a viewer
successfully obtains the service from bootstrapping peers can
be expressed by

0 50 100 150 200 250
0

2

4

6

8

10

12

Viewer Arrival Rate (# /second)

D
el

ay
 (

se
co

nd
)

NAP: Recovery delay
GS: Recovery delay
NAP: Channel−switching delay
GS: Channel−switching delay

Figure 6: NAP v.s. General Scheme when viewer arrival rate
changes.

Pr(S) = (1− (1−Aa)
j))(1− Pr(R)j).

Theorem 8: The expected churn-induced delay based on
our scheme, denoted as d, can be carried out by

d = Pr(S)(dw + df + dpv) + (1− Pr(S))db, (8)

where db = dp+dsc is the bootstrapping delay by contacting
ordinary peers in the channel for connections, including the
communication delay and the delay to get service from
ordinary peers, df is the sum of delays between viewer
contacting an agent and agent forwarding the service request
to bootstrapping peers, and dpv is the expected transmission
delay from bootstrapping peer to the viewer.

We do not include the time of retrieving ordinary peer
list from agents in the channel because this process runs
preventively in the background of viewing current chan-
nel and makes no delay when peer switches the channel.
Additionally, it is worth mentioning recovery delay has a
shorter dsc than channel-switching delay because the viewer
in recovery has already exchanged the chunk information
with some other peers still in the network.

5. Performance Evaluation

In this section, we evaluate NAP against previous general
scheme in terms of delay via theoretical experiments and
simulation study.

5.1. Theoretical Evaluation

Based on the results from Section 4, we can numerically
explore the performance of NAP by tuning some key pa-
rameters to the system.

To evaluate the performance of our scheme against the
general scheme, we compare the delay occurring in NAP,
expressed by Equation (8), with channel switching delay in

0 500 1000 1500 2000
0

2

4

6

8

10

12

Heartbeat Signal Interval (second)

D
el

ay
 (

se
co

nd
)

NAP: Recovery delay
GS: Recovery delay
NAP: Channel−switching delay
GS: Channel−switching delay

Figure 7: NAP v.s. General Scheme when heartbeat signal
interval changes.

the original scheme, i.e., Equation (1) and recovery delay
in Equation (2). Besides dA + dls, we may find the major
difference between dw + df + dpv and db, where NAP
saves the time by leveraging agents to pre-schedule the
downloading plan and utilize the pre-selected bootstrapping
peers to provide a quick and fully streaming service in the
initial streaming period.

We abbreviate the general scheme as GS. In the first
experiment, we compare NAP with GS with varying rate of
viewer arrivals to the an agent. According to [16], we set the
typical properties of a P2P streaming system as following:
1) the expected time a bootstrapping peer serves a viewer
before handing it over to other peers in the network is 6
seconds; 2) the expected lifetime of a bootstrapping peer is
10 minutes; 3) the expected arrival rate of a bootstrapping
peer is 1/20; 4) the maximum number of bootstrapping
peers that an agent can manage is 100; 5) the number of
viewers waiting for the service from bootstrapping peers,
if they’re not occupied in serving other viewers, is 10; 6)
the expected lifetime of an agent is 10 minutes; 7) the
frequency of heartbeat signal to check if agent is still in
the network is one per 60 seconds; 8) dA = 0.5 second;
dls = 0.5 second; dp = 1 second; dsc = 6 seconds;
dpv = 0.5 second; and df = 2 seconds. For recovery delay,
we change dsc to 2 seconds since viewers in recovery has
already contacted some peers for chunk information before
interruption occurs. From Figure 6, we can observe that NAP
significantly outperforms GS in terms of channel switching
delay. Especially when the arrival rates are lower than 40,
almost half of the delay can be avoided. With the increase of
viewer arrival rate, the number of idle bootstrapping peers
decreases, which leads to the increase in delay. For recovery
delay, NAP is better than GS when the arrival rates are
lower than 40. When arrival rates goes up, the performance
NAP almost converges to that of GS. This is because
viewer waiting time is longer when bootstrapping peers are
busy. We should notice viewer also contacts ordinary peers
simultaneously when they contact the agent for streaming

service. This strategy make the worst-case performance of
NAP at least equal to GS. To increase the performance, we
can add more agents in the channel so as to keep the viewer
arrival rate low.

Now, we compare NAP with GS with the change of
heartbeat signal frequency. For a better illustration, we use
the reciprocal of frequency, i.e. heartbeat signal interval. We
keep the setting as the last experiment except that viewer
arrival rate is fixed to 25. From Figure 7, we can also
see NAP generally outperforms GS in terms of channel
switching delay. As of recovery delay, the difference is very
close, about 12%. As we know, heartbeat signal is to check if
the agent is still in the network, so a larger interval, i.e. less
frequency, will increase the probability that an agent has left
the network when a viewer contacts it. In that case, agent
will use ordinary peers in the startup process, which saves
less time than bootstrapping peers. Moreover, it is interesting
to see when the heartbeat signal interval is the same as the
expected lifetime of an agent, i.e. 10 minutes, NAP can save
43% in channel-switching delay.

From the above theoretical analysis, we observe NAP
significantly outperforms GS. To improve the performance
of NAP, we can add the number of agents and increasing
the heartbeat signal frequency.

5.2. Simulation Experiments

In this section, we compare the performance of NAP and
GS via multiple simulations. Our simulation builds on P2P
simulator [18], which was enhanced to support switching
behaviors among multiple channels.

We simulate a live streaming session of 300 Kbps. From
previous studies, we know that network bandwidth exhibits
rich diversity [19]. Based on this, we set the upload capacity
among peers as shown in Table 1. In our simulation, we set
the peak channel popularity follow a Zipf distribution, which
is presented in [16]. The streaming system is organized into
a mesh structure based on previous work [2]. Peers come
to the system in a Poisson process. After viewing a channel
for period, peers may depart from the system, or switch to
other channel with a probability proportional to the channel
popularity. There are initially 50 streaming channels and
2,500 peers in the system.

Upload Capacity Percentage of Peers
200 Kbps 30%
1.0 Mbps 50%
2.0 Mbps 15%

10.0 Mbps 5%

Table 1: Upload Capacity Distribution

In Figure 8a, we plot the empirical CDF of channel-
switching delay under NAP and GS. Popular channel means
switching to a channel with more than 100 viewers, while

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

m
pi

ric
al

 C
D

F

Channel−switching Delay (second)

NAP: Popular Channel
NAP: UnPopular Channel
GS: Popular Channel
GS: UnPopular Channel

(a) CDF of Channel-switching Delay

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ric

al
 C

D
F

Recovery Delay (second)

NAP: Popular Channel
NAP: UnPopular Channel
GS: Popular Channel
GS: UnPopular Channel

(b) CDF of Recovery Delay

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
0

0.5

1

1.5

2

2.5

3

3.5

R
at

io
 o

f M
es

sa
ge

 O
ve

rh
ea

d
(%

)

Number of Viewers

NAP
GS

(c) Ratio of Message Overhead

Figure 8: Performance comparison between NAP and General Scheme (GS).

unpopular channel means switching to a channel with less
than 10 viewers. From the figure, we observe NAP has
much less channel-switching delay than GS in both popular
and unpopular channels. Under GS, the delay in popular
channel is significantly shorter than in unpopular channel. In
contrast, NAP has a slightly better performance in unpopular
channel than popular channel. It is because that under GS,
bandwidth resource in unpopular channel can easily starve
with less peers serving the channel, while under NAP, boot-
strapping peers may be allocated to the unpopular channel
with more than required bandwidth resources (higher than
the actual popularity distribution). In Figure 8b, we illustrate
similar experiments for recovery delay. It seems the results
show a similar observation with the experiments for channel-
switching delay except popular channel under GS has a
closer CDF to the CDF curves under NAP.

Figure 8c shows the ratio of message overhead to the
video traffic. We can see NAP has a slightly higher message
overhead ratio than GS. This result indicates NAP can be
widely used in the streaming system without significant
message overhead more than GS.

6. Conclusion

In this paper, we develop NAP, an agent-based scheme
for reducing the churn-induced delays. Our scheme proposes
preventive connections to all channels. Once an actual con-
nection is requested, time is saved in retrieving bootstrapping
information and obtaining authorization as well as authen-
tication. Our scheme also suggests an idea of using agents
that facilitate the bootstrapping process in channel switching
and peer recovery. We analyze the scheme’s performance by
a queuing model. The experimental results indicate NAP can
significantly reduce the churn-induced delays, especially the
channel-switching delay.

References
[1] Y. Liu, L. Guo, F. Li, and S. Chen, “A case study of traffic locality

in internet p2p live streaming systems,” in ICDCS ’09, 2009.

[2] F. Huang, B. Ravindran, and V. A. Kumar, “An approximation
algorithm for minimum-delay peer-to-peer streaming,” in Peer-to-Peer
Computing ’09, 2009.

[3] D. Wu, Y. Liu, and K. Ross, “Queuing network models for multi-
channel p2p live streaming systems,” in INFOCOM ’09.

[4] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari,
“Will IPTV ride the peer-to-peer stream?” Communications Magazine,
IEEE, vol. 45, no. 6, pp. 86–92, June 2007.

[5] D. Wu, C. Liang, Y. Liu, and K. Ross, “View-upload decoupling: A
redesign of multi-channel p2p video systems,” in INFOCOM ’09.

[6] X. Hei, Y. Liu, and K. Ross, “IPTV over P2P streaming networks:
the mesh-pull approach,” Communications Magazine, IEEE, vol. 46,
no. 2, pp. 86–92, February 2008.

[7] D. Ren, Y.-T. Li, and S.-H. Chan, “On reducing mesh delay for peer-
to-peer live streaming,” in INFOCOM ’08.

[8] C. Wu and B. Li, “rstream: Resilient and optimal peer-to-peer
streaming with rateless codes,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 19, no. 1, pp. 77–92, Jan. 2008.

[9] Q. Wang, L. V. amd Klara Nahrstedt, and H. Khurana, “Identifying
malicious nodes in network-coding-based peer-to-peer streaming net-
works,” in INFOCOM ’10.

[10] K. Xu, M. Zhang, J. Liu, Z. Qin, and M. Ye, “Proxy caching for
peer-to-peer live streaming,” Computer Networks, 2009.

[11] L. Guo, S. Chen, and X. Zhang, “Design and evaluation of a scalable
and reliable p2p assisted proxy for on-demand streaming media
delivery,” Knowledge and Data Engineering, IEEE Transactions on,
May 2006.

[12] Y. Kim, J. K. Park, H. J. Choi, S. Lee, H. Park, J. Kim, Z. Lee, and
K. Ko, “Reducing IPTV channel zapping time based on viewer surfing
behavior and preference,” in IEEE Broadband Multimedia Systems
and Broadcasting, 2008.

[13] H. Joo, H. Song, D.-B. Lee, and I. Lee, “An effective iptv channel
control algorithm considering channel zapping time and network
utilization,” Broadcasting, IEEE Transactions on, vol. 54, no. 2, pp.
208–216, June 2008.

[14] H. Fuchs and N. Farber, “Optimizing channel change time in iptv
applications,” in IEEE Broadband Multimedia Systems and Broad-
casting, 2008.

[15] X. Liu, H. Yin, C. Lin, and C. Du, “Efficient user authentication and
key management for peer-to-peer live streaming systems,” Tsinghua
Science & Technology, vol. 14, no. 2, pp. 234 – 241, 2009.

[16] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale P2P IPTV system,” Multimedia, IEEE Transactions
on, vol. 9, no. 8, Dec. 2007.

[17] C. Wu, B. Li, and S. Zhao, “Multi-channel live p2p streaming:
Refocusing on servers,” in INFOCOM ’08.

[18] M. Zhang, “Peer-to-peer streaming simulator,” http://media.cs.
tsinghua.edu.cn/∼zhangm/download.

[19] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” Networking, IEEE/ACM Transac-
tions on, vol. 16, no. 6, pp. 1447–1460, Dec. 2008.

