
Fast Distance Metric Based Data Mining

Techniques Using P-trees:

k-Nearest-Neighbor Classification and k-Clustering

A Thesis

Submitted to the Graduate Faculty
Of the North Dakota State University
Of Agriculture and Applied Science

By

Md Abdul Maleq Khan

In Partial Fulfillment of the Requirements

for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

December 2001

Fargo, North Dakota

 ii

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………………… iv

ACKNOWLEDGEMENT ………………………………………………………………… v

DEDICATION ……………………………………………………………………………. vi

LIST OF FIGURES …………………………………………………………………….... vii

CHAPTER 1: GENERAL INTRODUCTION ……………………………………………. 1

CHAPTER 2: DISTANCE METRICS AND THEIR BEHAVIOR ………………………. 4

 2.1 Definition of a Distance Metric ……………………………………………….. 4

 2.2 Various Distance Metrics ……………………………………………………… 5

 2.3 Neighborhood of a Point Using Different Distance Metrics ………………… 14

 2.4 Decision Boundaries for the Distance Metrics ………………………………. 16

CHAPTER 3: P-TREES AND ITS ALGEBRA & PROPERTIES ……………………… 18

 3.1 P-trees and Its Algebra ……………………………………………………….. 18

 3.2 Properties of P-trees ………………………………………………………….. 21

 3.3 Header of a P-tree File ……………………………………………………….. 25

3.4 Dealing with Padded Zeros …………………………………………………... 26

CHAPTER 4: PAPER 1

K-NEAREST NEIGHBOR CLASSIFICATION ON SPATIAL DATA STREAMS USING

P-TREES ………………………………………………….……………………………… 28

Abstract …………………………………………………………………………... 28

4.1 Introduction …………………………………………………………………... 29

4.2 Classification Algorithm ……………………………………………………... 32

4.2.1 Expansion of Neighborhood ……………………………………….. 35

4.2.2 Computing the Nearest Neighbors …………………………………. 38

4.2.3 Finding the Plurality Class Among the Nearest Neighbors ………... 40

4.3 Performance Analysis ………………………………………………..………. 41

4.4 Conclusions …………………………………………………………………... 46

References ………………………………………………………………………... 43

 iii

CHAPTER 5: PAPER 2

FAST K-CLUSTERING ALGORITHM ON SPATIAL DATA USING P-TREES ……. 48

Abstract …………………………………………………………………………... 48

5.1 Introduction …………………………………………………………………... 49

5.2 Review of the Clustering Algorithms ………………………………………... 52

5.2.1 k-Means Algorithm ………………………………………………… 52

5.2.2 The Mean-Split Algorithm …………………………………………. 52

5.2.3 Variance Based Algorithm …………………………………………. 54

5.3 Our Algorithm ……………………………………………………………….. 54

5.3.1 Computation of Sum and Mean from the P-trees ………………….. 57

5.3.2 Computation of Variance from the P-trees ………………………… 61

5.4 Conclusion …………………………………………………………………… 64

References ………………………………………………………………………... 64

CHAPTER 6: GENERAL CONCLUSION …………………………………….………... 66

BIBLIOGRAPHY ………………………………………………………………………... 67

 iv

ABSTRACT

Khan, Md Abdul Maleq, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, December 20001. Fast Distance Metric
Based Data Mining Techniques Using P-trees: k-Nearest-Neighbor Classification and k-
Clustering. Major Professor: Dr. William Perrizo.

Data mining on spatial data has become important due to the fact that there are huge

volumes of spatial data now available holding a wealth of valuable information. Distance

metrics are used to find similar data objects that lead to develop robust algorithms for the

data mining functionalities such as classification and clustering. In this paper we explored

various distance metrics and their behavior and developed a new distance metric called

HOB distance that provides an efficient way of computation using P-trees. We devised two

new fast algorithms, one k-Nearest Neighbor Classification and one k-Clustering, based on

the distance metrics using our new, rich, data-mining-ready structure, the Peano-count-tree

or P-tree. In these two algorithms we have shown how to use P-trees to perform distance

metric based computation for data mining. Experimental results show that our P-tree based

techniques outperform the existing techniques.

 v

ACKNOWLEDGEMENT

I would like to thank my adviser, Dr. William Perrizo, for his guidance and

encouragement in developing the ideas during this research work. I would also like to

thank the other members of the supervisory committee, Dr. D. Bruce Erickson, Dr. John

Martin and Dr. Marepalli B. Rao for taking time from their busy schedule to serve on the

committee. Thanks to Qin Ding for her help in running the experiments. Finally special

thanks to William Jockheck for his help in writing and in using the correct and appropriate

structures of language.

 vi

DEDICATION

Dedicated to the memory of my father, Nayeb Uddin Khan.

 vii

LIST OF FIGURES

Figure Page

2.1: two-dimensional space showing various distance between points X and Y …..……… 6

2.2: neighborhood using different distance metrics for 2-dimensional data points …...… 14

2.3: Decision boundary between points A and B using an arbitrary distance metric d 14

2.4: Decision boundary for Manhattan, Euclidian and Max distance …………………... 15

2.5: Decision boundary for HOB distance ……………………………………………..... 15

 3.1 Peano ordering or Z-ordering …………………………………………………….… 17

3.2: 8-by-8 image and its P-tree (P-tree and PM-tree) …………………………………. 17

3.3: P-tree Algebra ………………………………………………………………………. 19

3.4: Header of a P-tree file ………………………………………………………………. 23

4.1: Closed-KNN set …………………………………………………………….……….. 30

4.2: Algorithm to find closed-KNN set based on HOB metric ………………..………….. 36

4.3(a): Algorithm to find closed-KNN set based on Max metric (Perfect Centering) ...…. 37

4.3(b): Algorithm to compute value P-trees ……………………………………………... 37

4.4: Algorithm to find the plurality class ……………………………………………...…. 38

4.5: Accuracy of different implementations for the 1997 and 1998 datasets …………… 40

4.6: Comparison of neighborhood for different distance metrics …………...……….….. 41

4.7: Classification time per sample for the different implementations for the 1997 and 1998
datasets. Both of the size and classification time are plotted in logarithmic scale ……… 42

 1

CHAPTER 1: GENERAL INTRODUCTION

Data mining is the process of extracting knowledge from a large amount of data. Data

mining functionalities include data characterization and discrimination, Association rule

mining, classification and prediction, cluster analysis, outlier analysis, evolution analysis

etc. We focus on classification and cluster analysis. Classification is the process of

predicting the class of a data object whose class label is unknown using a model derived

from a set of data called a training dataset. The class labels of all data objects in the

training dataset are known. Clustering is the process of grouping objects such that the

objects in the same group are similar and two objects in different groups are dissimilar.

Clustering can also be viewed as the process of finding equivalence classes of the data

objects where each cluster is an equivalence class.

Distance metrics play an important role in data mining. Distance metric gives a

numerical value that measures the similarity between two data objects. In classification, the

class of a new data object having unknown class label is predicted as the class of its similar

objects. In clustering, the similar objects are grouped together. The most common distance

metrics are Euclidian distance, Manhattan distance, Max distance. There are also some

other distances such as Canberra distance, Cord distance and Chi-squared distance that are

also used for some specific purposes.

In chapter 2, we discussed various distance metrics and their behavior. The

neighborhood and decision boundaries for different distance metrics are depicted

graphically. We developed a new distance metric called Higher Order Bit (HOB)

distance. Chapter 2 includes a proof that HOB satisfies the property of a distance metric.

 2

A P-tree is a quadrant based data structure that stores the count information of 1 bits

of the quadrants and its sub-quadrants successively level by level. We construct one P-tree

for each bit position. For example, from the first bits of the first attribute of all data points,

we construct the P-tree P1,1. The count information stored in P-trees makes it data-mining-

ready and thus facilitates the construction of fast algorithms for data mining. P-trees also

provide a significant compression of data. This can be an advantage when fitting data into

main memory.

In chapter 3, we review the P-tree data structure and its various forms including the

logical AND/OR/COMPLEMENT operations on P-trees. We reveal some useful and

interesting properties of P-trees. A header for P-tree files to form a generalized P-tree

structure is included.

In chapter 4, we include a paper: “K-Nearest Neighbor (KNN) Classification on

Spatial Data Streams Using P-Trees”. Instead of using a traditional KNN set we build a

closed-KNN. The definition of our new closed KNN is given in section 4.2. We develop

two efficient algorithms using P-trees based on HOB and Max distance. The experimental

results using different distance metrics have been included.

In chapter 5, we included another paper: “Fast k-Clustering of Spatial Data Using P-

trees”. We develop a new efficient algorithm for k-clustering. In k-clustering, we need to

compute the mean and variance of the data samples. Theorems including their proofs to

compute mean and variance from P-trees without scanning databases have been given in

section 5.3. k-clustering using P-trees involves computation of interval P-trees. An optimal

algorithm to compute interval P-trees has also been included. These algorithms, theorems

 3

and our fast P-tree AND/OR operations construct a very fast clustering method that does

not require any database scan.

 4

CHAPTER 2: DISTANCE METRICS AND THEIR

BEHAVIOR

2.1 Definition of a Distance Metric

A distance metric measures the dissimilarity between two data points in terms of some

numerical value. It also measures similarity; we can say that more distance less similar and

less distance more similar.

To define a distance metric, we need to designate a set of points, and give a rule, d(X, Y),

for measuring distance between any two points, X and Y, of the space. Mathematically, a

distance metric is a function, d, which maps any two points, X and Y in the n-dimensional

space, into a real number, such that it satisfies the following three criteria.

Criteria of a Distance Metric

a) d(X, Y) is positive definite: If the points X and Y are different, the distance between

them must be positive. If the points are the same, then the distance must be zero. That

is, for any two points X and Y,

i. if (X ≠ Y), d(X, Y) > 0

ii. if (X = Y), d(X, Y) = 0

b) d(X, Y) is symmetric: The distance from X to Y is the same as the distance from Y to

X. That is, for any two points X and Y,

d(X, Y) = d(Y, X)

 5

c) d(X, Y) satisfies triangle inequality: The distance between two points can never be

more than the sum of their distances from some third point. That is, for any three

points X, Y and Z,

d(X, Y) + d(Y, Z) ≥ d(X, Z)

2.2 Various Distance Metrics

The presence of the pixel grid makes several so-called distance metrics possible that often

give different answers for the distance between the same pair of points. Among the

possibilities, Manhattan, Euclidian, and Max distance metrics are common.

Minkowski Distance

The general form of these distances is the weighted Minkowski distance. Considering a

point, X, in n-dimensional space as a vector <x1, x2, x3, …, xn>,

the weighted Minkowski distance, ()
pn

i

p
iiip yxwYXd

1

1

,








−= ∑
=

Where, p is a positive integer,

xi and yi are the ith components of X and Y, respectively.

wi (≥ 0) is the weight associated to the ith dimension or ith feature.

Associating weights allows some of the features dominate the others in similarity

matching. This is useful when it is known that some features of the data are more important

than the others. Otherwise, the Minkowski distance is used with wi = 1 for all i. This is also

known as the Lp distance.

()
pn

i

p
iip yxYXd

1

1

,








−= ∑
=

 6

Manhattan Distance

When p = 1, the Minkowski distance or the L1 distance is called the Manhattan distance.

The Manhattan distance, () ∑
=

−=
n

i
ii yxYXd

1
1 ,

It is also known as the City Block distance. This metric assumes that in going from one

pixel to the other it is only possible to travel directly along pixel grid lines. Diagonal moves

are not allowed.

Euclidian Distance

With p = 2, the Minkowski distance or the L2 distance is known as the Euclidian distance.

The Euclidian distance, () ()∑
=

−=
n

i
ii yxYXd

1

2
2 ,

This is the most familiar distance that we use, in our daily life, to find the shortest distance

between two points (x1, y1) and (x2, y2) in a two dimensional space; that is

() () ()2
22

2
112 , yxyxYXd −+−=

Max Distance

When p = ∞, the summation, in the Minkowski distance or L∞∞∞∞ distance, is dominated by

the largest difference, |xk – yk| for some k (1 ≤ k ≤ n) and the other differences are

negligible. Hence L∞ distance becomes equal to the maximum of the differences.

The Max distance, () ii

n

i
yxYXd −=

=∞ 1
max,

 7

Max distance is also known as the chessboard distance. This metric assumes that you can

make moves on the pixel grid as if you were a ‘King’ making moves in chess, i.e. a

diagonal move counts the same as a horizontal move.

It is clearly understood from the figure 2.1 that d1 ≥ d2 ≥ d∞ for any two points X and Y.

Theorem 1: For any two points X and Y, the Minkowski distance metric (or Lp distance),

()
pn

i

p
iip yxYXd

1

1

,








−= ∑
=

is a monotone decreasing function of p; that is qp dd ≥ if p < q.

Proof: ()
pn

i

p
i

pn

i

p
iip zyxYXd

1

1

1

1

,








=








−= ∑∑
==

, letting iii zyx =− , where zi ≥ 0

Assuming X ≠ Y and { } ki

n

i
zz =

=1
max , we see 0≠kz .

Let i
k

i

z
z α= , then 10 ≤≤ iα and

()
pn

i

p
ik

pn

i

p
i

p
kp zzYXd

1

1

1

1

,








=








= ∑∑
==

αα and 1
0
∑
=

≥
n

i

p
iα , since p

k

n

i

p
i zz∑

=

≥
0

Similarly, ()
qn

i

q
ikq zYXd

1

1

,








= ∑
=

α and 1
0
∑
=

≥
n

i

q
iα

Figure 2.1: two-dimensional space showing
various distance between points X and Y.

 Manhattan, d1(X,Y) = XZ+ ZY = 4+3 = 7
 Euclidian, d2(X,Y) = XY = 5
 Max, d∞ (X,Y) = Max(XZ, ZY) = XZ = 4

X (2,1)

Y (6,4)

Z

 8

Now 10 ≤≤ iα ∑∑
==

≥⇒≥⇒

n

i

q
i

n

i

p
i

q
i

p
i aa

01

αα , since p < q

pn

i

q
i

qn

i

p
i a









≥








⇒ ∑∑
== 01

α , since 1
0
∑
=

≥
n

i

p
iα and 1

0

1
∑
=

+ ≥
n

i

p
iα and p < q

qn

i

q
ik

pn

i

p
ik azz

1

0

1

1 







≥








⇒ ∑∑
==

α

That is () ()YXdYXd qp ,, ≥

Again when X = Y, () () 0,, == YXdYXd qp

Therefore, for any X and Y, () ()YXdYXd qp ,, ≥ .

Corollary 1(a): ()
pn

i

p
ipk

pn

i

p
ikp

zzYXdL

1

1
0

1

1
000 limlim,:









=








= ∑∑
=

→
=

→
αα , which is not defined.

Corollary 1(b): () ii

n

ik

pn

i

p
ipk

pn

i

p
ikp

yxzzzYXdL −==








=








=
==

∞→
=

∞→∞∞ ∑∑ 1

1

1

1

1

maxlimlim,: αα .

Canberra Distance

Canberra distance is defined by () ∑
= +

−
=

n

i ii

ii
c yx

yx
YXd

1

,

Squared Cord Distance

Squared cord distance is defined by () ()∑
=

−=
n

i
iisc yxYXd

1

2
,

Squared Chi-squared distance

Squared Chi-squared distance is defined by () ()
∑

= +
−

=
n

i ii

ii
chi yx

yx
YXd

1

2

,

 9

Higher Order Bit (HOB) Distance

In this paper we propose a new distance metric called HOB distance that provides an

efficient way of computation using P-trees. HOB distance is defined for the data where

each component of a data point is an integer such as reflectance values of a pixel. We use

similarity in the most significant bit positions between band values of two pixels. We

consider only the most significant consecutive bit positions starting from the left most bit,

which is the highest order bit. Consider the following two 8-bit values, x1 and y1,

represented in binary. The 1st bit is the most significant bit and 8th bit is the least significant

bit.

 Bit position: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 x1: 0 1 1 0 1 0 0 1 x1: 0 1 1 0 1 0 0 1
 y1: 0 1 1 1 1 1 0 1 y2: 0 1 1 0 0 1 0 0

These two values are similar in the three most significant bit positions, 1st, 2nd and 3rd

bits (011). After they differ (in 4th bit), we don’t consider anymore lower order bit

positions though x1 and y1 have identical bits in the 5th, 7th and 8th positions. Since we are

looking for closeness in values, after differing in some higher order bit positions, similarity

in some lower order bit is meaningless with respect to our purpose. Similarly, x1 and y2 are

identical in the four most significant bits (0110). Therefore, according to our definition, x1

is more similar to y2 than to y1.

Definition 1: The HOB similarity between two integers A and B is defined by

HOB(A, B) = (){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0

 10

where ai and bi are the ith bits of A and B respectively and m (m ≥ 1) is the number of bits in

binary representations of the values. All values must be represented using the same number

of bits. Or in other words,

HOB(A, B) = s, where for all i ≤ s, ai = bi and (as+1 ≠ bs+1 or s = m),

Definition 2: The HOB distance between two integers A and B is defined by

 dv(A, B) = m – HOB(A, B).

Definition 3: The HOB distance between two points X and Y is defined by

 () () (){ } (){ } HOBmaxmaxor,
11

 ,yxm - ,yxdX,YdYXd ii

n

iiiv

n

iHHOBS ==
==

Where n is the number of dimensions. xi and yi are the ith components of X and Y

respectively.

Definition 4: When A and B are equal, A and B are identical in all m bits. Again when A

and B are identical in all m bit, A and B are equal. We say,

 A = B if and only if ()ii bamii =⇒≤≤∀ 1

Lemma 1: For any two integers A and B, HOB(A, B) is defined and 0 ≤ HOB(A, B) ≤ m.

Proof: If s = 0, for any i, si ≤≤1 ⇔ FALSE, hence ()ii basii =⇒≤≤∀ 1 ⇔ TRUE

Therefore, the set (){ }ii basiis =⇒≤≤∀ 1: contains the element 0 irrespective of A and B.

Hence, for any two integers A and B, (){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0
has a value, i.e. HOB(A,

B) is defined.

{ } ms
m

s
=

=0
max and { } 0min

0
=

=
s

m

s
, then (){ } mbasiis ii

m

s
≤=⇒≤≤∀≤

=
1:max0

0

 11

That is 0 ≤ HOB(A, B) ≤ m.

Lemma 2: 0 ≤ dv(A, B) ≤ m.

Proof: 0 ≤ HOB(A, B) ≤ m (Lemma 1)

 ⇒ m - 0 ≥ m - HOB(A, B) ≥ m - m

 ⇒ m ≥ dv(A, B) ≥ 0

 ⇒ 0 ≤ dv(A, B) ≤ m

Lemma 3: HOB(A, A) = m and dv(A, A) = 0

Proof: HOB(A, A) = (){ }ii

m

s
aasiis =⇒≤≤∀

=
1:max

0
 = { }s

m

s 0
max

=
 = m

 dv(A, A) = m - HOB(A, A) = 0

Lemma 4: If A ≠ B, HOB(A, B) < m and dv(A, B) > 0

Proof: (Proof by contradiction)

Assume, HOB(A, B) = m

()ii bamii =⇒≤≤∀⇒ 1 1 Definition

⇒ A = B 4 Definition

But it is given that A ≠ B (contradiction), Therefore HOB(A, B) ≠ m.

Again, HOB(A, B) ≤ m 1 Lemma

Hence, HOB(A, B) < m

And m - HOB(A, B) > 0

⇒ dv(A, B) > 0

Theorem 3: HOB distance is positive definite i.e. for any two points X and Y,

 12

a) if (X = Y), ()YXd H , = 0

b) if (X ≠ Y), ()YXd H , > 0

Proof: a) dH(X, Y)

= dH(X, X) YX =

= (){ } HOBSmax
1

 ,xxm - ii

n

i=
= { } max

1
 mm

n

i
−

=
 3 Lemma

= { } 0max
1

n

i=
= 0

b) X ≠ Y ⇒ there exits some k such that xk ≠ yk

⇒ dv(xk, yk) > 0 4 Lemma

⇒ (){ }iiv

n

i
,yxd

1
max

=
 > 0 () 2 Lemma 0,,any For ≥iiv ,yxdi

That is ()YXd H , > 0.

Lemma 5: () ()ABBA ,HOB,HOB = .

Proof: ()BA,HOB

= (){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0

= (){ }ii

m

s
absiis =⇒≤≤∀

=
1:max

0

= ()AB,HOB

Theorem 4: HOB distance is symmetric i.e. for any two points X and Y, ()YXd H , =

()XYd H , .

Proof: ()YXd H ,

 13

= (){ } HOBmax
1

 ,yxm - ii

n

i=

= (){ } HOBmax
1

 ,xym - ii

n

i=
 5 Lemma

= ()XYd H ,

Lemma 6: For any three integers A, B and C, ()BAdv , + ()CBdv , ≥ ()CAdv , .

Proof: Let ()A,BHOB = p and ()B,CHOB = q.

That is, (){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0
= p and (){ }ii

m

s
cbsiis =⇒≤≤∀

=
1:max

0
= q

⇒ ()ii bapii =⇒≤≤∀ 1 ∧ ()ii cbqii =⇒≤≤∀ 1

⇒ () () ()()iiii cbbaqpii =∧=⇒≤≤∀ ,min1

⇒ ()()ii caqpii =⇒≤≤∀ ,min1

⇒ ()A,CHOB = (){ }ii

m

s
casiis =⇒≤≤∀

=
1:max

0
 ≥ ()qp,min

⇒ m - ()A,CHOB ≤ m - ()qp,min

That is m - ()qp,min ≥ ()CAdv , .

We know that (m – p) + (m – q) ≥ max (m – p, m – q) = m – ()qp,min ≥ ()CAdv , .

That is ()BAdv , + ()CBdv , ≥ ()CAdv , 2 Definition

Theorem 5: HOB distance satisfies triangle inequality, i.e. for any three points X, Y and Z,

()YXd H , + ()ZYd H , ≥ ()ZXd H , .

Proof: Assume ()ZXdH , = (){ } max
1 iiv

n

i
,zxd

=
= ()kkv zxd , , for some integer k, where 1 ≤ k ≤ n.

Now (){ } max
1 iiv

n

i
,yxd

=
≥ ()kkv yxd , and (){ } max

1 iiv

n

i
,zyd

=
≥ ()kkv zyd ,

 14

⇒ (){ } max
1 iiv

n

i
,yxd

=
+ (){ } max

1 iiv

n

i
,zyd

=
≥ ()kkv yxd , + ()kkv zyd ,

⇒ ()YXd H , + ()ZYd H , ≥ ()kkv yxd , + ()kkv zyd , 3 Definition

We know that ()kkv yxd , + ()kkv zyd , ≥ ()kkv zxd , 6 Lemma

Then ()YXd H , + ()ZYd H , ≥ ()kkv zxd ,

That is ()YXd H , + ()ZYd H , ≥ ()ZXd H , () ()kkvH zydZXd ,, Assumption =

2.3 Neighborhood of a Point or Pixel Using Different Distance Metrics

We define the neighborhood of a target point, T, as a set of points, S, such that each

point in S is within a specified distance, r, from the target T and S contains all of the points

that have the distance r or less from T. That is

X ∈ S if and only if d(T, X) ≤ r

The elements in S are called the nearest neighbors of T with respect to the distance

r and metric d.

 r is called the radius of the neighborhood.

T is called the center of the neighborhood.

The locus of the point X satisfying d(T, X) = r, is called the boundary of the

neighborhood.

When r = 1, the boundary of the neighborhood is called the unit circle for the

metric d.

The neighborhood can also be defined as a closed region, R, in the space such that a point,

X, is in the region R if and only if d(T, X) ≤ r.

 15

Different distance metrics result in neighborhoods with different sizes and different

shapes. In a two dimensional space, the neighborhood using Manhattan distance metric is a

diamond. The center of the neighborhood is the intersection point of its diagonals. Each

side of the diamond makes 45° angles with the axes and the length of the diagonals is 2r

i.e. each side is √2r. The neighborhood using Euclidian distance is a circle with radius r

and center T; the center of the circle is the center of the neighborhood. Using the Max

distance it is a square with sides 2r, center T and having its sides parallel to the axes. The

neighborhood for HOB distance is also a square with side 2r and the sides are parallel to

the axes but the center of neighborhood, T, is not necessarily the center of the square. The

size of the neighborhood for the Canberra and Squared Cord distance depends on the target

T; for the same distance r, different targets generates different sized neighborhood. The

neighborhoods using the four distance metrics discussed above are depicted in the figure

2.2.

 a) Manhattan b) Euclidian c) Max d) HOB

Figure 2.2: neighborhood using different distance metrics for 2-dimensional data points. T

is the center of the neighborhood and X is a point on the boundary, i.e. d(T, X) = r. Shaded

region indicates the neighborhood.

2r

T

X

T

2r

X

2r

T

X

T

2r

X

 16

2.4 Decision Boundaries for the Distance Metrics

Let A and B be two stationary points and X be a moving point in the space. The locus of the

point X satisfying the condition d(A, X) = d(B, X) is a hyperplane D (a line in a 2-

dimensional space), which divides the space into two half-planes (shown in figure 2.3).

Figure 2.3: Decision boundary between points A and B using an arbitrary distance metric d.

The points in the region or half-plane R1 are closer to point A; the points in the region R2

are closer to the point B and the points on the hyperplane D have the same distance from A

and B. This hyperplane D is called the decision boundary between points A and B for the

metric d.

Figure 2.4: Decision boundary for Manhattan, Euclidian and Max distance.

The decision boundary for Euclidian distance is the perpendicular bisector to the line

segment joining points A and B. The decision boundary for Manhattan distance is a 3-

segment line; the middle segment is a straight line making a 45° angle with the axes and

other two segments are parallel to the axes. For Max distance, it is also a 3-segment line;

B

X

A

D

R2

R1

d(A,X)

d(B,X)

θ > 45°

Euclidian

B

A

Max

Manhattan

θ < 45°
B

A

Euclidian
Max

Manhattan

 17

the middle segment is parallel to the axes and the other two segments are straight line

making a 45° angle with the axes. The parallel segment can be parallel to the x-axis or the

y-axis depending on the orientation of points A and B. The decision boundary for HOB

distance is a straight line perpendicular to the axis that makes the largest distance i.e. the

axis, k, for which ()kkv yxd , is maximum.

Figure 2.5: Decision boundary for HOB distance

B

A

B

A

 18

CHAPTER 3: P-TREES AND ITS ALGEBRA &

PROPERTIES

3.1 P-trees and Its Algebra

Spatial data is the type of data where each data tuple corresponds to a unique point in

the space, usually a two dimensional space. The representation of spatial data is very

important for further processing, such as data mining. Remotely Sensed Imagery (RSI) data

belongs to the spatial data category. The concept of remotely sensed imagery covers a

broad range of methods to include satellites, aerial photography, and ground sensors. A

remotely sensed image typically contains several bands or columns of reflectance

intensities. For example, TM (Thematic Mapper) scenes contain at least seven bands (Blue,

Green, Red, NIR, MIR, TIR and MIR2) while a TIFF image contains three bands (Blue,

Green and Red). Each band contains a relative reflectance intensity value in the range 0-to-

255 (one byte) for each pixel location in the scene. Ground data are collected at the surface

of the earth and can be organized into images. For example, yield data can be organized

into a yield map.

Most spatial data comes in a format called BSQ for Band Sequential (or can be easily

converted to BSQ). BSQ data has a separate file for each band. The ordering of the data

values within a band is raster ordering with respect to the spatial area represented in the

dataset. This order is assumed and therefore is not explicitly indicated as a key attribute in

each band (bands have just one column). In this paper, we divided each BSQ band into

several files, one for each bit position of the data values. We call this format bit

Sequential or bSQ [8, 12, 13]. A Landsat Thematic Mapper satellite image, for example,

is in BSQ format with 7 bands, B1,…,B7, (Landsat-7 has 8) and ~40,000,000 8-bit data

values. A typical TIFF image aerial digital photograph is in what is called Band

Interleaved by Bit (BIP) format, in which there is one file containing ~24,000,000 bits

ordered by their positions, then band and then raster-ordered-pixel-location. A simple

transform can be used to convert TIFF images to BSQ and then to bSQ format.

We organize each bSQ bit file, Bij (the file constructed from the jth bits of ith band),

into a tree structure, called a Peano Count Tree (P-tree). A P-tree is a quadrant-based tree.

The root of a P-tree contains the 1-bit count of the entire bit-band. The next level of the

tree contains the 1 bit counts of the four quadrants in Peano order or Z-order, which is

shown bellow.

Figure 3.1 Peano ordering or Z-ordering

 At the next level, each quadrant is partitioned into sub-quadrants and their 1-bit

counts in raster order constitute the children of the quadrant node. This construction is

continued recursively down each tree path until the sub-quadrant is pure (entirely 1-bits or

entirely 0-bits), which may or may not be at the leaf level. For example, the P-tree for a 8-

row-8-column bit-band is shown in Figure 1. If all of the bits in a quadrant are 0 (1), the

corresponding node in the P-tree is called pure0 (pure1) node.

 m
 _____________/ / \ ____________
 / ____/ \ ____ \
 1 ____m__ _m__ 1
 / / | \ / | \ \
 m 0 1 m 1 1 m 1
 //|\ //|\ //|\
 1110 0010 1101

1

2

3 4

1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1

 _
 /
 16

 /
 11
 55
___________/ / \ ___________
 _____/ \ ___ \
 ____8__ _15__ 16
 / / | \ / | \ \
3 0 4 1 4 4 3 4
/|\ //|\ //|\
10 0010 1101
19

 20

Figure 3.2. 8-by-8 image and its P-tree (P-tree and PM-tree)

In this example, 55 is the count of 1’s in the entire image, the numbers at the next

level, 16, 8, 15 and 16, are the 1-bit counts for the four major quadrants. Since the first and

last quadrant are made up of entirely 1-bits, we do not need sub-trees for these two

quadrants. This pattern is continued recursively. Recursive raster ordering is called the

Peano or Z-ordering in the literature – therefore, the name Peano Count trees. The process

will definitely terminate at the “leaf” level where each quadrant is a 1-row-1-column

quadrant. If we were to expand all sub-trees, including those for quadrants that are pure 1-

bits, then the leaf sequence is just the Peano space-filling curve for the original raster

image.

For each band (assuming 8-bit data values), we get 8 basic P-trees, one for each bit

positions. For band, Bi, we will label the basic P-trees, Pi,1, Pi,2, …, Pi,8, thus, Pi,j is a

lossless representation of the jth bits of the values from the ith band. However, Pij provides

much more information and is structured to facilitate many important data mining

processes.

For efficient implementation, we use a variation of basic P-trees, called a PM-tree

(Pure Mask tree). In the PM-tree, we use a 3-value logic, in which 11 represents a quadrant

of pure 1-bits (pure1 quadrant), 00 represents a quadrant of pure 0-bits (pure0 quadrant)

and 01 represents a mixed quadrant. To simplify the exposition, we use 1 instead of 11 for

pure1, 0 for pure0, and m for mixed. The PM-tree for the previous example is also given in

Figure 3.2.

P-tree algebra contains operators, AND, OR, NOT and XOR, which are the pixel-by-

pixel logical operations on P-trees. The NOT operation is a straightforward translation of

 21

each count to its quadrant-complement (e.g., a 5 count for a quadrant of 16 pixels has

complement of 11). The AND operations is described in full detail below. The OR is

identical to the AND except that the role of the 1-bits and the 0-bits are reversed.

Figure 3.3: P-tree Algebra

The basic P-trees can be combined using simple logical operations to produce P-trees

for the original values (at any level of precision, 1-bit precision, 2-bit precision, etc.). We

let Pb,v denote the Peano Count Tree for band, b, and value, v, where v can be expressed in

1-bit, 2-bit,.., or 8-bit precision. Using the full 8-bit precision (all 8 –bits) for values,

Pb,11010011 can be constructed from the basic P-trees as:

Pb,11010011 = Pb1 AND Pb2 AND Pb3’ AND Pb4 AND Pb5’ AND Pb6’ AND Pb7 AND Pb8,

where ’ indicates NOT operation. The AND operation is simply the pixel-wise AND of the

bits.

A P-tree representing the range of the values is called the range P-tree or interval P-tree.

An interval P-tree can be contructed performing OR operations on value P-trees. Interval P-

tree for the range [v1, v2] for the band 1 is

P1,(v1,v2) = P1,v1 OR P1,v1+1 OR P1,v1+2 OR … OR P1,v2

3.2 Properties of P-trees

In the rest of the paper we shall use the following notations that make easier writing P-tree

expressions.

P-tree-1: m
 ______/ / \ ______
 / / \ \
 / / \ \
 1 m m 1
 / / \ \ / / \ \
 m 0 1 m 1 1 m 1
 //|\ //|\ //|\
 1110 0010 1101

P-tree-2: m
 ______/ / \ ______
 / / \ \
 / / \ \
 1 0 m 0
 / / \ \
 1 1 1 m
 //|\
 0100

AND-Result: m
 ________ / / \ ___
 / ____ / \ \
 / / \ \
 1 0 m 0
 / | \ \
 1 1 m m
 //|\ //|\
 1101 0100

OR-Result: m
 ________ / / \ ___
 / ____ / \ \
 / / \ \
 1 m 1 1
 / / \ \
 m 0 1 m
 //|\ //|\
1110 0010

 22

yxp , is the pixel with coordinate (x, y).

iyxV ,, is the value for the band i of the pixel yxp , .

jiyxb ,,, is the jth bit of iyxV ,, (bits are numbered from left to right, 0,,, iyxb is the leftmost bit).

Indices:

x: column (x-coordinate), y: row (y-coordinate), i: band, j: bit

For any P-trees P, P1 and P2,

 P1 & P2 denotes P1 AND P2

 P1 | P2 denotes P1 OR P2

 P1 ⊕ P2 denotes P1 XOR P2

 P′ denotes COMPLEMENT of P

Basic P-trees: Pband, bit

 Pi, j is the basic P-tree for bit j of band i.

Value P-trees: Pband(value)

 Pi(v) is the P-tree for the value v of band i.

Range P-trees: Pband(lower_limit, upper_ limit)

 Pi(v1, v2) is the P-tree for the range [v1, v2] of band i.

rc(P) is the root count, the count stored at the root node, of P-tree P.

0P is pure0-tree, a P-tree having the root node which is pure0.

1P is pure1-tree, a P-tree having the root node which is pure1.

N is the number of pixels in the image or space under consideration.

c is the number of rows or height of the image in pixel.

r is the number of columns or width of the image in pixel.

n is the number of bits in each band-value.

 23

Lemma 1:

a) For any two P-trees P1 and P2, rc(P1 | P2) = 0 ⇒ rc(P1) = 0 and rc(P2) = 0.

More strictly, rc(P1 | P2) = 0, if and only if rc(P1) = 0 and rc(P2) = 0.

Proof: (Proof by contradiction) Let, rc(P1) ≠ 0. Then, for some pixels there are 1s in P1 and

for those pixels there must be 1s in P1 | P2 i.e. rc(P1 | P2) ≠ 0, But we assumed rc(P1 | P2) =

0. Therefore rc(P1) = 0. Similarly we can prove that rc(P2) = 0.

The proof for the inverse, rc(P1) = 0 and rc(P2) = 0 ⇒ rc(P1 | P2) = 0 is trivial.

This immediately follows the definitions.

b) rc(P1) = 0 or rc(P2) = 0 ⇒ rc(P1 & P2) = 0

c) rc(P1) = 0 and rc(P2) = 0 ⇒ rc(P1 & P2) = 0, in fact, this is covered by (b).

Proofs are immediate.

Lemma 2: a) () 00 =Prc i) 0'& PPP =

b) () NPrc =1 j) 1'| PPP =

c) () 00 PPPrc =⇔= k) '1 PPP =⊕

d) () 1PPNPrc =⇔= l) PPP =⊕ 0

e) 00& PPP = m) 1' PPP =⊕

f) PPP =1& n) PPP =&

g) PPP =0| n) PPP =|

h) 11| PPP = n) 'PPP =⊕

Proofs are immediate.

 24

Lemma 3: v1 ≠ v2 ⇒ rc{Pi (v1) & Pi(v2)} = 0, for any band i.

Proof: Pi (v) represents all the pixels having value v for the band i. If v1 ≠ v2, no pixel can

have the values both v1 and v2 for the same band. Therefore, if there is a 1 in Pi (v1) for any

pixel, there must be 0 in Pi(v2) for that pixel and vice versa. Hence rc{Pi (v1) & Pi(v2)} = 0.

Lemma 4: rc(P1 | P2) = rc(P1) + rc(P2) - rc(P1 & P2).

Proof: Let

the number of pixels for which there are 1s in P1 and 0s in P2 is n1,

the number of pixels for which there are 0s in P1 and 1s in P2 is n2

and the number of pixels for which there are 1s in both P1 and P2 is n3.

Now, rc(P1) = n1 + n3,

rc(P2) = n2 + n3,

rc(P1 & P2) = n3

and rc(P1 | P2) = n1 + n2 + n3

 = (n1 + n3) + (n2 + n3) - n3

 = rc(P1) + rc(P2) - rc(P1 & P2)

Theorem 1: rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)}, where v1 ≠ v2.

Proof: rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)} - rc{Pi (v1) & Pi(v2)} (Lemma 4)

If v1 ≠ v2, rc{Pi (v1) & Pi(v2)} = 0. (Lemma 3)

Therefore, rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)}.

 25

3.3 Header of a P-tree file

To make a generalized P-tree structure the following header for a P-tree file is proposed.

1 word 2 word 2 words 4 words 4 words

Format

Code

Fan-out # of

levels

Root count Length of the

body in bytes

Body of the P-tree

Figure 3.4: Header of a P-tree file.

Format code: Format code identifies the format of the P-tree, whether it is a PCT or PMT

or in any other format. Although it is possible to recognize the format from the extension of

the file, using format code is a good practice because some other applications may use the

same extension for their purpose. Therefore to make sure that it is a P-tree file with the

specific format we need format code. Moreover, in any standard file format such as PDF

and TIFF, a file identification code is used along with the specified file extension. We

propose the following codes for the P-tree formats.

0707 H∗ – PCT 1717 H – PMT 2727 H – PVT 3737 H – P0T

4747 H – P1T 5757 H – P0V 6767 H – P1V 7777 H – PNZV

Fan-out: This field contains the fan-out information of the P-tree. Fan-out information is

required to traverse the P-tree in performing various P-tree operations including AND, OR

and Complement.

of levels: Number of levels in the P-tree. When we encounter a pure1 or pure0 node, we

cannot tell whether it is an interior node or a leaf unless we know the level of that node and

∗ H stands for hexadecimal

 26

the total number of levels of the tree. This is also required to know the number of 1s

represented by a pure1 node.

Root count: Root count i.e. the number 1s in the P-tree. Though we can calculate the root

count of a P-tree on the fly from the P-tree data, these only 4 bytes of space can save

computation time when we don’t need to perform any AND/OR operations and need the

root count of an existing P-tree such as the basic P-trees. The root count of a P-tree can be

computed at the time of construction of the P-tree with a very little extra cost.

Length of the body: Length of the body is the size of the P-tree file in bytes excluding the

header. Sometimes we may want to load the whole P-tree into RAM to increase the

efficiency of computation. Since the sizes of the P-trees vary, we need to allocate memory

dynamically and know the size of the required memory prior to read from disk.

3.4 Dealing with the Padded Zeros

We measure the height and the width of the images in pixels. To construct P-trees, the

image must be square i.e. height and width must be equal and must be power of 2. For

example an image size can be 256×256 or 512×512. Zeros are padded to the right and

bottom of the image to convert it into the required size. Also a missing value can be

replaced with zero. To deal with these inserted or padded zeros we need to make

corrections to the root count of the final P-tree expression before using it.

Solution 1:

Every P-tree expression is a function of the basic P-trees.

Let, Pexp = fp(P1, P2, P3, …, Pn),

 27

where Pi is a basic P-tree for i = 1, 2, 3, …, n.

Transform the P-tree expression, Pexp into a Boolean expression by replacing the basic P-

trees with 0 and considering the P-tree operators as a corresponding Boolean operator.

Boolean expression Bexp = fb(0, 0, 0, …, 0).

Where fb is the corresponding Boolean function to P-tree function fp.

For Example, Pexp = (P1 & P2)′ | P3

 then, Bexp = (0 & 0)′ | 0

 = 0′ | 0 = 1 | 0 = 1

Now if Bexp = 1, corrected root count = rc(Pexp) – M,

where M is the number of padded zeros and missing values.

otherwise, no correction is necessary, i.e. corrected root count = rc(Pexp)

Solution 2:

Another solution to find the corrected root count is to use a mask or template P-tree,

Pt, which is formed by using a 1 bit for the existing pixels and 0 bit for the padded zeros

and missing values.

Then the corrected root count = rc(Pexp & Pt)

 28

CHAPTER 4: PAPER 1

K-NEAREST NEIGHBOR CLASSIFICATION ON

SPATIAL DATA STREAMS USING P-TREES

Abstract

In this paper we consider the classification of spatial data streams, where the

training dataset changes often. New training data arrive continuously and are added to

the training set. For these types of data streams, building a new classifier each time can

be very costly with most techniques. In this situation, k-nearest neighbor (KNN)

classification is a very good choice, since no residual classifier needs to be built ahead

of time. For that reason KNN is called a lazy classifier. KNN is extremely simple to

implement and lends itself to a wide variety of variations. The traditional k-nearest

neighbor classifier finds the k nearest neighbors based on some distance metric by

finding the distance of the target data point from the training dataset, then finding the

class from those nearest neighbors by some voting mechanism. There is a problem

associated with KNN classifiers. They increase the classification time significantly

relative to other non-lazy methods. To overcome this problem, in this paper we propose

a new method of KNN classification for spatial data streams using a new, rich, data-

mining-ready structure, the Peano-count-tree or P-tree. In our method, we merely

perform some logical AND/OR operations on P-trees to find the nearest neighbor set of

a new sample and assign the class label. We have fast and efficient algorithms for

AND/OR operations on P-trees, which reduce the classification time significantly,

compared with traditional KNN classifiers. Instead of taking exactly the k nearest

neighbors we form a closed-KNN set. Our experimental results show closed-KNN

yields higher classification accuracy as well as significantly higher speed.

 29

Keywords: Data Mining, K-Nearest Neighbor Classification, P-tree, Spatial Data, Data
Streams.

4.1 Introduction

Classification is the process of finding a set of models or functions that describes

and distinguishes data classes or concepts for the purpose of predicting the class of

objects whose class labels are unknown [9]. The derived model is based on the analysis

of a set of training data whose class labels are known. Consider each training sample

has n attributes: A1, A2, A3, …, An-1, C, where C is the class attribute which defines the

class or category of the sample. The model associates the class attribute, C, with the

other attributes. Now consider a new tuple or data sample whose values for the

attributes A1, A2, A3, …, An-1 are known, while for the class attribute is unknown. The

model predicts the class label of the new tuple using the values of the attributes A1, A2,

A3, …, An-1.

 There are various techniques for classification such as Decision Tree Induction,

Bayesian Classification, and Neural Networks [9, 11]. Unlike other common

classification methods, a k-nearest neighbor classification (KNN classification) does

not build a classifier in advance. That is what makes it suitable for data streams.

When a new sample arrives, KNN finds the k neighbors nearest to the new sample from

the training space based on some suitable similarity or closeness metric [3, 7, 10]. A

common similarity function is based on the Euclidian distance between two data tuples

[3]. For two tuples, X = <x1, x2, x3, …, xn-1> and Y = <y1, y2, y3, …, yn-1> (excluding

the class labels), the Euclidian distance function is ()∑
−

=
−=

1

1

2
2),(

n

i
ii yxYXd . A

generalization of the Euclidean function is the Minkowski distance function is

 30

q
n

i

q
iiiq yxwYXd ∑

−

=
−=

1

1
),(. The Euclidean function results by setting q to 2 and each

weight, wi, to 1. The Manhattan distance, ∑
−

=

−=
1

1
1),(

n

i
ii yxYXd result by setting q to

1. Setting q to ∞, results in the max function ii

n

i
yxYXd −=

−

=
∞

1

1
max),(. After finding

the k nearest tuples based on the selected distance metric, the plurality class label of

those k tuples can be assigned to the new sample as its class. If there is more than one

class label in plurality, one of them can be chosen arbitrarily.

In this paper, we also used our new distance metric called Higher Order Bit or

HOB distance and evaluated the effect of all of the above distance metrics in

classification time and accuracy. HOB distance provides an efficient way of computing

neighborhood while keeping the classification accuracy very high. The details of the

distance metrics have been discussed in chapter 2.

Nearly every other classification model trains and tests a residual “classifier” first

and then uses it on new samples. KNN does not build a residual classifier, but instead,

searches again for the k-nearest neighbor set for each new sample. This approach is

simple and can be very accurate. It can also be slow (the search may take a long time).

KNN is a good choice when simplicity and accuracy are the predominant issues. KNN

can be superior when a residual, trained and tested classifier has a short useful lifespan,

such as in the case with data streams, where new data arrives rapidly and the training

set is ever changing [1, 2]. For example, in spatial data, AVHRR images are generated

in every one hour and can be viewed as spatial data streams. The purpose of this paper

is to introduce a new KNN-like model, which is not only simple and accurate but is also

fast – fast enough for use in spatial data stream classification.

 31

In this paper we propose a simple and fast KNN-like classification algorithm for

spatial data using P-trees. P-trees are new, compact, data-mining-ready data structures,

which provide a lossless representation of the original spatial data [8, 12, 13]. We

consider a space to be represented by a 2-dimensional array of locations (though the

dimension could just as well be 1 or 3 or higher). Associated with each location are

various attributes, called bands, such as visible reflectance intensities (blue, green and

red), infrared reflectance intensities (e.g., NIR, MIR1, MIR2 and TIR) and possibly

other value bands (e.g., crop yield quantities, crop quality measures, soil attributes and

radar reflectance intensities). One band such as the yield band can be the class attribute.

The location coordinates in raster order constitute the key attribute of the spatial dataset

and the other bands are the non-key attributes. We refer to a location as a pixel in this

paper.

Using P-trees, we presented two algorithms, one based on the max distance metric

and the other based on our new HOBS distance metric. HOBS is the similarity of the

most significant bit positions in each band. It differs from pure Euclidean similarity in

that it can be an asymmetric function depending upon the bit arrangement of the values

involved. However, it is very fast, very simple and quite accurate. Instead of using

exactly k nearest neighbor (a KNN set), our algorithms build a closed-KNN set and

perform voting on this closed-KNN set to find the predicting class. Closed-KNN, a

superset of KNN, is formed by including the pixels, which have the same distance from

the target pixel as some of the pixels in KNN set. Based on this similarity measure,

finding nearest neighbors of new samples (pixel to be classified) can be done easily and

very efficiently using P-trees and we found higher classification accuracy than

traditional methods on considered datasets. The classification algorithms to find nearest

 32

neighbors have been given in the section 4.2. We provided the experimental results and

analyses in section 4.3. And section 4.4 is the conclusion.

4.2 Classification Algorithm

In the original k-nearest neighbor (KNN) classification method, no classifier model

is built in advance. KNN refers back to the raw training data in the classification of

each new sample. Therefore, one can say that the entire training set is the classifier.

The basic idea is that the similar tuples most likely belongs to the same class (a

continuity assumption). Based on some pre-selected distance metric (some commonly

used distance metrics are discussed in introduction), it finds the k most similar or

nearest training samples of the sample to be classified and assign the plurality class of

those k samples to the new sample. The value for k is pre-selected. Using relatively

larger k may include some pixels that are not so similar to the target pixel and on the

other hand, using very smaller k may exclude some potential candidate pixels. In both

cases the classification accuracy will decrease. The optimal value of k depends on the

size and nature of the data. The typical value for k is 3, 5 or 7. The steps of the

classification process are:

1) Determine a suitable distance metric.

2) Find the k nearest neighbors using the selected distance metric.

3) Find the plurality class of the k-nearest neighbors (voting on the class labels

of the NNs).

4) Assign that class to the sample to be classified.

We provided two different algorithms using P-trees, based on two different

distance metrics max (Minkowski distance with q = ∞) and our newly defined HOB

distance. Instead of examining individual pixels to find the nearest neighbors, we start

our initial neighborhood (neighborhood is a set of neighbors of the target pixel within a

 33

specified distance based on some distance metric, not the spatial neighbors, neighbors

with respect to values) with the target sample and then successively expand the

neighborhood area until there are k pixels in the neighborhood set. The expansion is

done in such a way that the neighborhood always contains the closest or most similar

pixels of the target sample. The different expansion mechanisms implement different

distance functions. In the next section (section 3.1) we described the distance metrics

and expansion mechanisms.

Of course, there may be more boundary neighbors equidistant from the sample than

are necessary to complete the k nearest neighbor set, in which case, one can either use

the larger set or arbitrarily ignore some of them. To find the exact k nearest neighbors

one has to arbitrarily ignore some of them.

 Instead we propose a new approach of building nearest neighbor (NN) set, where we

take the closure of the k-NN set, that is, we include all of the boundary neighbors and

we call it the closed-KNN set. Obviously closed-KNN is a superset of KNN set. In the

above example, with k = 3, KNN includes the two points inside the circle and any one

point on the boundary. The closed-KNN includes the two points in side the circle and

all of the four boundary points. The inductive definition of the closed-KNN set is given

below.

Definition 4.1: a) if x ∈ KNN, then x ∈ closed-KNN

 b) if x ∈ closed-KNN and d(T,y) ≤ d(T,x), then y∈ closed-KNN

 Where, d(T,x) is the distance of x from target T.

T

Figure 4.1: Closed-KNN set.
T, the pixel in the center is the target pixels. With k = 3,
to find the third nearest neighbor, we have four pixels (on
the boundary line of the neighborhood) which are
equidistant from the target.

 34

 c) closed-KNN does not contain any pixel, which cannot be produced by

step a and b.

Our experimental results show closed-KNN yields higher classification accuracy

than KNN does. The reason is if for some target there are many pixels on the boundary,

they have more influence on the target pixel. While all of them are in the nearest

neighborhood area, inclusion of one or two of them does not provide the necessary

weight in the voting mechanism. One may argue that then why don’t we use a higher k?

For example using k = 5 instead of k = 3. The answer is if there are too few points (for

example only one or two points) on the boundary to make k neighbors in the

neighborhood, we have to expand neighborhood and include some not so similar points

which will decrease the classification accuracy. We construct closed-KNN only by

including those pixels, which are in as same distance as some other pixels in the

neighborhood without further expanding the neighborhood. To perform our

experiments, we find the optimal k (by trial and error method) for that particular dataset

and then using the optimal k, we performed both KNN and closed-KNN and found

higher accuracy for P-tree-based closed-KNN method. The experimental results are

given in section 4. In our P-tree implementation, no extra computation is required to

find the closed-KNN. Our expansion mechanism of nearest neighborhood automatically

includes the points on the boundary of the neighborhood.

Also, there may be more than one class in plurality (if there is a tie in voting), in

which case one can arbitrarily chose one of the plurality classes. Unlike the traditional

k-nearest neighbor classifier our classification method doesn’t store and use raw

training data. Instead we use the data-mining-ready P-tree structure, which can be built

very quickly from the training data. Without storing the raw data we create the basic P-

trees and store them for future classification purpose. Avoiding the examination of

 35

individual data points and being ready for data mining these P-trees not only saves

classification time but also saves storage space, since data is stored in compressed form.

This compression technique also increases the speed of ANDing and other operations

on P-trees tremendously, since operations can be performed on the pure0 and pure1

quadrants without reference to individual bits, since all of the bits in those quadrant are

the same.

4.2.1 Expansion of Neighborhood

Similarity and distance can be measured by each other; more distance less similar

and less distance more similar. Our similarity metric is the closeness in numerical

values for corresponding bands. We begin searching for nearest neighbors by finding

the exact matches i.e. the pixels having as same band-values as that of the target pixel.

If the number of exact matches is less than k, we expand the neighborhood. For

example, for a particular band, if the target pixel has the value a, we expand the

neighborhood to the range [a-b, a+c], where b and c are positive integers and find the

pixels having the band value in the range [a-b, a+c]. We expand the neighbor in each

band (or dimension) simultaneously. We continue expanding the neighborhood until the

number pixels in the neighborhood is greater than or equal to k. We develop the

following two different mechanisms, corresponding to max distance (Minqowski

distance with q = ∞ or L∞) and our newly defined HOBS distance, for expanding the

neighborhood. The two given mechanisms have trade off between execution time and

classification accuracy.

A. Higher Order Bit Similarity Method (Using HOB Distance):

The HOB distance between two pixels X and Y is defined by

 () (){ } HOBmax
1

1
 ,yxm - X,Yd ii

n

iH

−

=
=

 36

n is the total number of bands where one of them (the last band) is class attribute that

we don’t use for measuring similarity.

m is the number of bits in binary representations of the values. All values must be

represented using the same number of bits.

HOB(A, B) = max{s | i ≤ s ⇒ ai = bi}

ai and bi are the ith bits of A and B respectively.

The detailed definition of HOB distance and its behavior have been discussed in chapter

2.

To find the Closed-KNN set, first we look for the pixels, which are identical to the

target pixel in all 8 bits of all bands i.e. the pixels, X, having distance from the target T,

dp(X,T) = 0. If, for instance, x1=105 (01101001b = 105d) is the target pixel, the initial

neighborhood is [105, 105] ([01101001, 01101001]). If the number of matches is less

than k, we look for the pixels, which are identical in the 7 most significant bits, not

caring about the 8th bit, i.e. pixels having dp(X,T) ≤ 1. Therefore our expanded

neighborhood is [104,105] ([01101000, 01101001] or [0110100-, 0110100-] - don’t

care about the 8th bit). Removing one more bit from the right, the neighborhood is [104,

107] ([011010--, 011010--] - don’t care about the 7th or the 8th bit). Continuing to

remove bits from the right we get intervals, [104, 111], then [96, 111] and so on.

Computationally this method is very cheap (since the counts are just the root counts of

individual P-trees, all of which can be constructed in one operation). However, the

expansion does not occur evenly on both sides of the target value (note: the center of

the neighborhood [104, 111] is (104 + 111) /2 = 107.5 but the target value is 105).

Another observation is that the size of the neighborhood is expanded by powers of 2.

These uneven and jump expansions include some not so similar pixels in the

neighborhood keeping the classification accuracy lower. But P-tree-based closed-KNN

 37

method using this HOBS metric still outperforms KNN methods using any distance

metric as well as becomes the fastest among all of these methods.

To improve accuracy further we propose another method called perfect centering to

avoid the uneven and jump expansion. Although, in terms of accuracy, perfect centering

outperforms HOBS, in terms of computational speed it is slower than HOBS.

B. Perfect Centering (using Max distance): In this method we expand the

neighborhood by 1 on both the left and right side of the range keeping the target value

always precisely in the center of the neighborhood range. We begin with finding the

exact matches as we did in HOBS method. The initial neighborhood is [a, a], where a

is the target band value. If the number of matches is less than k we expand it to [a-1,

a+1], next expansion to [a-2, a+2], then to [a-3, a+3] and so on.

Perfect centering expands neighborhood based on max distance metric or L∞ metric,

Minkowski distance (discussed in introduction) metric setting q = ∞.

 ii

n

i
yxYXd −=

−

=
∞

1

1
max),(

In the initial neighborhood d∞(X,T) is 0, the distance of any pixel X in the

neighborhood from the target T. In the first expanded neighborhood [a-1, a+1], d∞(X,T)

≤ 1. In each expansion d∞(X,T) increases by 1. As distance is the direct difference of the

values, increasing distance by one also increases the difference of values by 1 evenly in

both side of the range without any jumping.

This method is computationally a little more costly because we need to find matches for

each value in the neighborhood range and then accumulate those matches but it results

better nearest neighbor sets and yields better classification accuracy. We compare these

two techniques later in section 4.3.

 38

4.2.2 Computing the Nearest Neighbors

For HOBS: We have the basic P-trees of all bits of all bands constructed from the

training dataset and the new sample to be classified. Suppose, including the class band,

there are n bands or attributes in the training dataset and each attribute is m bits long.

In the target sample we have n-1 bands, but the class band value is unknown. Our goal

is to predict the class band value for the target sample.

Pi,j is the P-tree for bit j of band i. This P-tree stores all the jth bits of the ith band of

all the training pixels. The root count of a P-tree is the total counts of one bits stored in

it. Therefore, the root count of Pi,j is the number of pixels in the training dataset having

a 1 value in the jth bit of the ith band. P′ i,j is the complement P-tree of Pi,j. P′ i,j stores 1

for the pixels having a 0 value in the jth bit of the ith band and stores 0 for the pixels

having a 1 value in the jth bit of the ith band. Therefore, the root count of P′ i,j is the

number of pixels in the training dataset having 0 value in the jth bit of the ith band.

Now let, bi,j = jth bit of the ith band of the target pixel.

Define Pti,j = Pi,j, if bi,j = 1

 = P′ i,j, otherwise

We can say that the root count of Pti,j is the number of pixels in the training dataset

having as same value as the jth bit of the ith band of the target pixel.

Let, Pvi,1-j = Pti,1 & Pti,2 & Pti,3 & … & Pti,j, here & is the P-tree AND operator.

Pvi,1-j counts the pixels having as same bit values as the target pixel in the higher order j

bits of ith band.

Using higher order bit similarity, first we find the P-tree Pnn = Pv1,1-8 & Pv2,1-8 &

Pv3,1-8 & … & Pvn-1,1-8, where n-1 is the number of bands excluding the class band. Pnn

represents the pixels that exactly match the target pixel. If the root count of Pnn is less

than k we look for higher order 7 bits matching i.e. we calculate Pnn = Pv1,1-7 & Pv2,1-7

 39

& Pv3,1-7 & … & Pvn-1,1-7. Then we look for higher order 6 bits matching and so on. We

continue as long as root count of Pnn is less than k. Pnn represents closed-KNN set i.e.

the training pixels having the as same bits in corresponding higher order bits as that in

target pixel and the root count of Pnn is the number of such pixels, the nearest pixels. A

1 bit in Pnn for a pixel means that pixel is in closed-KNN set and a 0 bit means the

pixel is not in the closed-KNN set. The algorithm for finding nearest neighbors is given

in figure 4.2

Figure 4.2: Algorithm to find closed-KNN set based on HOB metric.

For Perfect Centering: Let vi be the value of the target pixels for band i. Pi(vi) is the

value P-tree for the value vi in band i. Pi(vi) represents the pixels having value vi in band

i. For finding the initial nearest neighbors (the exact matches) using perfect centering

we find Pi(vi) for all i. The ANDed result of these value P-trees i.e. Pnn = P1(v1) &

P2(v2) & P3(v3) & … & Pn-1(vn-1) represents the pixels having the same values in each

band as that of the target pixel. A value P-tree, Pi(vi), can be computed by finding the P-

tree representing the pixels having the same bits in band i as the bits in value vi. That is,

if Pti,j = Pi,j, when bi,j = 1 and Pti,j = P’i,j, when bi,j = 0 (bi,j is the jth bit of value vi),then

Algorithm: Finding the P-tree representing closed-KNN set using HOBS
Input: Pi,j for all i and j, basic P-trees of all the bits of all bands of the training dataset
and bi,j for all i and j, the bits for the target pixels

Output: Pnn, the P-tree representing the nearest neighbors of the target pixel
// n is the number of bands where nth band is the class band
// m is the number of bits in each band
FOR i = 1 TO n-1 DO

FOR j = 1 TO m DO
IF bi,j = 1 Ptij � Pi,j
ELSE Pti,j � P’i,j

FOR i = 1 TO n-1 DO
Pvi,1 � Pti,1
FOR j = 2 TO m DO

Pvi,j �Pvi,j-1 & Pti,j

s � m // first we check matching in all m bits
REPEAT

Pnn � Pv1,s
FOR r = 2 TO n-1 DO

Pnn � Pnn & Pvr,s
 s � s – 1
UNTIL RootCount(Pnn) ≥ k

 40

Pi(vi) = Pti,1 & Pti,2 & Pti,3 & … & Pti,m, m is the number of bits in a band. The

algorithm for computing value P-trees is given in figure 4.3 (b).

 Figure 4.3(a): Algorithm to find closed-KNN set based on 4.3(b): Algorithm to compute

 Max metric (Perfect Centering). value P-trees

If the number of exact matching i.e. root count of Pnn is less than k, we expand

neighborhood along each dimension. For each band i, we calculate range P-tree Pri =

Pi(vi-1) | Pi(vi) | Pi(vi+1). ‘|’ is the P-tree OR operator. Pri represents the pixels having a

value either vi-1 or vi or vi+1 i.e. any value in the range [vi-1, vi+1] of band i. The

ANDed result of these range P-trees, Pri for all i, produce the expanded neighborhood,

the pixels having band values in the ranges of the corresponding bands. We continue

this expansion process until root count of Pnn is greater than or equal to k. The

algorithm is given in figure 4.3(a).

4.2.3 Finding the plurality class among the nearest neighbors

For the classification purpose, we don’t need to consider all bits in the class band.

If the class band is 8 bits long, there are 256 possible classes. Instead of considering 256

classes we partition the class band values into fewer groups by considering fewer

significant bits. For example if we want to partition into 8 groups we can do it by

Algorithm: Finding value P-tree

Input: Pi,j for all j, basic P-trees of all
the bits of band i and the value vi for
band i.
Output: Pi(vi), the value p-tree for the
value vi
// m is the number of bits in each band
// bi,j is the jth bit of value vi

FOR j = 1 TO m DO
IF bi,j = 1 Ptij � Pi,j
ELSE Pti,j � P’i,j

Pi(v) � Pti,1
FOR j = 2 TO m DO

Pi(v) � Pi(v) & Pti,j

Algorithm: Finding the P-tree representing closed-KNN set using
max distance metric (perfect centering)
Input: Pi,j for all i and j, basic P-trees of all the bits of all bands of the
training dataset and vi for all i, the band values for the target pixel
Output: Pnn, the P-tree representing the closed-KNN set
// n is the number of bands where nth band is the class band
// m is the number of bits in each band

FOR i = 1 TO n-1 DO
Pri � Pi(vi)

Pnn � Pr1
FOR i = 2 TO n-1 DO

Pnn � Pnn & Pri // the initial neighborhood for exact matching
d � 1 // distance for the first expansion
WHILE RootCount(Pnn) < k DO

FOR i = 1 to n-1 DO
Pri � Pri | Pi(vi-d) | Pi(vi+d) // neighborhood expansion

Pnn � Pr1 // ‘|’ is the P-tree OR operator
FOR i = 2 TO n-1 DO

Pnn � Pnn AND Pri // updating closed-KNN set
d � d + 1

 41

truncating the 5 least significant bits and keeping the most significant 3 bits. The 8

classes are 0, 1, 2, 3, 4, 5, 6 and 7. Using these 3 bits we construct the value P-trees

Pn(0), Pn(1), Pn(2), Pn(3), Pn(4), Pn(5), Pn(6), and Pn(7).

An 1 value in the nearest neighbor P-tree, Pnn, indicates that the corresponding

pixel is in the nearest neighbor set. An 1 value in the value P-tree, Pn(i), indicates that

the corresponding pixel has the class value i. Therefore Pnn & Pn(i) represents the

pixels having a class value i and are in the nearest neighbor set. An i which yields the

maximum root count of Pnn & Pn(i) is the plurality class. The algorithm is given in

figure 4.4.

Figure 4.4: Algorithm to find the plurality class

4.3 Performance Analysis
We performed experiments on two sets of Arial photographs of the Best

Management Plot (BMP) of Oakes Irrigation Test Area (OITA) near Oaks, North

Dakota, United States. The latitude and longitude are 45°49’15”N and 97°42’18”W

respectively. The two images “29NW083097.tiff” and “29NW082598.tiff” have been

taken in 1997 and 1998 respectively. Each image contains 3 bands, red, green and blue

reflectance values. Three other separate files contain synchronized soil moisture, nitrate

and yield values. Soil moisture and nitrate are measured using shallow and deep well

Algorithm: Finding the plurality class

Input: Pn(i), the value P-trees for all class i and the closed-KNN P-tree, Pnn
Output: the plurality class
// c is the number of different classes

class � 0
P � Pnn & Pn(0)
rc � RootCount(P)
FOR i = 1 TO c - 1 DO

P � Pnn & Pn(i)
IF rc < RootCount(P)

 rc � RootCount(P)
class � i

 42

lysimeters. Yield values were collected by using a GPS yield monitor on the harvesting

equipments. The datasets are available at http://datasurg.ndsu.edu/.

Among those 6 bands we consider the yield as class attribute. Each band is 8 bits

long. So we have 8 basic P-trees for each band and 40 (for the other 5 bands except

yield) in total. For the class band, yield, we considered only the most significant 3 bits.

Therefore we have 8 different class labels for the pixels. We built 8 value P-trees from

the yield values – one for each class label.

The original image size is 1320×1320. For experimental purpose we form 16×16,

32×32, 64×64, 128×128, 256×256 and 512×512 image by choosing pixels that are

uniformly distributed in the original image. In each case, we form one test set and one

training set of equal size. For each of the above sizes we tested KNN with Manhattan,

Euclidian, Max and HOBS distance metrics and our two P-tree methods, Perfect

Centering and HOBS. The accuracies of these different implementations are given in

the figure 4.5 for both of the datasets.

40

45

50

55

60

65

70

75

80

256 1024 4096 16384 65536 262144
Training Set Size (no. of pixels)

A
cc

ur
ac

y
(%

)

KNN-Manhattan KNN-Euclidian

KNN-Max KNN-HOBS

P-tree: Perfect Centering (closed-KNN) P-tree: HOBS (closed-KNN)

(a) 29NW083097.tiff and associated other files (1997 dataset)

 43

20

25

30

35

40

45

50

55

60

65

256 1024 4096 16384 65536 262144

Training Set Size (no of pixels)

A
cc

ur
ac

y
(%

)

KNN-Manhattan KNN-Euclidian

KNN-Max KNN-HOBS

P-tree: Perfect Centering (closed-KNN) P-tree: HOBS (closed-KNN)

 (b) 29NW082598.tiff and associated other files (1998 dataset)

Figure 4.5: Accuracy of different implementations for the 1997 and 1998 datasets

We see that both of our P-tree based closed-KNN methods outperform the KNN

methods for both of the datasets. The reasons are discussed in section 3. We discussed

in section 3.1, why the perfect centering methods performs better than HOBS. We also

implemented the HOBS metric for KNN standard. From the result we can see that the

accuracy is very poor. The HOBS metric is not suitable for a KNN approach since

HOBS does not provide a neighborhood with the target pixel in the exact center.

Increased accuracy of HOBS in P-tree implementation is the effect of closed-KNN,

which is explained in section 3. In a P-tree implementation, the ease of computability

for closed-KNN using HOBS makes it a superior method. The P-tree based HOBS is

the fastest method where as the KNN-HOBS is still the poorest (figure 4.7).

Another observation is that for 1997 data (Figure 4.5(a)), in KNN implementations,

the max metric performs much better than other three metrics. For the 1998 dataset,

max is competitive with other three metrics. In many cases, as well as for image data,

max metrics can be the best choice. In our P-tree implementations, we also get very

 44

high accuracy with the max distance (perfect centering method). We can understand

this by examining the shape of the neighborhood for different metrics (figure 4.6).

 (a) Max & Euclidian (b) Max & Manha

Figure 4.6: Comparison of neighborhood for different distance metrics (

Consider the two points A and B (figure 4.6). Let, A be a p

circle, but not included in the square. Let B be a point, which is inc

but not the circle. The point A is very similar to target T in the x-

dissimilar in the y-dimension. On the other hand, the point B is not

dimension. Relying on high similarity only on one band w

dissimilarity in the other band may decrease the accuracy. Theref

inclusion of B in the neighborhood instead of A, is a better choic

have found for our image data.

We also observe that for almost all of the methods clas

increases with the size of the training dataset. The reason is that w

more training pixels, the chance of getting better nearest neighbors in

Figure 4.7 shows, on the average, the perfect centering method

than the KNN and HOBS is 10 times faster (the graphs are plotted in

Classification times for all of the non-P-tree methods are al

implementations are more scalable than other methods. Both pe

HOBS increases the classification time with data size at a lower rate

T T AA

BB

x

y

x

y
ttan

T is t

oint

lud

dim

so d

hile

ore

e. T

sific

ith

cre

 is f

 log

mos

rfec

 than

he target pixel).

included in the

ed in the square

ension but very

issimilar in any

 keeping high

in many cases,

hat is what we

ation accuracy

the inclusion of

ases.

ive times faster

arithmic scale).

t equal. P-tree

t centering and

 the other

 45

0.00001

0.0001

0.001

0.01

0.1

1
256 1024 4096 16384 65536 262144

Training Set Size (no. of pixels)

Pe
r S

am
pl

e
C

la
ss

ifi
ca

tio
n

tim
e

(s
ec

)

KNN-Manhattan
KNN-Euclidian
KNN-Max
KNN-HOBS
P-tree: Perfect Centering (cosed-KNN)
P-tree: HOBS (closed-KNN)

(a) 29NW083097.tiff and associated other files (1997 dataset)

0.00001

0.0001

0.001

0.01

0.1

1
256 1024 4096 16384 65536 262144

Training Set Size (no. of pixels)

Pe
r S

am
pl

e
C

la
ss

ifi
ca

tio
n

Ti
m

e
(s

ec
)

KNN-Manhattan
KNN-Euclidian
KNN-Max
KNN-HOBS
P-tree: Perfect Centering (closed-KNN)
P-tree: HOBS (closed-KNN)

 (b) 29NW082598.tiff and associated other files (1998 dataset)

Figure 4.7: Classification time per sample for the different implementations for the
1997 and 1998 datasets. Both of the size and classification time are plotted in
logarithmic scale.

 46

methods. For the smaller dataset, the perfect centering method is about 2 times faster

than the others and for the larger dataset, it is 10 times faster. This is also true for the

HOBS method. The reason is that as dataset size increases, there are more and larger

pure-0 and pure-1 quadrants in the P-trees, which increases the efficiency of the

ANDing operations.

4.4 Conclusion

In this paper we proposed a new approach to k-nearest neighbor classification for

spatial data streams by using a new data structure called the P-tree, which is a lossless

compressed and data-mining-ready representation of the original spatial data. Our new

approach, called closed-KNN, finds the closure of the KNN set, we call closed-KNN,

instead of considering exactly k nearest neighbor. Closed-KNN includes all of the

points on the boundary even if the size of the nearest neighbor set becomes larger than

k. Instead of examining individual data points to find nearest neighbors, we rely on the

expansion of the neighborhood. The P-tree structure facilitates efficient computation of

the nearest neighbors. Our methods outperform the traditional implementations of KNN

both in terms of accuracy and speed.

We proposed a new distance metric called Higher Order Bit Similarity (HOBS)

that provides an easy and efficient way of computing closed-KNN using P-trees while

preserving the classification accuracy at a high level.

References

[1] Domingos, P. and Hulten, G., “Mining high-speed data streams”, Proceedings of

ACM SIGKDD 2000.

[2] Domingos, P., & Hulten, G., “Catching Up with the Data: Research Issues in

Mining Data Streams”, DMKD 2001.

 47

[3] T. Cover and P. Hart, “Nearest Neighbor pattern classification”, IEEE Trans.

Information Theory, 13:21-27, 1967.

[4] Dudani, S. (1975). “The distance-weighted k-nearest neighbor rule”. IEEE

Transactions on Systems, Man, and Cybernetics, 6:325--327.

[5] Morin, R.L. and D.E.Raeside, “A Reappraisal of Distance-Weighted k-Nearest

Neighbor Classification for Pattern Recognition with Missing Data”, IEEE Transactions

on Systems, Man, and Cybernetics, Vol. SMC-11 (3), pp. 241-243, 1981.

[6] J. E. Macleod, A. Luk, and D. M. Titterington. “A re-examination of the distance-

weighted k-nearest neighbor classification rule”. IEEE Trans. Syst. Man Cybern., SMC-

17(4):689--696, 1987.

[7] Dasarathy, B.V. (1991). “Nearest-Neighbor Classification Techniques”. IEEE

Computer Society Press, Los Alomitos, CA.

[8] William Perrizo, "Peano Count Tree Technology", Technical Report NDSU-CSOR-

TR-01-1, 2001.

[9] Jiawei Han, Micheline Kamber, “Data Mining: Concepts and Techniques”, Morgan

Kaufmann, 2001.

[10] Globig, C., & Wess, S. “Symbolic Learning and Nearest-Neighbor Classification”,

1994.

[11] M. James, “Classification Algorithms”, New York: John Wiley & Sons, 1985.

[12] William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy, “On Mining Satellite

and Other Remotely Sensed Images”, Data Mining and Knowledge Discovery 2001, pp.

33-40.

[13] William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy, “Deriving High

Confidence Rules from Spatial Data using Peano Count Trees", Proceedings of the 2nd

International Conference on Web-Age Information Management, 2001.

 48

CHAPTER 5: PAPER 2

FAST K-CLUSTERING ALGORITHM ON SPATIAL DATA

USING P-TREES

Abstract

k-clustering is the method of grouping objects into k groups with the objective of

reducing the intra-cluster squared distance or variance; that is the objects in the same group

are similar. We apply k-clustering methods to image data with millions of pixels and multi-

bands per pixel of data. So far k-means is the best algorithm to minimize the total intra-

cluster variance. k-means is an iterative algorithm that initially selects k cluster centers

randomly or by some predefined method and, in each iteration, it assigns each pixel to its

nearest center and updates the cluster centers using the mean of the clusters. The process of

reforming the clusters and their centers requires extensive computation in each iteration,

since every data point is typically examined, a distance calculated and a sum formed. To

solve the speed issue, in the last decade, various k-cluster algorithms such as median-cut,

mean-split and variance-based method have been proposed. Median-cut and mean split are

fast enough but are not good optimizers. As the variance-based method produces

optimization very close to k-means but still suffers from speed issue. We propose a new

fast P-tree based k-clustering method that provides optimization as good as variance based

method. Our experiments show that the P-tree implementation of the k-clustering algorithm

is on the order of 10 times faster than existing implementations. This speed is particularly

important in mining data streams.

 49

5.1 Introduction

Clustering is a fundamental problem that arises in many applications in different

fields such as data mining, image processing, and bioinformatics [4]. The process of

grouping a set of physical or abstract objects into classes of similar objects is called

clustering. A cluster is a collection of data objects that are similar to one another within the

same cluster and are dissimilar to the objects in other clusters. A cluster of data objects can

be treated collectively as one group in many applications [3].

Multi-band image data are increasingly available from variety of sources, including

commercial and government satellites, as well as airborne and ground based sensors [1].

This is accompanied by an increased spatial resolution as well as an increased number of

bands. A typical image can have millions of pixels with tens of bands per pixel. There are

different types of RSI images, such as TM, SPOT, AVHRR, TIFF, etc. For example, a TM

image (Thematic Mapper) contains 7 bands, which are B (Blue), G (Green), R (Red), RIR

(Reflective-Infrared), MIR (Mid-Infrared), TIR (Thermal Infrared), and MIR2

(Mid_Infrared2) [2]. Typically, a TM scene contains 40M pixels. A TIFF image of

agricultural data may contain the Bands red, green, blue, yield, soil moisture, nitrogen, etc.

We apply k-means clustering to TIFF images containing 1320 × 1320 pixels with three 8-

bit bands, red, green and blue. That is, more than 5MB of data. The reflectance value in

each band ranges from 0 to 255.

 The image analyst’s challenge is to identify the important and useful features in the

image without being overwhelmed by the sheer volume of data. One response to this

challenge is provided by algorithms, which segments the image by clustering pixels into

classes based on the band similarity of each pixel to other member of the class. As well as

 50

providing the analyst with a picture summarizing the spatial organization of the different

band types, these clustering algorithms also provide a very real compression of data [1].

Wan et al [5] described clustering as a procedure that can be viewed as one of finding

groupings in a set of events by extremizing some criterion function. In a variety of

problems, such unsupervised learning, multivariate data analysis, and digital image

processing, the collection of data can be represented as a set of points in a

multidimensional vector space. One of the most widely used criterion functions for

clustering analysis is the variance or the sum of squared Euclidean distances measured

from the cluster centers. The main task in clustering analysis is then to seek the groupings

that minimize the sum-of-squared-errors.

 Sum of the squared error or total variance = ()∑∑
= ∈

k

i Cp
i

i

pcd
0

2
2 ,

Where k is the number of clusters, ci is the center or mean of the cluster Ci and

()pcd i ,
2
2 is the squared Euclidian distance of point p from the cluster center or mean ci.

In [4], Yair Bartal et al provided an algorithm to minimize the sum of the pair-wise squared

distance of the points in the clusters.

 Sum of the pair-wise squared distance = ()∑ ∑
= ∈

k

i Cqp i

qpd
0 ,

2
2 ,

In this paper we provide an algorithm to minimize the sum of the squared error or

total variance. The problem of finding the global minimum solution is NP-complete [6]. To

solve the problem, a number of approximate clustering algorithms developed [4, 7, 8, 9,

10]. These techniques can be divided into two categories: iterative optimization and

divisive approach. K-means is a iterative optimization procedure that is most frequently

 51

used for finding a local minimum solution. The converging time required by the k-means

approaches can easily become unmanageable, particularly for a large clustering problem.

However k-means provides the best optimization among the algorithms mentioned.

On the other hand, a heuristic approach based divisive techniques tries to reduce the

computational complexity and at the same time produce and acceptable solution. Divisive

approaches initially assume there is a one cluster containing all of the given data points.

Then divide it into two clusters and recursively it selects one of the clusters chosen by

some heuristic method and divide it into another two clusters; continues this until process

until there are k clusters. Median-cut [7], mean-split [9], variance-based k-Clustering [4]

are important among divisive algorithms. In section 5.2 we reviewed this methods. All of

these divisive approaches partition a cluster by a hyperplane perpendicular to one of the

coordinate axes. Variance-based method gives a better approximation to k-means but

slower than the other two methods. This method finds the optimal cut-point in an axis by

examining each point in the axis. Instead we propose a method to find the optimal cut point

by k-means type convergence techniques that avoids examination of each point in the axis.

This makes our algorithm faster than variance-based method while keeping the cluster

quality as good as variance-based method. Our method can be called a hybrid method that

uses the k-means type convergence technique in the divisive approach. Our main

improvement in speed is using P-trees to compute the sum and variance in each step of the

algorithm without scanning databases. This makes our algorithm order of 10 times faster

than the other methods. Details of our algorithm are discussed in section 5.3.

 52

5.2 Review of the k-Clustering Algorithms

5.2.1 k-Means Algorithm

The k-means iterative procedure has received considerable attention in clustering

analysis since it produces a very good minimization of the sum-of-the-squared-error or

total variance function. This algorithm first selects k initial cluster centers. Then, the k

clusters are formed by associating each data point with its closest cluster center. The

centroids or means of these K clusters become the new cluster centers. The above

procedure is repeated until the new cluster centers are the same as the previous ones.

Although the k-means algorithm has been widely used in many applications, it has been

shown only recently [11] that it converges to a local minimum solution in a finite number

of iterations if a quadratic metric is used.

With the spatial-storage scheme, the time complexity of this algorithm is proportional

to O(mTNK). The number of iterations T necessary for the algorithm to converge depends

on the distribution of the data points, the number of clusters required, the size of the space,

and the choice of initial cluster centers. For a large clustering problem, the computation can

be very costly. For example, it may take more than twenty hours on a VAX 780 computer

to reduce 256 clusters for a full-color image [9].

5.2.2 The Mean-Split Algorithm

Considering the whole data space, a big hyperbox, as the initial cluster, all of the

divisive techniques split the hyperboxes with a hyperplane perpendicular to an axis until

there are k hyperboxes. All of the techniques share the following common steps.

a) Based on some heuristic select a hyperbox to split.

b) Select an axis along which the hyperbox to be split.

 53

c) Select the cut point on the selected axis.

d) Split the hyperbox into two sub-hyperboxes using a hyperplane perpendicular to

the selected hyperbox at the selected cut-point.

e) Repeat the process until there are k hyper boxes. Each hyperbox is a cluster.

The different divisive approaches differ in different strategies in selecting the hyperbox,

axis and cut-point.

In mean-split algorithm, when a hyperbox is created by splitting, it is assigned a

number of clusters. If the number of clusters assigned to cluster is more than one, it is

selected to split. The initial big hyperbox is assigned all of the k clusters. If L be the

number of clusters assigned to a hyperbox, when the hyperbox is split into two sub-

hyperboxes, then Li clusters are assigned to the ith sub-hyperbox according to the following

formula:

() 








+
−+

+
=

21

1

21
1

VV
V

nn
nLL i

i αα , i = 1, 2

where ni is the number of data points in sub-hyperbox i and Vi is the volume of the

hyperbox i. The parameter α is restricted to the range 0.5 ≤ α ≤ 0.7.

Min-split algorithm selects the axis that has the projected distribution of the data points

with the largest spread and the mean of the projected distribution is the cut-point.

The main advantage of the mean-split algorithm is that it has a lower computational

cost: O(mN log k) for time and O(mN) for space; m is the dimensionality of the data and N

is the total number of data points. But there are draw backs associated with this algorithm.

To partition a hyperbox by a plane passing through the mean does not necessarily produce

a lower quantization error.

 54

5.2.3 Variance-Based Algorithm

Variance-based algorithm is another divisive algorithm that selects the hyperbox with

the largest variance to split. Then it takes the projection of the data points along each

dimension and examines each point in that dimension to find which cut-point gives the

largest variance reduction in the projected data. That cut-point and axis are chosen to split

the hyperbox.

Letting µ and σ2 be the mean and variance or the projected 1-dimensional distribution, the

optimal cut-point topt is defined by:

() ()[]twtwt

topt
2
22

2
11

2maxarg σσσ −−=

 where wi and ()ti
2σ are the weight and variance of the ith interval (i = 1, 2). optt can also be

expressed as (){ } 







−= t

w
wt

topt 1
2

1maxarg µµ .

This algorithm produces better minimization of the quantization error, which is closer to

that of k-means algorithm but suffers from the higher computational cost, which is O(mNk),

since almost every point along an axis is examined.

5.3 Our Algorithm

We propose an approximate divisive algorithm that arbitrarily chooses a cut-point and

iteratively converges to the optimal cut-point instead examining every single point in the

interval and we compute the mean and the variance by using P-trees with scanning the

databases that makes it faster than any algorithm discussed above. In terms of quality of the

clusters, our algorithm produces as good minimization as variance-based method.

 55

Finding the optimal cut-point on an axis includes the following steps:

a) take the projection of the data point on the specified axis that forms 1-dimensional

data.

b) Arbitrarily select two points m1 and m2 (m1 < m2) as initial means on the axis.

c) Assign data point p to the cluster C1 if p ≤ (m1 + m2) / 2, otherwise assign p to C2.

d) Update m1 and m2 with the means of C1 and C2.

e) Repeat the process until there is no change in m1 and m2.

f) The optimal cut-point is (m1 + m2) / 2.

Select the hyperbox and the axis that gives the maximum difference between m1 and

m2 i.e. max (m2 – m1) and split the hyperbox through the cut point (m1 + m2) / 2. At each

splitting we do not need to compute the optimal cut-point for each of hyperboxes. At the

time of forming the two new hyperboxes by splitting some big hyperbox, we find its

optimal cut-point and axis and store it until these hyperboxes are split further.

The number of iterations to find the cut-point is much less than the number of points

along the axis and the computation required in each iteration is as same as the computation

required for each examining point in the variance-based method. Therefore our method

finds the optimal cut-point in fewer steps than the variance based method.

We represent each cluster by a template P-tree. A template P-tree represents a subset

of the data points or pixels. The template P-tree, Pt, contains a 1 bit for a pixel if the pixel

is in that subset, otherwise there is a 0 bit in Pt for that pixel. In our algorithm, the P-tree,

Pci, representing the cluster Ci is the template P-tree for Ci. The template P-tree for initial

cluster, PC1, is a pure1-tree (defined in section 3.2) i.e. C1 contains all of the pixels.

 56

 In step (c) of the above algorithm we do not compare each individual data point p to

assign to a cluster. Suppose we want to find optimal cut-point along the axis j of the cluster

Ci. We compute the interval P-tree Pj(0, (m1+m2)/2) and Pj((m1+m2)/2, UPPER), where

UPPER is largest possible band-value. Then the two new clusters are:

PCi1 = PCi & Pj(0, (m1+m2)/2)

PCi2 = PCi & Pj((m1+m2)/2, UPPER)

 And note that Pj((m1+m2)/2, UPPER) = P′ j(0, (m1+m2)/2)

To compute interval P-trees by ORing value P-trees for each of the values in the interval is

costly if the length of the interval is large. We provide an optimal algorithm (Algorithm

5.1) to compute interval P-tree by decomposing the interval into few subintervals such that

each of the sub-intervals can be computed in less cost than the computation of a value P-

tree.

Algorithm 5.1 Computing Interval P-trees

Input: An interval [v1, v2] of the band i and the basic P-trees for the band i, Pi,j, for j = 0, 1,

2, …, b – 1, where b is the number of bits in band i.

Output: Pint, the interval P-tree Pi(v1, v2).

1. Initialize Pint by pure0 tree P0: Pint ← P0

2. Find an integer n∈ [v1, v2+1], such that n is divisible by 2t for some non-negative

integer t and no integer in the interval [v1, v2+1] is divisible by 2t+1. Without

examining each number in the interval, n can be calculated by the following steps.

n ← 1
while 2n ≤ v2 + 1 do
 n ← 2n
m ← n / 2
while n < v1 do

 57

while n + m > v2 + 1 do
m ← m / 2

 n ← n + m

3. a) Initialize n1 by n: n1 ← n

b) Find a positive integer r such that n1 – 2r ≥ v1 and n1 – 2r+1 < v1

c) Psub ← Pi, 0 & Pi, 1 & Pi, 2 & …& Pi, b-r-1, Psub is the interval P-tree for the sub-

interval [n1 – 2r, n1 – 1], i.e. Pi(n1 – 2r, n1 – 1).

 Pint ← Pint & Psub

 n1 ← n1 – 2r

 d) If n1 > v1, repeat step b and c.

4. a) Initialize n2 by n: n2 ← n

b) Find a positive integer r such that n2 + 2r ≤ v2 +1 and n1 + 2r+1 > v2 + 1

c) Psub ← Pi, 0 & Pi, 1 & Pi, 2 & …& Pi, b-r-1, Psub is the interval P-tree for the sub-

interval [n2, n2 + 2r – 1], i.e. Pi(n2 , n2 + 2r – 1).

 Pint ← Pint & Psub

 n2 ← n2 + 2r

 d) If n2 ≤ v2, repeat step b and c.

To compute the mean and variance of a cluster or interval we perform AND operations on

P-trees and use the root counts of the P-trees instead of scanning the databases. ANDing of

P-trees is very much faster than the database scanning.

5.3.1 Computation of Sum and Mean from the P-trees

 58

If the basic P-trees that are constructed from the original dataset are given, we compute the

sum of the band-values of the pixels by ()∑
−

=

−−
1

0
,

12
n

j
ji

jn Prc (the notations of the symbols have

been given in section 3.2 of chapter 3). If the number of bits, n, in each band-value is 8

(n=8), then it requires the computation of only 8 terms. The root of P-trees, ()jiPrc , can

directly be found in the header of a P-tree (section 3.3). The proof of the expression is

given in theorem 5.1. The mean can be calculated by dividing sum by the number of pixels,

N. Theorem 5.1 calculates the sum of band-values for all of the pixels. But after dividing

the first, cluster, which contains all of the pixels in the space, to calculate the sum for the

pixels that are included in a particular cluster, we use

sum = ()∑
−

=

−−
1

0
,

1 &2
n

j
tji

jn PPrc (theorem 5.2)

mean =
()

()t

n

j
tji

jn

Prc

PPrc∑
−

=

−−
1

0
,

1 &2

where Pt is the template P-tree or mask P-tree.

Lemma 5.1: ∑∑
−

=

−

=

1

0

1

0
,,,

c

x

r

y
jiyxb = rc(Pi,j).

 Proof: ∑∑
−

=

−

=

1

0

1

0
,,,

c

x

r

y
jiyxb

= the number of pixels having ‘1’ in the jth bit of ith band.

= the number of 1s in the P-tree Pi,j

= rc(Pi,j).

 59

Theorem 5.1: Summation of the values for bands i of all pixels, ()∑
−

=

−−=
1

0
,

12
n

j
ji

jn
i PrcS , where

n, c and r are the number of bits in band i, columns and rows respectively.

Proof: 0
1,,,

3
2,,,

2
1,,,

1
0,,,,, 2......222 −

−−− ++++= niyx
n

iyx
n

iyx
n

iyxiyx bbbbV

 = 1
1

0
,,, 2 −−

−

=
∑

jn
n

j
jiyxb

and ∑∑
−

=

−

=
=

1

0

1

0
,,

c

x

r

y
iyxi VS

 ∑∑ ∑
−

=

−

=

−−
−

=










=

1

0

1

0

1
1

0
,,, 2

c

x

r

y

jn
n

j
jiyxb

 ∑ ∑∑
−

=

−

=

−−
−

=










=

1

0

1

0

1
1

0
,,, 2

n

j

c

x

jn
r

y
jiyxb , since addition is associative

 ∑ ∑∑
−

=

−

=

−

=

−−










=

1

0

1

0

1

0
,,,

12
n

j

c

x

r

y
jiyx

jn b , since 12 −− jn is independent of x and y.

Therefore ()∑
−

=

−−=
1

0
,

12
n

j
ji

jn
i PrcS . 5.1Lemma

Lemma 5.2: For single-bit operands then bit-wise ‘AND’ operation (&) and multiplication

produce the same result and the result is also a 1-bit value; that is a × b = a & b if a and b

are 1-bit values i.e. either 1 or 0.

Proof: Using a truth-table to examine all possible combinations of values of a and b

a b a × b a & b

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

 60

The data from the table show that for any 1-bit values a and b, a × b = a & b. And both (a

× b) and (a & b) are 1-bit value.

Theorem 5.2: Summation of the values for band i of the pixels represented by the template

P-tree or mask P-tree, tP , is () ()∑
−

=

−−=
1

0
,

1 &2
n

j
tji

jn
ti PPrcPS .

Proof: Let yxt , is the bit stored in tP for the pixel yxp ,

i.e. yxt , = 1, if yxp , is in the group of pixels represented by tP

 = 0, otherwise

Then, () ∑∑
−

=

−

=

=
1

0

1

0
,,,

c

x

r

y
yxiyxti tVPS

 yx

c

x

r

y

jn
n

j
jiyx tb ,

1

0

1

0

1
1

0
,,, 2∑∑ ∑

−

=

−

=

−−
−

=










=

 ∑∑ ∑
−

=

−

=

−−
−

=










=

1

0

1

0
,

1
1

0
,,, 2

c

x

r

y
yx

jn
n

j
jiyx tb

 ∑ ∑∑
−

=

−

=

−−
−

=










=

1

0
,

1

0

1
1

0
,,, 2

n

j
yx

c

x

jn
r

y
jiyx tb

 ∑ ∑∑
−

=

−

=

−

=

−−










=

1

0
,

1

0

1

0
,,,

12
n

j
yx

c

x

r

y
jiyx

jn tb

 ∑ ∑∑
−

=

−

=

−

=

−−










=

1

0
,

1

0

1

0
,,,

1 &2
n

j
yx

c

x

r

y
jiyx

jn tb 5.2Lemma

 ()∑
−

=

−−=
1

0
,

1 &2
n

j
tji

jn PPrc 5.1Lemma

 61

5.3.2 Computation of Variance from the P-trees

Variance is defined by ()∑ − 21 µx
N

 that can be simplified to ∑ − 221 µx
N

. Theorem 5.1

and 5.2 allow us to compute mean, µ , from the P-tree; now if we can find ∑
2x using the

P-tree, then we do not need to scan databases to perform any computation required by the

algorithm. Theorem 5.3 and 5.4 facilitates the computation of the sum of the squared band-

values.

Lemma 5.3: () ()∑ ∑∑∑
−

=

−

+=

−

=

−

=

=
1

0

1

1

1

0

1

0

,,
n

x

n

xy

n

x

x

y

xyfyxf

Proof: () () () () ()∑∑∑∑∑∑
−

====

−

=

−

=

−++++=
2

0

2

0

1

0

0

0

1

0

1

0

,1,3,2,1,
n

yyyy

n

x

x

y

ynfyfyfyfyxf �

= ()0,1f

() ()1,20,2 ff ++

() () ()2,31,30,3 fff +++

…

() () () ()2,12,11,10,1 −−++−+−+−+ nnfnfnfnf �

= () () () ()∑ ∑∑∑
−

=

−

−=

−

=

−

=

−++++
1

3

1

1

1

2

1

1

2,2,1,0,
n

y

n

ny

n

y

n

y

nyfyfyfyf � <Accumulating terms over a vertical line>

= () ()∑∑ ∑
−

=

−

=

−

+=

−
11

0

1

1

,,
n

ny

n

x

n

xy

xyfxyf

= ()∑ ∑
−

=

−

+=

1

0

1

1

,
n

x

n

xy

xyf

 62

Theorem 5.3: Summation of the squared values for bands i of all pixels,

() ()∑∑
−

=

−

=

−−−=
1

0

1

0
,,

222 &2
n

j

n

k
kiji

kjn
i PPrcvS , where n, c and r are the number of bits in band i,

columns and rows respectively.

Proof: 1
1

0
,,,,, 2 −−

−

=
∑= jn
n

j
jiyxiyx bV

⇒



























= −−

−

=

−−
−

=
∑∑

1
1

0
,,,

1
1

0
,,,

2
,, 22 jn

n

j
jiyx

jn
n

j
jiyxiyx bbV

=























 −−
−

=

−−
−

=
∑∑

1
1

0
,,,

1
1

0
,,, 22 jn

n

j
jiyx

kn
n

k
kiyx bb , replacing the index j by k in the left summation

= 1
1

0
,,,

1
1

0
,,, 22 −−

−

=

−−
−

=
∑ ∑ 









 jn
n

j
jiyx

kn
n

k
kiyx bb

= ()()∑ ∑
−

=

−−
−

=

−−







1

0

1
,,,

1

0

1
,,, 22

n

j

jn
jiyx

n

k

kn
kiyx bb

=∑∑
−

=

−

=

−−−
1

0

1

0

22
,,,,,, 2

n

j

n

k

kjn
jiyxkiyx bb

Now () ∑∑
−

=

−

=

=
1

0

1

0

2
,,

2
c

x

r

y
iyxi VvS

 =∑∑
−

=

−

=

−−−
1

0

1

0

22
,,,,,, 2

c

x

r

y

kjn
jiyxkiyx bb














= ∑∑∑∑

−

=

−

=

−

=

−

=

−−−
1

0

1

0
,,,,,,

1

0

1

0

222
c

x

r

y
jiyxkiyx

n

j

n

k

kjn bb














= ∑∑∑∑

−

=

−

=

−

=

−

=

−−−
1

0

1

0
,,,,,,

1

0

1

0

22 &2
c

x

r

y
jiyxkiyx

n

j

n

k

kjn bb 5.2Lemma

 63

()∑∑
−

=

−

=

−−−=
1

0

1

0
,,

22 &2
n

j

n

k
kiji

kjn PPrc 5.1Lemma

Note: Using theorem 5.3, to calculate ()2

ivS , the required number of ‘&’ operations is n2,

which can be reduced to ½ (n2 – n) by using the corollary 5.1.

Corollary 5.1: ()2
ivS can be expressed as () () ()∑ ∑

−

=

−−
−

=

−−−










+

1

0
,

12
1

0
,,

12 2&2
n

j
ji

jn
j

k
kiji

kjn PrcPPrc .

Proof: ()2
ivS ()∑∑

−

=

−

=

−−−=
1

0

1

0
,,

22 &2
n

j

n

k
kiji

kjn PPrc

() () ()∑ ∑∑∑
−

=

−

+=

−−−

=

−−−
−

=

−−−













++=

1

0

1

1
,,

22
,,

22
1

0
,,

22 &2&2&2
n

j

n

jk
kiji

kjn
j

jk
kiji

kjn
j

k
kiji

kjn PPrcPPrcPPrc

() () () ()∑ ∑∑
−

=

−

+=

−−−−−
−

=

−−−













++=

1

0

1

1
,,

22
,,

12
1

0
,,

22 &2&2&2
n

j

n

jk
kiji

jkn
jiji

jn
j

k
kiji

kjn PPrcPPrcPPrc

kijijikijijiji PPPPPPP ,,,,,,, && and & i.e.ecommutativ and idempotent is & ==

() () () ()∑ ∑∑
−

=

−

+=

−−−−−
−

=

−−−













++=

1

0

1

1
,,

22
,

12
1

0
,,

22 &22&2
n

j

n

jk
jiki

jkn
ji

jn
j

k
kiji

kjn PPrcPrcPPrc

() () () ()∑ ∑∑∑∑
−

=

−

+=

−−−
−

=

−−
−

=

−

=

−−− ++=
1

0

1

1
,,

22
1

0
,

12
1

0

1

0
,,

22 &22&2
n

j

n

jk
jiki

jkn
n

j
ji

jn
n

j

j

k
kiji

kjn PPrcPrcPPrc

() () () ()∑∑∑∑∑
−

=

−

=

−−−
−

=

−−
−

=

−

=

−−− ++=
1

0

1

0
,,

22
1

0
,

12
1

0

1

0
,,

22 &22&2
n

j

j

k
kiji

jkn
n

j
ji

jn
n

j

j

k
kiji

kjn PPrcPrcPPrc 5.3Lemma

() () ()∑ ∑
−

=

−−
−

=

−−−











+=

1

0
,

12
1

0
,,

22 2&22
n

j
ji

jn
j

k
kiji

kjn PrcPPrc

() () ()∑ ∑
−

=

−−
−

=

−−−











+=

1

0
,

12
1

0
,,

12 2&2
n

j
ji

jn
j

k
kiji

kjn PrcPPrc

 64

Theorem 5.4: Summation of the squared values for band i of the pixels represented by the

template P-tree or mask P-tree, tP , is () ()∑∑
−

=

−

=

−−−=
1

0

1

0
,,

222 &&2,
n

j

n

k
tkiji

kjn
ti PPPrcPvS .

Proof: Proof can easily be constructed by following the techniques used in proving the

theorems 5.2 and 5.3.

5.4 Conclusion

In this paper we proposed a new k-Clustering algorithm that combined the

convergence techniques of k-means algorithm into the divisive k-clustering techniques

using P-trees to produce a fast clustering techniques that minimze the sum of the squared

error. Our new algorithm is faster than any k-clustering algorithms while the optimization

of the sum of the squared error is as good as the variance-based method.

We provided theorems to calculate the mean and variance from the P-trees without

scanning the database that saves computational time significantly. In this paper we also

included an optimal algorithm to compute the interval P-trees.

References

[1] Mike Estlick, Mirian Leeser, James Theiler and John Szymanski, “Algorithmic

Transformations in the Implementation of K-means Clustering on Reconfigurable

Hardware,” FPGA 2001, February 11-13, 2001, Monterey, CA, USA.

[2] William Perrizo, Qin Ding, Qiang Ding and Amalendu Roy, "On Mining Satellite and

Other Remotely Sensed Images", ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery (DMKD'01), May 2001, pp. 33-40.

 65

[3] Jiawei Han and Micheline Kamber, “Data Mining: Concepts and Techniques,” Morgan

Kaufmann Publishers, August 2000. ISBN 1-55860-489-8

 [4] Yair Bartal, Moses Charikary, Danny Razz, “Approximating min-sum k-Clustering in

Metric Spaces,” Symposium on Theory of computing, July 6-8, 2001, Hersonissos, Crete,

Greece.

 [5] S. J. WAN, S. K. M. WONG, and P. PRUSINKIEWICZ, “An Algorithm for

Multidimensional Data Clustering.”

[6] L. Hyafil and R. L. Rivest, “Construction Optimal Binary Decision Tree is NP-

Complete.” Inf. Process. Lett. May 1976, 15-17

[7] P. Heckbert, “Color Image Quantization for Frame Buffer Display .” ACM Trans.

Comput. Gr. 16, 3 (July 1982), 297-307

[8] J. B. MacQueen, “Some Methods for Classification and Analysis of Multivariate

Observations.” Proceedings of 5th Berkley Symposium on Mathematical Statistics and

Probability 1 (1967), 281-297

[9] X. Wu and I. H. Witten, “A Fast k-Means Type Clustering Algorithm.” Dept of

Computer Science, Univ. of Calgary, Canada, May 1985

[10] M. Inaba, N. Katoh and H. Imao, “Application of Weighted Voronoi Diagrams and

Randomization to Variance-Based k-Clustering.” 10th ACM Computational Geometry 94-

6/94 Stony Brook, NY, USA.

[11] S. Z. Selim and M. A. Ismail. “k-Means-Type Algorithms: A Generalized convergence

theorem and characterization of the local optimality.” IEEE transaction, Pattern Analysis

Machine Intelligence.” PAMI-6, 1, 1994, 81-87.

 66

CHPATER 6: GENERAL CONCLUSION

In this thesis we analyzed distance metric-based data mining techniques using P-

trees. Various distance metrics are considered and their behaviors are analyzed. We

developed the fast techniques of computing neighborhoods and partitions, which made by

the decision boundaries of the distance metrics, using P-trees. We successfully used those

techniques to develop fast classification and clustering algorithms.

A new distance metric is proposed that can be used efficiently in P-tree-based

computation. We included the proof that the new proposed distance metric satisfies the

criteria of the distance metrics.

Some interesting and useful properties of P-trees have been revealed. We found

proved some useful theorems that enable statistical computations such as finding sum,

mean and variance from the P-trees without scanning databases.

 67

BIBLIOGRAPHY

A. William Perrizo, “Peano Count Tree Technology Lab Notes”, Computer Science

Department, North Dakota State University, Fargo, ND, USA.

B. Jiawei Han and Micheline Kamber, “Data Mining: Concepts and Techniques,”

Morgan Kaufmann Publishers, August 2000. ISBN 1-55860-489-8

C. “Conic Sections in Taxicab Geometry,” available from

http://user3.stritch.edu/~ber/Taxi/taxi.html.

D. “Sample difference metrics used in ANALOG,” available from

http://geochange.er.usgs.gov/pub/tools/analog/doc/distance.html.

E. “Unsupervised Pattern Classification,” available from

http://soft.ee.umist.ac.uk/nigel/neural/SOM5.html.

F. “Welcome to the GeneXtm Clustering Analysis Page,” available from

http://genex.ncgr.org/genex/rcluster/help.html.

G. “Distance Metrics”, available from http://www.dai.ed.ac.uk/HIPR2/metric.htm.

H. “Geometry on a Smooth Manifold,” available from

http://www.chaos.org.uk/~eddy/math/smooth/geometry.html.

	PREFACE.pdf
	TABLE OF CONTENTS
	ABSTRACT ……………………………………………………………………………… iv
	ACKNOWLEDGEMENT ………………………………………………………………… v
	CHAPTER 1: GENERAL INTRODUCTION ……………………………………………. 1
	CHAPTER 2: DISTANCE METRICS AND THEIR BEHAVIOR ………………………. 4
	CHAPTER 3: P-TREES AND ITS ALGEBRA & PROPERTIES ……………………… 18
	ABSTRACT

	CHAPTER 3.pdf
	Figure 3.3: P-tree Algebra
	P1,(v1,v2) = P1,v1 OR P1,v1+1 OR P1,v1+2 OR … OR P1,v2

	CHAPTER 4.pdf
	References

	CHAPTER 5.pdf
	Algorithm 5.1 Computing Interval P-trees
	5.4 Conclusion
	References

