
Fast Distance Metric Based Data Mining 

Techniques Using P-trees: 

k-Nearest-Neighbor Classification and k-Clustering 

 
A Thesis  

Submitted to the Graduate Faculty  
Of the North Dakota State University 
Of Agriculture and Applied Science  

 
 

By 

Md Abdul Maleq Khan 

 
In Partial Fulfillment of the Requirements  

for the Degree of 
MASTER OF SCIENCE 

 
 

Major Department: 
Computer Science 

 
 

December 2001 
 
 

Fargo, North Dakota 
 
 



 ii

TABLE OF CONTENTS 

ABSTRACT ……………………………………………………………………………… iv  

ACKNOWLEDGEMENT ………………………………………………………………… v 

DEDICATION ……………………………………………………………………………. vi 

LIST OF FIGURES …………………………………………………………………….... vii 

CHAPTER 1: GENERAL INTRODUCTION ……………………………………………. 1  

CHAPTER 2: DISTANCE METRICS AND THEIR BEHAVIOR ………………………. 4 

 2.1 Definition of a Distance Metric ……………………………………………….. 4 

 2.2 Various Distance Metrics ……………………………………………………… 5 

 2.3 Neighborhood of a Point Using Different Distance Metrics ………………… 14 

 2.4 Decision Boundaries for the Distance Metrics ………………………………. 16 

CHAPTER 3: P-TREES AND ITS ALGEBRA & PROPERTIES ……………………… 18 

 3.1 P-trees and Its Algebra ……………………………………………………….. 18 

 3.2 Properties of P-trees ………………………………………………………….. 21 

 3.3 Header of a P-tree File ……………………………………………………….. 25 

3.4 Dealing with Padded Zeros …………………………………………………... 26 

CHAPTER 4: PAPER 1  

K-NEAREST NEIGHBOR CLASSIFICATION ON SPATIAL DATA STREAMS USING 

P-TREES ………………………………………………….……………………………… 28 

Abstract …………………………………………………………………………... 28 

4.1 Introduction …………………………………………………………………... 29 

4.2 Classification Algorithm ……………………………………………………... 32 

4.2.1 Expansion of Neighborhood ……………………………………….. 35 

4.2.2 Computing the Nearest Neighbors …………………………………. 38 

4.2.3 Finding the Plurality Class Among the Nearest Neighbors ………... 40 

4.3 Performance Analysis ………………………………………………..………. 41 

4.4 Conclusions …………………………………………………………………... 46 

References ………………………………………………………………………... 43 



 iii

CHAPTER 5: PAPER 2 

FAST K-CLUSTERING ALGORITHM ON SPATIAL DATA USING P-TREES ……. 48 

Abstract …………………………………………………………………………... 48 

5.1 Introduction …………………………………………………………………... 49 

5.2 Review of the Clustering Algorithms ………………………………………... 52 

5.2.1 k-Means Algorithm ………………………………………………… 52 

5.2.2 The Mean-Split Algorithm …………………………………………. 52 

5.2.3 Variance Based Algorithm …………………………………………. 54 

5.3 Our Algorithm ……………………………………………………………….. 54 

5.3.1 Computation of Sum and Mean from the P-trees ………………….. 57 

5.3.2 Computation of Variance from the P-trees ………………………… 61 

5.4 Conclusion …………………………………………………………………… 64 

References ………………………………………………………………………... 64 

CHAPTER 6: GENERAL CONCLUSION …………………………………….………... 66 

BIBLIOGRAPHY ………………………………………………………………………... 67 
 



 iv

ABSTRACT 

Khan, Md Abdul Maleq, M.S., Department of Computer Science, College of Science and 
Mathematics, North Dakota State University, December 20001. Fast Distance Metric 
Based Data Mining Techniques Using P-trees: k-Nearest-Neighbor Classification and k-
Clustering. Major Professor: Dr. William Perrizo. 
 

Data mining on spatial data has become important due to the fact that there are huge 

volumes of spatial data now available holding a wealth of valuable information. Distance 

metrics are used to find similar data objects that lead to develop robust algorithms for the 

data mining functionalities such as classification and clustering. In this paper we explored 

various distance metrics and their behavior and developed a new distance metric called 

HOB distance that provides an efficient way of computation using P-trees. We devised two 

new fast algorithms, one k-Nearest Neighbor Classification and one k-Clustering, based on 

the distance metrics using our new, rich, data-mining-ready structure, the Peano-count-tree 

or P-tree. In these two algorithms we have shown how to use P-trees to perform distance 

metric based computation for data mining. Experimental results show that our P-tree based 

techniques outperform the existing techniques. 
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CHAPTER 1: GENERAL INTRODUCTION 

Data mining is the process of extracting knowledge from a large amount of data. Data 

mining functionalities include data characterization and discrimination, Association rule 

mining, classification and prediction, cluster analysis, outlier analysis, evolution analysis 

etc. We focus on classification and cluster analysis. Classification is the process of 

predicting the class of a data object whose class label is unknown using a model derived 

from a set of data called a training dataset. The class labels of all data objects in the 

training dataset are known. Clustering is the process of grouping objects such that the 

objects in the same group are similar and two objects in different groups are dissimilar. 

Clustering can also be viewed as the process of finding equivalence classes of the data 

objects where each cluster is an equivalence class.    

Distance metrics play an important role in data mining. Distance metric gives a 

numerical value that measures the similarity between two data objects. In classification, the 

class of a new data object having unknown class label is predicted as the class of its similar 

objects.  In clustering, the similar objects are grouped together. The most common distance 

metrics are Euclidian distance, Manhattan distance, Max distance. There are also some 

other distances such as Canberra distance, Cord distance and Chi-squared distance that are 

also used for some specific purposes.  

In chapter 2, we discussed various distance metrics and their behavior. The 

neighborhood and decision boundaries for different distance metrics are depicted 

graphically. We developed a new distance metric called Higher Order Bit (HOB) 

distance. Chapter 2 includes a proof that HOB satisfies the property of a distance metric. 



 2

A P-tree is a quadrant based data structure that stores the count information of 1 bits 

of the quadrants and its sub-quadrants successively level by level. We construct one P-tree 

for each bit position. For example, from the first bits of the first attribute of all data points, 

we construct the P-tree P1,1. The count information stored in P-trees makes it data-mining-

ready and thus facilitates the construction of fast algorithms for data mining. P-trees also 

provide a significant compression of data. This can be an advantage when fitting data into 

main memory. 

In chapter 3, we review the P-tree data structure and its various forms including the 

logical AND/OR/COMPLEMENT operations on P-trees. We reveal some useful and 

interesting properties of P-trees. A header for P-tree files to form a generalized P-tree 

structure is included. 

In chapter 4, we include a paper: “K-Nearest Neighbor (KNN) Classification on 

Spatial Data Streams Using P-Trees”. Instead of using a traditional KNN set we build a 

closed-KNN. The definition of our new closed KNN is given in section 4.2. We develop 

two efficient algorithms using P-trees based on HOB and Max distance. The experimental 

results using different distance metrics have been included.  

In chapter 5, we included another paper: “Fast k-Clustering of Spatial Data Using P-

trees”. We develop a new efficient algorithm for k-clustering. In k-clustering, we need to 

compute the mean and variance of the data samples. Theorems including their proofs to 

compute mean and variance from P-trees without scanning databases have been given in 

section 5.3. k-clustering using P-trees involves computation of interval P-trees. An optimal 

algorithm to compute interval P-trees has also been included. These algorithms, theorems 



 3

and our fast P-tree AND/OR operations construct a very fast clustering method that does 

not require any database scan.  
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CHAPTER 2: DISTANCE METRICS AND THEIR 

BEHAVIOR 

 
2.1 Definition of a Distance Metric 

A distance metric measures the dissimilarity between two data points in terms of some 

numerical value. It also measures similarity; we can say that more distance less similar and 

less distance more similar. 

To define a distance metric, we need to designate a set of points, and give a rule, d(X, Y), 

for measuring distance between any two points, X and Y, of the space. Mathematically, a 

distance metric is a function, d, which maps any two points, X and Y in the n-dimensional 

space, into a real number, such that it satisfies the following three criteria.  

 
Criteria of a Distance Metric 

 
a) d(X, Y) is positive definite: If the points X and Y are different, the distance between 

them must be positive. If the points are the same, then the distance must be zero. That 

is, for any two points X and Y,  

i. if (X ≠ Y),  d(X, Y) > 0 

ii. if (X = Y),  d(X, Y) = 0 

 
b) d(X, Y) is symmetric: The distance from X to Y is the same as the distance from Y to 

X.  That is, for any two points X and Y, 

d(X, Y) = d(Y, X) 
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c) d(X, Y) satisfies triangle inequality: The distance between two points can never be 

more than the sum of their distances from some third point. That is, for any three 

points X, Y and Z,  

d(X, Y) + d(Y, Z)  ≥  d(X, Z) 

 
2.2 Various Distance Metrics 

The presence of the pixel grid makes several so-called distance metrics possible that often 

give different answers for the distance between the same pair of points. Among the 

possibilities, Manhattan, Euclidian, and Max distance metrics are common. 

 
Minkowski Distance 

The general form of these distances is the weighted Minkowski distance. Considering a 

point, X, in n-dimensional space as a vector  <x1, x2, x3, …, xn>,   

the weighted Minkowski distance,   ( )
pn

i

p
iiip yxwYXd

1

1

,








−= ∑
=

 

Where,  p is a positive integer, 

xi and yi are the ith components of X and Y, respectively. 

wi ( ≥ 0) is the weight associated to the ith dimension or ith feature. 

Associating weights allows some of the features dominate the others in similarity 

matching. This is useful when it is known that some features of the data are more important 

than the others. Otherwise, the Minkowski distance is used with wi = 1 for all i. This is also 

known as the Lp distance. 

( )
pn

i

p
iip yxYXd

1

1

,








−= ∑
=
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Manhattan Distance 

When p = 1, the Minkowski distance or the L1 distance is called the Manhattan distance. 

The Manhattan distance, ( ) ∑
=

−=
n

i
ii yxYXd

1
1 ,  

It is also known as the City Block distance. This metric assumes that in going from one 

pixel to the other it is only possible to travel directly along pixel grid lines. Diagonal moves 

are not allowed.  

 
Euclidian Distance 

With p = 2, the Minkowski distance or the L2 distance is known as the Euclidian distance. 

The Euclidian distance, ( ) ( )∑
=

−=
n

i
ii yxYXd

1

2
2 ,  

This is the most familiar distance that we use, in our daily life, to find the shortest distance 

between two points (x1, y1) and (x2, y2) in a two dimensional space; that is  

( ) ( ) ( )2
22

2
112 , yxyxYXd −+−=    

                                     
Max Distance 

When p = ∞, the summation, in the Minkowski distance or L∞∞∞∞ distance, is dominated by 

the largest difference, |xk – yk| for some k (1 ≤ k ≤ n) and the other differences are 

negligible. Hence L∞ distance becomes equal to the maximum of the differences. 

The Max distance, ( ) ii

n

i
yxYXd −=

=∞ 1
max,  
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Max distance is also known as the chessboard distance. This metric assumes that you can 

make moves on the pixel grid as if you were a ‘King’ making moves in chess, i.e. a 

diagonal move counts the same as a horizontal move. 

 

 

 

 

                     

 
It is clearly understood from the figure 2.1 that d1 ≥ d2 ≥ d∞ for any two points X and Y. 

 
Theorem 1: For any two points X and Y, the Minkowski distance metric (or Lp distance), 

( )
pn

i

p
iip yxYXd

1

1

,








−= ∑
=

is a monotone decreasing function of p; that is qp dd ≥  if p < q. 

 

Proof: ( )
pn

i

p
i

pn

i

p
iip zyxYXd

1

1

1

1

,








=








−= ∑∑
==

,  letting iii zyx =− , where zi ≥ 0 

Assuming X ≠ Y and { } ki

n

i
zz =

=1
max , we see 0≠kz . 

Let i
k

i

z
z α= , then 10 ≤≤ iα  and 

( )
pn

i

p
ik

pn

i

p
i

p
kp zzYXd

1

1

1

1

,








=








= ∑∑
==

αα and 1
0
∑
=

≥
n

i

p
iα , since p

k

n

i

p
i zz∑

=

≥
0

 

Similarly, ( )
qn

i

q
ikq zYXd

1

1

,








= ∑
=

α and 1
0
∑
=

≥
n

i

q
iα  

Figure 2.1: two-dimensional space showing  
various distance between points X and Y. 

 Manhattan, d1(X,Y) = XZ+ ZY = 4+3 = 7   
   Euclidian,   d2(X,Y) = XY = 5 
 Max,  d∞ (X,Y) = Max(XZ, ZY) = XZ = 4 

X (2,1) 

Y (6,4)

Z
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Now 10 ≤≤ iα  ∑∑
==

≥⇒≥⇒

n

i

q
i

n

i

p
i

q
i

p
i aa

01

αα , since p < q 

pn

i

q
i

qn

i

p
i a









≥








⇒ ∑∑
== 01

α , since 1
0
∑
=

≥
n

i

p
iα  and 1

0

1
∑
=

+ ≥
n

i

p
iα  and p < q 

qn

i

q
ik

pn

i

p
ik azz

1

0

1

1 







≥








⇒ ∑∑
==

α  

That is ( ) ( )YXdYXd qp ,, ≥  

Again when X = Y, ( ) ( ) 0,, == YXdYXd qp  

Therefore, for any X and Y, ( ) ( )YXdYXd qp ,, ≥ . 

   

Corollary 1(a): ( )
pn

i

p
ipk

pn

i

p
ikp

zzYXdL

1

1
0

1

1
000 limlim,:









=








= ∑∑
=

→
=

→
αα , which is not defined. 

Corollary 1(b): ( ) ii

n

ik

pn

i

p
ipk

pn

i

p
ikp

yxzzzYXdL −==








=








=
==

∞→
=

∞→∞∞ ∑∑ 1

1

1

1

1

maxlimlim,: αα . 

 

Canberra Distance 

Canberra distance is defined by ( ) ∑
= +

−
=

n

i ii

ii
c yx

yx
YXd

1

,  

 
Squared Cord Distance 

Squared cord distance is defined by ( ) ( )∑
=

−=
n

i
iisc yxYXd

1

2
,  

 
Squared Chi-squared distance 

Squared Chi-squared distance is defined by ( ) ( )
∑

= +
−

=
n

i ii

ii
chi yx

yx
YXd

1

2

,  
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Higher Order Bit (HOB) Distance 

In this paper we propose a new distance metric called HOB distance that provides an 

efficient way of computation using P-trees.  HOB distance is defined for the data where 

each component of a data point is an integer such as reflectance values of a pixel. We use 

similarity in the most significant bit positions between band values of two pixels.  We 

consider only the most significant consecutive bit positions starting from the left most bit, 

which is the highest order bit.  Consider the following two 8-bit values, x1 and y1, 

represented in binary. The 1st bit is the most significant bit and 8th bit is the least significant 

bit. 

 Bit position:  1  2  3  4   5  6  7  8        1  2  3  4   5  6  7  8  
      x1:  0  1  1  0   1  0  0  1  x1:  0  1  1  0   1  0  0  1 
     y1:  0  1  1  1   1  1  0  1  y2:  0  1  1  0   0  1  0  0 

These two values are similar in the three most significant bit positions, 1st, 2nd and 3rd 

bits (011).  After they differ (in 4th bit), we don’t consider anymore lower order bit 

positions though x1 and y1 have identical bits in the 5th, 7th and 8th positions. Since we are 

looking for closeness in values, after differing in some higher order bit positions, similarity 

in some lower order bit is meaningless with respect to our purpose. Similarly, x1 and y2 are 

identical in the four most significant bits (0110).  Therefore, according to our definition, x1 

is more similar to y2 than to y1.  

 
Definition 1: The HOB similarity between two integers A and B is defined by  

HOB(A, B) = ( ){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0
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where ai and bi are the ith bits of A and B respectively and m (m ≥ 1) is the number of bits in 

binary representations of the values. All values must be represented using the same number 

of bits. Or in other words,  

HOB(A, B) = s, where for all i ≤ s,  ai =  bi and (as+1 ≠ bs+1 or s = m),  

 
Definition 2: The HOB distance between two integers A and B is defined by 

 dv(A, B) = m – HOB(A, B).   

 
Definition 3: The HOB distance between two points X and Y is defined by  

 ( ) ( ) ( ){ } ( ){ }  HOBmaxmaxor,
11

 ,yxm - ,yxdX,YdYXd ii

n

iiiv

n

iHHOBS ==
==   

Where n is the number of dimensions. xi and yi are the ith components of X and Y 

respectively. 

 
Definition 4: When A and B are equal, A and B are identical in all m bits. Again when A 

and B are identical in all m bit, A and B are equal. We say, 

 A = B if and only if ( )ii bamii =⇒≤≤∀ 1  

 
Lemma 1: For any two integers A and B, HOB(A, B) is defined and 0 ≤ HOB(A, B) ≤ m.  

Proof: If s = 0, for any i, si ≤≤1  ⇔ FALSE, hence ( )ii basii =⇒≤≤∀ 1 ⇔ TRUE 

Therefore, the set ( ){ }ii basiis =⇒≤≤∀ 1:  contains the element 0 irrespective of A and B. 

Hence, for any two integers A and B, ( ){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0
has a value, i.e. HOB(A, 

B) is defined.  

{ } ms
m

s
=

=0
max and { } 0min

0
=

=
s

m

s
, then ( ){ } mbasiis ii

m

s
≤=⇒≤≤∀≤

=
1:max0

0
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That is 0 ≤ HOB(A, B) ≤ m. 

 
Lemma 2: 0 ≤ dv(A, B) ≤ m. 

Proof:  0 ≤ HOB(A, B) ≤ m     (Lemma 1) 

 ⇒ m - 0 ≥ m - HOB(A, B) ≥ m - m 

 ⇒ m ≥ dv(A, B) ≥ 0 

  ⇒ 0 ≤ dv(A, B) ≤ m 

 
Lemma 3: HOB(A, A) = m and dv(A, A) = 0 

Proof: HOB(A, A) = ( ){ }ii

m

s
aasiis =⇒≤≤∀

=
1:max

0
 = { }s

m

s 0
max

=
 = m 

 dv(A, A) = m - HOB(A, A) = 0 

 
Lemma 4: If A ≠ B, HOB(A, B) < m and dv(A, B) > 0 

Proof: (Proof by contradiction) 

Assume, HOB(A, B) = m 

( )ii bamii =⇒≤≤∀⇒ 1     1 Definition  

⇒ A = B     4 Definition  

But it is given that A ≠ B (contradiction), Therefore HOB(A, B) ≠ m. 

Again, HOB(A, B) ≤ m  1 Lemma  

Hence, HOB(A, B) < m 

And m - HOB(A, B) > 0 

⇒ dv(A, B) > 0 

 
Theorem 3: HOB distance is positive definite i.e. for any two points X and Y,  
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a) if (X = Y), ( )YXd H ,  = 0 

b) if (X ≠ Y), ( )YXd H ,  > 0 

Proof:  a) dH(X, Y) 

= dH(X, X)     YX =  

= ( ){ }  HOBSmax
1

 ,xxm - ii

n

i=
= { }  max

1
 mm

n

i
−

=
   3 Lemma  

= { }  0max
1

 
n

i=
= 0 

b) X ≠ Y ⇒ there exits some k such that xk ≠ yk 

⇒ dv(xk, yk) > 0       4 Lemma  

⇒ ( ){ }iiv

n

i
,yxd

1
max

=
 > 0     ( ) 2 Lemma  0,,any For ≥iiv ,yxdi  

That is ( )YXd H ,  > 0. 

 
Lemma 5: ( ) ( )ABBA ,HOB,HOB = . 

Proof: ( )BA,HOB   

= ( ){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0
 

= ( ){ }ii

m

s
absiis =⇒≤≤∀

=
1:max

0
 

= ( )AB,HOB  

 
Theorem 4: HOB distance is symmetric i.e. for any two points X and Y, ( )YXd H ,  = 

( )XYd H , . 

Proof: ( )YXd H ,   
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= ( ){ }  HOBmax
1

 ,yxm - ii

n

i=
 

= ( ){ }  HOBmax
1

 ,xym - ii

n

i=
 5 Lemma  

= ( )XYd H ,  

 
Lemma 6: For any three integers A, B and C, ( )BAdv ,  + ( )CBdv ,  ≥ ( )CAdv , . 

Proof: Let ( )A,BHOB  = p and ( )B,CHOB  = q. 

That is, ( ){ }ii

m

s
basiis =⇒≤≤∀

=
1:max

0
= p and ( ){ }ii

m

s
cbsiis =⇒≤≤∀

=
1:max

0
= q 

⇒ ( )ii bapii =⇒≤≤∀ 1  ∧  ( )ii cbqii =⇒≤≤∀ 1  

⇒ ( ) ( ) ( )( )iiii cbbaqpii =∧=⇒≤≤∀ ,min1  

⇒ ( )( )ii caqpii =⇒≤≤∀ ,min1  

⇒ ( )A,CHOB  = ( ){ }ii

m

s
casiis =⇒≤≤∀

=
1:max

0
 ≥ ( )qp,min   

⇒ m - ( )A,CHOB  ≤ m - ( )qp,min  

That is  m - ( )qp,min  ≥ ( )CAdv , . 

We know that (m – p) + (m – q) ≥ max (m – p, m – q) = m – ( )qp,min  ≥ ( )CAdv , . 

That is ( )BAdv ,  + ( )CBdv ,  ≥ ( )CAdv ,   2 Definition  

 
Theorem 5: HOB distance satisfies triangle inequality, i.e. for any three points X, Y and Z, 

( )YXd H ,  + ( )ZYd H ,  ≥ ( )ZXd H , . 

Proof: Assume ( )ZXdH ,  = ( ){ }  max
1 iiv

n

i
,zxd

=
= ( )kkv zxd , , for some integer k, where 1 ≤ k ≤ n. 

Now ( ){ }  max
1 iiv

n

i
,yxd

=
≥ ( )kkv yxd ,  and ( ){ }  max

1 iiv

n

i
,zyd

=
≥ ( )kkv zyd ,  



 14

⇒ ( ){ }  max
1 iiv

n

i
,yxd

=
+ ( ){ }  max

1 iiv

n

i
,zyd

=
≥ ( )kkv yxd ,  + ( )kkv zyd ,  

⇒ ( )YXd H ,  + ( )ZYd H ,  ≥ ( )kkv yxd ,  + ( )kkv zyd ,   3 Definition  

We know that ( )kkv yxd ,  + ( )kkv zyd ,  ≥ ( )kkv zxd ,  6 Lemma  

Then ( )YXd H ,  + ( )ZYd H ,  ≥ ( )kkv zxd ,  

That is ( )YXd H ,  + ( )ZYd H ,  ≥ ( )ZXd H ,  ( ) ( )kkvH zydZXd ,, Assumption =   

 
2.3 Neighborhood of a Point or Pixel Using Different Distance Metrics 

We define the neighborhood of a target point, T, as a set of points, S, such that each 

point in S is within a specified distance, r, from the target T and S contains all of the points 

that have the distance r or less from T.  That is  

X ∈  S if and only if d(T, X) ≤ r     

The elements in S are called the nearest neighbors of T with respect to the distance 

r and metric d. 

 r is called the radius of the neighborhood. 

T is called the center of the neighborhood. 

The locus of the point X satisfying d(T, X) = r, is called the boundary of the 

neighborhood. 

When r = 1, the boundary of the neighborhood is called the unit circle for the 

metric d.  

The neighborhood can also be defined as a closed region, R, in the space such that a point, 

X, is in the region R if and only if d(T, X) ≤ r.    
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Different distance metrics result in neighborhoods with different sizes and different 

shapes. In a two dimensional space, the neighborhood using Manhattan distance metric is a 

diamond. The center of the neighborhood is the intersection point of its diagonals. Each 

side of the diamond makes 45° angles with the axes and the length of the diagonals is 2r 

i.e. each side is √2r. The neighborhood using Euclidian distance is a circle with radius r 

and center T; the center of the circle is the center of the neighborhood. Using the Max 

distance it is a square with sides 2r, center T and having its sides parallel to the axes. The 

neighborhood for HOB distance is also a square with side 2r and the sides are parallel to 

the axes but the center of neighborhood, T, is not necessarily the center of the square. The 

size of the neighborhood for the Canberra and Squared Cord distance depends on the target 

T; for the same distance r, different targets generates different sized neighborhood. The 

neighborhoods using the four distance metrics discussed above are depicted in the figure 

2.2.  

 
 

 

 

 
       a) Manhattan              b) Euclidian                c) Max                         d) HOB 

Figure 2.2: neighborhood using different distance metrics for 2-dimensional data points. T 

is the center of the neighborhood and X is a point on the boundary, i.e. d(T, X) = r. Shaded 

region indicates the neighborhood. 
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2.4 Decision Boundaries for the Distance Metrics 

Let A and B be two stationary points and X be a moving point in the space. The locus of the 

point X satisfying the condition d(A, X) = d(B, X) is a hyperplane D (a line in a 2-

dimensional space), which divides the space into two half-planes (shown in figure 2.3).  

 

 

 

 

 

 

Figure 2.3: Decision boundary between points A and B using an arbitrary distance metric d. 

The points in the region or half-plane R1 are closer to point A; the points in the region R2 

are closer to the point B and the points on the hyperplane D have the same distance from A 

and B. This hyperplane D is called the decision boundary between points A and B for the 

metric d.     

 

 

 

 

 
Figure 2.4: Decision boundary for Manhattan, Euclidian and Max distance. 

The decision boundary for Euclidian distance is the perpendicular bisector to the line 

segment joining points A and B. The decision boundary for Manhattan distance is a 3-

segment line; the middle segment is a straight line making a 45° angle with the axes and 

other two segments are parallel to the axes. For Max distance, it is also a 3-segment line; 

B
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the middle segment is parallel to the axes and the other two segments are straight line 

making a 45° angle with the axes. The parallel segment can be parallel to the x-axis or the 

y-axis depending on the orientation of points A and B.  The decision boundary for HOB 

distance is a straight line perpendicular to the axis that makes the largest distance i.e. the 

axis, k, for which ( )kkv yxd , is maximum. 

 

 

 

 
 
 
 

Figure 2.5: Decision boundary for HOB distance 

B 

A

B 

A 
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CHAPTER 3: P-TREES AND ITS ALGEBRA & 

PROPERTIES 

 
3.1  P-trees and Its Algebra 

Spatial data is the type of data where each data tuple corresponds to a unique point in 

the space, usually a two dimensional space. The representation of spatial data is very 

important for further processing, such as data mining. Remotely Sensed Imagery (RSI) data 

belongs to the spatial data category. The concept of remotely sensed imagery covers a 

broad range of methods to include satellites, aerial photography, and ground sensors. A 

remotely sensed image typically contains several bands or columns of reflectance 

intensities. For example, TM (Thematic Mapper) scenes contain at least seven bands (Blue, 

Green, Red, NIR, MIR, TIR and MIR2) while a TIFF image contains three bands (Blue, 

Green and Red). Each band contains a relative reflectance intensity value in the range 0-to-

255 (one byte) for each pixel location in the scene. Ground data are collected at the surface 

of the earth and can be organized into images. For example, yield data can be organized 

into a yield map. 

Most spatial data comes in a format called BSQ for Band Sequential (or can be easily 

converted to BSQ).  BSQ data has a separate file for each band.  The ordering of the data 

values within a band is raster ordering with respect to the spatial area represented in the 

dataset.  This order is assumed and therefore is not explicitly indicated as a key attribute in 

each band (bands have just one column).  In this paper, we divided each BSQ band into 

several files, one for each bit position of the data values.   We call this format bit 

Sequential or bSQ [8, 12, 13].  A Landsat Thematic Mapper satellite image, for example, 



 

is in BSQ format with 7 bands, B1,…,B7, (Landsat-7 has 8) and ~40,000,000 8-bit data 

values.  A typical TIFF image aerial digital photograph is in what is called Band 

Interleaved by Bit (BIP) format, in which there is one file containing ~24,000,000 bits 

ordered by their positions, then band and then raster-ordered-pixel-location.  A simple 

transform can be used to convert TIFF images to BSQ and then to bSQ format. 

We organize each bSQ bit file, Bij (the file constructed from the jth bits of ith band), 

into a tree structure, called a Peano Count Tree (P-tree).  A P-tree is a quadrant-based tree. 

The root of a P-tree contains the 1-bit count of the entire bit-band.  The next level of the 

tree contains the 1 bit counts of the four quadrants in Peano order or Z-order, which is 

shown bellow. 

 

 

 

Figure 3.1 Peano ordering or Z-ordering 

  At the next level, each quadrant is partitioned into sub-quadrants and their 1-bit 

counts in raster order constitute the children of the quadrant node.  This construction is 

continued recursively down each tree path until the sub-quadrant is pure (entirely 1-bits or 

entirely 0-bits), which may or may not be at the leaf level.  For example, the P-tree for a 8-

row-8-column bit-band is shown in Figure 1. If all of the bits in a quadrant are 0 (1), the 

corresponding node in the P-tree is called pure0 (pure1) node. 

 
                                      m 
         _____________/  / \   \____________ 
       /                     ____/    \ ____                  \ 
     1          ____m__                 _m__             1     
                /    /   |      \              /   |  \    \ 
             m     0  1      m          1   1  m  1  
            //|\                //|\                  //|\ 
          1110             0010              1101                
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           _
       /     
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            /
          11
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3     0   4      1           4  4   3   4                
/|\                //|\                  //|\ 
10             0010              1101             
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Figure 3.2.  8-by-8 image and its P-tree (P-tree and PM-tree) 

In this example, 55 is the count of 1’s in the entire image, the numbers at the next 

level, 16, 8, 15 and 16, are the 1-bit counts for the four major quadrants.  Since the first and 

last quadrant are made up of entirely 1-bits, we do not need sub-trees for these two 

quadrants. This pattern is continued recursively.  Recursive raster ordering is called the 

Peano or Z-ordering in the literature – therefore, the name Peano Count trees.  The process 

will definitely terminate at the “leaf” level where each quadrant is a 1-row-1-column 

quadrant.   If we were to expand all sub-trees, including those for quadrants that are pure 1-

bits, then the leaf sequence is just the Peano space-filling curve for the original raster 

image.   

For each band (assuming 8-bit data values), we get 8 basic P-trees, one for each bit 

positions.  For band, Bi, we will label the basic P-trees, Pi,1, Pi,2, …, Pi,8, thus, Pi,j is a 

lossless representation of the jth bits of the values from the  ith band.  However, Pij provides 

much more information and is structured to facilitate many important data mining 

processes.   

For efficient implementation, we use a variation of basic P-trees, called a PM-tree 

(Pure Mask tree).  In the PM-tree, we use a 3-value logic, in which 11 represents a quadrant 

of pure 1-bits (pure1 quadrant), 00 represents a quadrant of pure 0-bits (pure0 quadrant) 

and 01 represents a mixed quadrant.  To simplify the exposition, we use 1 instead of 11 for 

pure1, 0 for pure0, and m for mixed.  The PM-tree for the previous example is also given in 

Figure 3.2. 

P-tree algebra contains operators, AND, OR, NOT and XOR, which are the pixel-by-

pixel logical operations on P-trees.  The NOT operation is a straightforward translation of 
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each count to its quadrant-complement (e.g., a 5 count for a quadrant of 16 pixels has 

complement of 11).  The AND operations is described in full detail below.  The OR is 

identical to the AND except that the role of the 1-bits and the 0-bits are reversed.   

 
 
 

 
 
 
 

Figure 3.3: P-tree Algebra 

The basic P-trees can be combined using simple logical operations to produce P-trees 

for the original values (at any level of precision, 1-bit precision, 2-bit precision, etc.).  We 

let Pb,v denote the Peano Count Tree for band, b, and value, v, where v can be expressed in 

1-bit, 2-bit,.., or 8-bit precision.  Using the full 8-bit precision (all 8 –bits) for values, 

Pb,11010011  can be constructed from the basic P-trees as: 

Pb,11010011 = Pb1  AND  Pb2  AND  Pb3’ AND  Pb4 AND  Pb5’ AND  Pb6’ AND  Pb7  AND Pb8,  

where ’ indicates NOT operation.  The AND operation is simply the pixel-wise AND of the 

bits. 

A P-tree representing the range of the values is called the range P-tree or interval P-tree. 

An interval P-tree can be contructed performing OR operations on value P-trees. Interval P-

tree for the range [v1, v2] for the band 1 is 

P1,(v1,v2)  =  P1,v1   OR   P1,v1+1   OR   P1,v1+2   OR  …  OR   P1,v2 

 

3.2 Properties of P-trees 

In the rest of the paper we shall use the following notations that make easier writing P-tree 

expressions.  

P-tree-1:           m                        
          ______/  /   \  \______ 
         /              /     \               \ 
       /              /         \               \ 
     1           m              m            1
              /  /  \  \        /  /  \  \ 
          m   0  1  m    1 1  m  1 
         //|\          //|\          //|\ 
      1110       0010      1101 

P-tree-2:            m 
          ______/  /   \  \______ 
         /              /     \               \ 
       /              /         \               \ 
     1            0             m            0
                              /  /  \  \ 
                            1 1  1  m  
                                      //|\ 
                                    0100 

AND-Result:    m 
      ________ /  / \   \___ 
    /          ____ /    \          \  
  /         /                 \           \    
 1       0                  m          0
                         /  |  \     \  
                        1  1  m     m  
                               //|\     //|\ 
                             1101  0100

OR-Result:       m 
      ________ /  / \   \___ 
    /          ____ /    \          \  
  /         /                 \           \     
 1       m                 1           1 
      /  /  \  \           
   m   0  1  m      
  //|\          //|\  
1110       0010                          
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yxp ,  is the pixel with coordinate (x, y). 

iyxV ,,  is the value for the band i of the pixel yxp , . 

jiyxb ,,,  is the jth bit of iyxV ,,  (bits are numbered from left to right, 0,,, iyxb  is the leftmost bit). 

Indices:  

x: column (x-coordinate), y: row (y-coordinate), i: band, j: bit 

For any P-trees P, P1 and P2, 

 P1 & P2 denotes P1 AND P2 

 P1 | P2 denotes P1 OR P2 

 P1 ⊕  P2 denotes P1 XOR P2 

 P′ denotes COMPLEMENT of P 

Basic P-trees: Pband, bit  

 Pi, j is the basic P-tree for bit j of band i. 

Value P-trees: Pband(value)  

 Pi(v) is the P-tree for the value v of band i. 

Range P-trees: Pband(lower_limit, upper_ limit)  

 Pi(v1, v2) is the P-tree for the range [v1, v2] of band i. 

rc(P) is the root count, the count stored at the root node, of P-tree P.   

0P  is pure0-tree, a P-tree having the root node which is pure0.  

1P  is pure1-tree, a P-tree having the root node which is pure1. 

N is the number of pixels in the image or space under consideration. 

c is the number of rows or height of the image in pixel. 

r is the number of columns or width of the image in pixel. 

n is the number of bits in each band-value. 
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Lemma 1:  

a) For any two P-trees P1 and P2, rc(P1 | P2) = 0 ⇒ rc(P1) = 0 and rc(P2) = 0. 

More strictly, rc(P1 | P2) = 0, if and only if  rc(P1) = 0 and rc(P2) = 0. 

 
Proof: (Proof by contradiction) Let, rc(P1) ≠ 0. Then, for some pixels there are 1s in P1 and 

for those pixels there must be 1s in P1 | P2 i.e. rc(P1 | P2) ≠ 0, But we assumed rc(P1 | P2) = 

0. Therefore rc(P1) = 0. Similarly we can prove that rc(P2) = 0.   

The proof for the inverse, rc(P1) = 0 and rc(P2) = 0 ⇒ rc(P1 | P2) = 0 is trivial. 

This immediately follows the definitions. 

 
b) rc(P1) = 0 or rc(P2) = 0 ⇒ rc(P1 & P2) = 0 

c) rc(P1) = 0 and rc(P2) = 0 ⇒ rc(P1 & P2) = 0, in fact, this is covered by (b). 

Proofs are immediate. 

 
Lemma 2: a) ( ) 00 =Prc    i) 0'& PPP =  

b) ( ) NPrc =1    j) 1'| PPP =  

c) ( ) 00 PPPrc =⇔=   k) '1 PPP =⊕  

d) ( ) 1PPNPrc =⇔=   l) PPP =⊕ 0  

e) 00& PPP =    m) 1' PPP =⊕  

f) PPP =1&    n) PPP =&  

g) PPP =0|    n) PPP =|  

h) 11| PPP =    n) 'PPP =⊕  

Proofs are immediate.  
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Lemma 3: v1 ≠ v2 ⇒ rc{Pi (v1) & Pi(v2)} = 0, for any band i. 

 
Proof: Pi (v) represents all the pixels having value v for the band i. If v1 ≠ v2, no pixel can 

have the values both v1 and v2 for the same band. Therefore, if there is a 1 in Pi (v1) for any 

pixel, there must be 0 in Pi(v2) for that pixel and vice versa. Hence rc{Pi (v1) & Pi(v2)} = 0.     

 

Lemma 4: rc(P1 | P2) = rc(P1) + rc(P2) - rc(P1 & P2).  

 
Proof: Let  

the number of pixels for which there are 1s in P1 and 0s in P2 is n1, 

the number of pixels for which there are 0s in P1 and 1s in P2 is n2 

and the number of pixels for which there are 1s in both P1 and P2 is n3. 

Now, rc(P1) = n1 + n3, 

rc(P2) = n2 + n3, 

rc(P1 & P2) = n3 

and rc(P1 | P2) = n1 + n2 + n3 

 = (n1 + n3) + (n2 + n3) - n3 

  = rc(P1) + rc(P2) - rc(P1 & P2) 

 
Theorem 1: rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)}, where v1 ≠ v2. 

 
Proof: rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)} - rc{Pi (v1) & Pi(v2)} (Lemma 4) 

If v1 ≠ v2, rc{Pi (v1) & Pi(v2)} = 0. (Lemma 3) 

Therefore, rc{Pi (v1) | Pi(v2)} = rc{Pi (v1)} + rc{Pi(v2)}. 
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3.3 Header of a P-tree file 
 
To make a generalized P-tree structure the following header for a P-tree file is proposed. 

 
1 word 2 word 2 words 4 words 4 words  

Format 

Code 

Fan-out # of 

levels 

Root count Length of the 

body in bytes 

Body of the P-tree 

 
Figure 3.4: Header of a P-tree file. 

 
Format code: Format code identifies the format of the P-tree, whether it is a PCT or PMT 

or in any other format. Although it is possible to recognize the format from the extension of 

the file, using format code is a good practice because some other applications may use the 

same extension for their purpose. Therefore to make sure that it is a P-tree file with the 

specific format we need format code. Moreover, in any standard file format such as PDF 

and TIFF, a file identification code is used along with the specified file extension. We 

propose the following codes for the P-tree formats. 

0707 H∗  – PCT  1717 H – PMT  2727 H – PVT  3737 H – P0T  

4747 H – P1T   5757 H – P0V  6767 H – P1V  7777 H – PNZV 

 
Fan-out: This field contains the fan-out information of the P-tree. Fan-out information is 

required to traverse the P-tree in performing various P-tree operations including AND, OR 

and Complement. 

 
# of levels: Number of levels in the P-tree. When we encounter a pure1 or pure0 node, we 

cannot tell whether it is an interior node or a leaf unless we know the level of that node and 

                                                 
∗  H stands for hexadecimal 
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the total number of levels of the tree. This is also required to know the number of 1s 

represented by a pure1 node. 

 
Root count: Root count i.e. the number 1s in the P-tree. Though we can calculate the root 

count of a P-tree on the fly from the P-tree data, these only 4 bytes of space can save 

computation time when we don’t need to perform any AND/OR operations and need the 

root count of an existing P-tree such as the basic P-trees. The root count of a P-tree can be 

computed at the time of construction of the P-tree with a very little extra cost. 

 
Length of the body: Length of the body is the size of the P-tree file in bytes excluding the 

header. Sometimes we may want to load the whole P-tree into RAM to increase the 

efficiency of computation. Since the sizes of the P-trees vary, we need to allocate memory 

dynamically and know the size of the required memory prior to read from disk.      

 

3.4 Dealing with the Padded Zeros 

We measure the height and the width of the images in pixels. To construct P-trees, the 

image must be square i.e. height and width must be equal and must be power of 2. For 

example an image size can be 256×256 or 512×512. Zeros are padded to the right and 

bottom of the image to convert it into the required size. Also a missing value can be 

replaced with zero. To deal with these inserted or padded zeros we need to make 

corrections to the root count of the final P-tree expression before using it.  

Solution 1: 

Every P-tree expression is a function of the basic P-trees.  

Let, Pexp = fp(P1, P2, P3, …, Pn),  
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where Pi is a basic P-tree for i = 1, 2, 3, …, n.  

Transform the P-tree expression, Pexp into a Boolean expression by replacing the basic P-

trees with 0 and considering the P-tree operators as a corresponding Boolean operator.  

Boolean expression Bexp = fb(0, 0, 0, …, 0).  

Where fb is the corresponding Boolean function to P-tree function fp. 

For Example,  Pexp = (P1 & P2)′ | P3  

 then, Bexp = (0 & 0)′ | 0  

      = 0′ | 0 = 1 | 0 = 1 

Now if Bexp = 1, corrected root count = rc(Pexp) – M,  

where M is the number of padded zeros and missing values. 

otherwise, no correction is necessary, i.e. corrected root count = rc(Pexp) 

Solution 2: 

Another solution to find the corrected root count is to use a mask or template P-tree, 

Pt, which is formed by using a 1 bit for the existing pixels and 0 bit for the padded zeros 

and missing values. 

Then the corrected root count = rc(Pexp & Pt) 
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CHAPTER 4: PAPER 1 

K-NEAREST NEIGHBOR CLASSIFICATION ON 

SPATIAL DATA STREAMS USING P-TREES 
 

 
Abstract 

In this paper we consider the classification of spatial data streams, where the 

training dataset changes often.  New training data arrive continuously and are added to 

the training set.  For these types of data streams, building a new classifier each time can 

be very costly with most techniques.  In this situation, k-nearest neighbor (KNN) 

classification is a very good choice, since no residual classifier needs to be built ahead 

of time. For that reason KNN is called a lazy classifier.  KNN is extremely simple to 

implement and lends itself to a wide variety of variations. The traditional k-nearest 

neighbor classifier finds the k nearest neighbors based on some distance metric by 

finding the distance of the target data point from the training dataset, then finding the 

class from those nearest neighbors by some voting mechanism.  There is a problem 

associated with KNN classifiers.  They increase the classification time significantly 

relative to other non-lazy methods.  To overcome this problem, in this paper we propose 

a new method of KNN classification for spatial data streams using a new, rich, data-

mining-ready structure, the Peano-count-tree or P-tree.  In our method, we merely 

perform some logical AND/OR operations on P-trees to find the nearest neighbor set of 

a new sample and assign the class label.  We have fast and efficient algorithms for 

AND/OR operations on P-trees, which reduce the classification time significantly, 

compared with traditional KNN classifiers. Instead of taking exactly the k nearest 

neighbors we form a closed-KNN set. Our experimental results show closed-KNN 

yields higher classification accuracy as well as significantly higher speed. 
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4.1 Introduction 

Classification is the process of finding a set of models or functions that describes 

and distinguishes data classes or concepts for the purpose of predicting the class of 

objects whose class labels are unknown [9]. The derived model is based on the analysis 

of a set of training data whose class labels are known.  Consider each training sample 

has n attributes: A1, A2, A3, …, An-1, C, where C is the class attribute which defines the 

class or category of the sample. The model associates the class attribute, C, with the 

other attributes.  Now consider a new tuple or data sample whose values for the 

attributes A1, A2, A3, …, An-1 are known, while for the class attribute is unknown. The 

model predicts the class label of the new tuple using the values of the attributes A1, A2, 

A3, …, An-1.         

 There are various techniques for classification such as Decision Tree Induction, 

Bayesian Classification, and Neural Networks [9, 11]. Unlike other common 

classification methods, a k-nearest neighbor classification (KNN classification) does 

not build a classifier in advance.   That is what makes it suitable for data streams.  

When a new sample arrives, KNN finds the k neighbors nearest to the new sample from 

the training space based on some suitable similarity or closeness metric [3, 7, 10]. A 

common similarity function is based on the Euclidian distance between two data tuples 

[3]. For two tuples, X = <x1, x2, x3, …, xn-1> and Y = <y1, y2, y3, …, yn-1> (excluding 

the class labels), the Euclidian distance function is ( )∑
−

=
−=

1

1

2
2 ),(

n

i
ii yxYXd . A 

generalization of the Euclidean function is the Minkowski distance function is 



 30

q
n

i

q
iiiq yxwYXd ∑

−

=
−=

1

1
),( . The Euclidean function results by setting q to 2 and each 

weight, wi, to 1.  The Manhattan distance, ∑
−

=

−=
1

1
1 ),(

n

i
ii yxYXd  result by setting q to 

1.  Setting q to ∞, results in the max function ii

n

i
yxYXd −=

−

=
∞

1

1
max),( .  After finding 

the k nearest tuples based on the selected distance metric, the plurality class label of 

those k tuples can be assigned to the new sample as its class. If there is more than one 

class label in plurality, one of them can be chosen arbitrarily. 

In this paper, we also used our new distance metric called Higher Order Bit or 

HOB distance and evaluated the effect of all of the above distance metrics in 

classification time and accuracy. HOB distance provides an efficient way of computing 

neighborhood while keeping the classification accuracy very high. The details of the 

distance metrics have been discussed in chapter 2.    

Nearly every other classification model trains and tests a residual “classifier” first 

and then uses it on new samples. KNN does not build a residual classifier, but instead, 

searches again for the k-nearest neighbor set for each new sample.  This approach is 

simple and can be very accurate.  It can also be slow (the search may take a long time).   

KNN is a good choice when simplicity and accuracy are the predominant issues.   KNN 

can be superior when a residual, trained and tested classifier has a short useful lifespan, 

such as in the case with data streams, where new data arrives rapidly and the training 

set is ever changing [1, 2].  For example, in spatial data, AVHRR images are generated 

in every one hour and can be viewed as spatial data streams.  The purpose of this paper 

is to introduce a new KNN-like model, which is not only simple and accurate but is also 

fast – fast enough for use in spatial data stream classification. 
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In this paper we propose a simple and fast KNN-like classification algorithm for 

spatial data using P-trees.  P-trees are new, compact, data-mining-ready data structures, 

which provide a lossless representation of the original spatial data [8, 12, 13]. We 

consider a space to be represented by a 2-dimensional array of locations (though the 

dimension could just as well be 1 or 3 or higher). Associated with each location are 

various attributes, called bands, such as visible reflectance intensities (blue, green and 

red), infrared reflectance intensities (e.g., NIR, MIR1, MIR2 and TIR) and possibly 

other value bands (e.g., crop yield quantities, crop quality measures, soil attributes and 

radar reflectance intensities). One band such as the yield band can be the class attribute. 

The location coordinates in raster order constitute the key attribute of the spatial dataset 

and the other bands are the non-key attributes.  We refer to a location as a pixel in this 

paper.  

Using P-trees, we presented two algorithms, one based on the max distance metric 

and the other based on our new HOBS distance metric.  HOBS is the similarity of the 

most significant bit positions in each band.  It differs from pure Euclidean similarity in 

that it can be an asymmetric function depending upon the bit arrangement of the values 

involved.  However, it is very fast, very simple and quite accurate. Instead of using 

exactly k nearest neighbor (a KNN set), our algorithms build a closed-KNN set and 

perform voting on this closed-KNN set to find the predicting class. Closed-KNN, a 

superset of KNN, is formed by including the pixels, which have the same distance from 

the target pixel as some of the pixels in KNN set. Based on this similarity measure, 

finding nearest neighbors of new samples (pixel to be classified) can be done easily and 

very efficiently using P-trees and we found higher classification accuracy than 

traditional methods on considered datasets. The classification algorithms to find nearest 
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neighbors have been given in the section 4.2. We provided the experimental results and 

analyses in section 4.3. And section 4.4 is the conclusion. 

 
4.2  Classification Algorithm 

In the original k-nearest neighbor (KNN) classification method, no classifier model 

is built in advance. KNN refers back to the raw training data in the classification of 

each new sample.  Therefore, one can say that the entire training set is the classifier.   

The basic idea is that the similar tuples most likely belongs to the same class (a 

continuity assumption).  Based on some pre-selected distance metric (some commonly 

used distance metrics are discussed in introduction), it finds the k most similar or 

nearest training samples of the sample to be classified and assign the plurality class of 

those k samples to the new sample.  The value for k is pre-selected. Using relatively 

larger k may include some pixels that are not so similar to the target pixel and on the 

other hand, using very smaller k may exclude some potential candidate pixels. In both 

cases the classification accuracy will decrease. The optimal value of k depends on the 

size and nature of the data. The typical value for k is 3, 5 or 7.  The steps of the 

classification process are: 

1) Determine a suitable distance metric. 

2) Find the k nearest neighbors using the selected distance metric. 

3) Find the plurality class of the k-nearest neighbors (voting on the class labels 

of the NNs). 

4) Assign that class to the sample to be classified. 

We provided two different algorithms using P-trees, based on two different 

distance metrics max (Minkowski distance with q = ∞) and our newly defined HOB 

distance. Instead of examining individual pixels to find the nearest neighbors, we start 

our initial neighborhood (neighborhood is a set of neighbors of the target pixel within a 



 33

specified distance based on some distance metric, not the spatial neighbors, neighbors 

with respect to values) with the target sample and then successively expand the 

neighborhood area until there are k pixels in the neighborhood set. The expansion is 

done in such a way that the neighborhood always contains the closest or most similar 

pixels of the target sample. The different expansion mechanisms implement different 

distance functions. In the next section (section 3.1) we described the distance metrics 

and expansion mechanisms.  

Of course, there may be more boundary neighbors equidistant from the sample than 

are necessary to complete the k nearest neighbor set, in which case, one can either use 

the larger set or arbitrarily ignore some of them. To find the exact k nearest neighbors 

one has to arbitrarily ignore some of them.   

 
 
 
 
 
 
 

 
 Instead we propose a new approach of building nearest neighbor (NN) set, where we 

take the closure of the k-NN set, that is, we include all of the boundary neighbors and 

we call it the closed-KNN set. Obviously closed-KNN is a superset of KNN set. In the 

above example, with k = 3, KNN includes the two points inside the circle and any one 

point on the boundary. The closed-KNN includes the two points in side the circle and 

all of the four boundary points. The inductive definition of the closed-KNN set is given 

below. 

Definition 4.1: a) if x ∈  KNN, then x ∈  closed-KNN 

            b) if x ∈  closed-KNN and d(T,y) ≤  d(T,x), then y∈  closed-KNN    

                      Where, d(T,x) is the distance of x from target T.  

T 

Figure 4.1: Closed-KNN set.  
T, the pixel in the center is the target pixels. With k = 3, 
to find the third nearest neighbor, we have four pixels (on
the boundary line of the neighborhood) which are 
equidistant from the target.  
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             c) closed-KNN does not contain any pixel, which cannot be produced by 

step a and b.  

Our experimental results show closed-KNN yields higher classification accuracy 

than KNN does. The reason is if for some target there are many pixels on the boundary, 

they have more influence on the target pixel. While all of them are in the nearest 

neighborhood area, inclusion of one or two of them does not provide the necessary 

weight in the voting mechanism. One may argue that then why don’t we use a higher k? 

For example using k = 5 instead of k = 3. The answer is if there are too few points (for 

example only one or two points) on the boundary to make k neighbors in the 

neighborhood, we have to expand neighborhood and include some not so similar points 

which will decrease the classification accuracy. We construct closed-KNN only by 

including those pixels, which are in as same distance as some other pixels in the 

neighborhood without further expanding the neighborhood. To perform our 

experiments, we find the optimal k (by trial and error method) for that particular dataset 

and then using the optimal k, we performed both KNN and closed-KNN and found 

higher accuracy for P-tree-based closed-KNN method. The experimental results are 

given in section 4. In our P-tree implementation, no extra computation is required to 

find the closed-KNN. Our expansion mechanism of nearest neighborhood automatically 

includes the points on the boundary of the neighborhood.  

Also, there may be more than one class in plurality (if there is a tie in voting), in 

which case one can arbitrarily chose one of the plurality classes.   Unlike the traditional 

k-nearest neighbor classifier our classification method doesn’t store and use raw 

training data.  Instead we use the data-mining-ready P-tree structure, which can be built 

very quickly from the training data.  Without storing the raw data we create the basic P-

trees and store them for future classification purpose. Avoiding the examination of 
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individual data points and being ready for data mining these P-trees not only saves 

classification time but also saves storage space, since data is stored in compressed form.  

This compression technique also increases the speed of ANDing and other operations 

on P-trees tremendously, since operations can be performed on the pure0 and pure1 

quadrants without reference to individual bits, since all of the bits in those quadrant are 

the same.  

 
4.2.1 Expansion of Neighborhood 

Similarity and distance can be measured by each other; more distance less similar 

and less distance more similar. Our similarity metric is the closeness in numerical 

values for corresponding bands.  We begin searching for nearest neighbors by finding 

the exact matches i.e. the pixels having as same band-values as that of the target pixel. 

If the number of exact matches is less than k, we expand the neighborhood.  For 

example, for a particular band, if the target pixel has the value a, we expand the 

neighborhood to the range [a-b, a+c], where b and c are positive integers and find the 

pixels having the band value in the range [a-b, a+c]. We expand the neighbor in each 

band (or dimension) simultaneously. We continue expanding the neighborhood until the 

number pixels in the neighborhood is greater than or equal to k. We develop the 

following two different mechanisms, corresponding to max distance (Minqowski 

distance with q = ∞ or L∞) and our newly defined HOBS distance, for expanding the 

neighborhood. The two given mechanisms have trade off between execution time and 

classification accuracy.   

   

A. Higher Order Bit Similarity Method (Using HOB Distance):  

The HOB distance between two pixels X and Y is defined by  

 ( ) ( ){ }  HOBmax
1

1
 ,yxm -   X,Yd ii

n
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=
=   
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n is the total number of bands where one of them (the last band) is class attribute that 

we don’t use for measuring similarity.  

m is the number of bits in binary representations of the values. All values must be 

represented using the same number of bits. 

HOB(A, B) = max{s | i ≤ s ⇒ ai =  bi} 

ai and  bi  are the ith bits of A and B respectively. 

The detailed definition of HOB distance and its behavior have been discussed in chapter 

2. 

  

To find the Closed-KNN set, first we look for the pixels, which are identical to the 

target pixel in all 8 bits of all bands i.e. the pixels, X, having distance from the target T, 

dp(X,T) = 0.  If, for instance, x1=105 (01101001b = 105d) is the target pixel, the initial 

neighborhood is [105, 105]  ([01101001, 01101001]).  If the number of matches is less 

than k, we look for the pixels, which are identical in the 7 most significant bits, not 

caring about the 8th bit, i.e. pixels having dp(X,T) ≤ 1. Therefore our expanded 

neighborhood is [104,105] ([01101000, 01101001] or [0110100-, 0110100-] - don’t 

care about the 8th bit).  Removing one more bit from the right, the neighborhood is [104, 

107] ([011010--, 011010--] - don’t care about the 7th or the 8th bit).  Continuing to 

remove bits from the right we get intervals, [104, 111], then [96, 111] and so on. 

Computationally this method is very cheap (since the counts are just the root counts of 

individual P-trees, all of which can be constructed in one operation).  However, the 

expansion does not occur evenly on both sides of the target value (note: the center of 

the neighborhood [104, 111] is (104 + 111) /2 = 107.5 but the target value is 105).  

Another observation is that the size of the neighborhood is expanded by powers of 2. 

These uneven and jump expansions include some not so similar pixels in the 

neighborhood keeping the classification accuracy lower. But P-tree-based closed-KNN 
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method using this HOBS metric still outperforms KNN methods using any distance 

metric as well as becomes the fastest among all of these methods.  

To improve accuracy further we propose another method called perfect centering to 

avoid the uneven and jump expansion. Although, in terms of accuracy, perfect centering 

outperforms HOBS, in terms of computational speed it is slower than HOBS. 

 

B. Perfect Centering (using Max distance): In this method we expand the 

neighborhood by 1 on both the left and right side of the range keeping the target value 

always precisely in the center of the neighborhood range.  We begin with finding the 

exact matches as we did in HOBS method.  The initial neighborhood is [a, a], where a 

is the target band value.  If the number of matches is less than k we expand it to [a-1, 

a+1], next expansion to [a-2, a+2], then to [a-3, a+3] and so on.  

Perfect centering expands neighborhood based on max distance metric or L∞ metric, 

Minkowski distance (discussed in introduction) metric setting q = ∞. 

   ii
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i
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In the initial neighborhood d∞(X,T) is 0, the distance of any pixel X in the 

neighborhood from the target T. In the first expanded neighborhood [a-1, a+1], d∞(X,T) 

≤ 1. In each expansion d∞(X,T) increases by 1. As distance is the direct difference of the 

values, increasing distance by one also increases the difference of values by 1 evenly in 

both side of the range without any jumping.  

This method is computationally a little more costly because we need to find matches for 

each value in the neighborhood range and then accumulate those matches but it results 

better nearest neighbor sets and yields better classification accuracy.  We compare these 

two techniques later in section 4.3. 
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4.2.2 Computing the Nearest Neighbors  

For HOBS: We have the basic P-trees of all bits of all bands constructed from the 

training dataset and the new sample to be classified.  Suppose, including the class band, 

there are n bands or attributes in the training dataset and each attribute is m bits long.  

In the target sample we have n-1 bands, but the class band value is unknown.  Our goal 

is to predict the class band value for the target sample.     

Pi,j is the P-tree for bit j of band i. This P-tree stores all the jth bits of the ith band of 

all the training pixels. The root count of a P-tree is the total counts of one bits stored in 

it.  Therefore, the root count of Pi,j is the number of pixels in the training dataset having 

a 1 value in the jth bit of the ith band.  P′ i,j is the complement P-tree of Pi,j.  P′ i,j stores 1 

for the pixels having a 0 value in the jth bit of the ith band and stores 0 for the pixels 

having a 1 value in the jth bit of the ith band.  Therefore, the root count of P′ i,j is the 

number of pixels in the training dataset having 0 value in the jth bit of the ith band. 

Now let, bi,j = jth bit of the ith band of the target pixel.    

Define Pti,j = Pi,j, if bi,j = 1 

               = P′ i,j, otherwise 

We can say that the root count of Pti,j is the number of pixels in the training dataset 

having as same value as  the jth bit of the ith band of the target pixel.  

Let, Pvi,1-j = Pti,1 & Pti,2 & Pti,3 & … & Pti,j,  here & is the P-tree AND operator.  

Pvi,1-j counts the pixels having as same bit values as the target pixel in the higher order j 

bits of ith band.  

Using higher order bit similarity, first we find the P-tree Pnn = Pv1,1-8 & Pv2,1-8 & 

Pv3,1-8 & … & Pvn-1,1-8, where n-1 is the number of bands excluding the class band. Pnn 

represents the pixels that exactly match the target pixel. If the root count of Pnn is less 

than k we look for higher order 7 bits matching i.e. we calculate Pnn = Pv1,1-7 & Pv2,1-7 
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& Pv3,1-7 & … & Pvn-1,1-7. Then we look for higher order 6 bits matching and so on. We 

continue as long as root count of Pnn is less than k. Pnn represents closed-KNN set i.e. 

the training pixels having the as same bits in corresponding higher order bits as that in 

target pixel and the root count of Pnn is the number of such pixels, the nearest pixels. A 

1 bit in Pnn for a pixel means that pixel is in closed-KNN set and a 0 bit means the 

pixel is not in the closed-KNN set.  The algorithm for finding nearest neighbors is given 

in figure 4.2  
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2: Algorithm to find closed-KNN set based on HOB metric. 

 

For Perfect Centering: Let vi be the value of the target pixels for band i. Pi(vi) is the 

value P-tree for the value vi in band i. Pi(vi) represents the pixels having value vi in band 

i. For finding the initial nearest neighbors (the exact matches) using perfect centering 

we find Pi(vi) for all i. The ANDed result of these value P-trees i.e. Pnn = P1(v1) & 

P2(v2) & P3(v3) & … & Pn-1(vn-1) represents the pixels having the same values in each 

band as that of the target pixel. A value P-tree, Pi(vi), can be computed by finding the P-

tree representing the pixels having the same bits in band i as the bits in value vi. That is, 

if Pti,j = Pi,j, when bi,j = 1 and Pti,j = P’i,j, when bi,j = 0 (bi,j is the jth bit of value vi),then 

Algorithm: Finding the P-tree representing closed-KNN set using HOBS 
Input: Pi,j for all i and j, basic P-trees of all the bits of all bands of the training dataset
and bi,j for all i and j, the bits for the target pixels 

Output: Pnn, the P-tree representing the nearest neighbors of the target pixel 
// n is the number of bands where nth band is the class band 
// m is the number of bits in each band 
FOR i = 1 TO n-1 DO 

FOR j = 1 TO m DO 
IF bi,j = 1 Ptij � Pi,j 
ELSE Pti,j � P’i,j 

FOR i = 1 TO n-1 DO 
Pvi,1 � Pti,1 
FOR j = 2 TO m DO 

Pvi,j �Pvi,j-1  &  Pti,j 

s � m // first we check matching in all m bits  
REPEAT 

Pnn � Pv1,s 
FOR r = 2 TO n-1 DO 

Pnn � Pnn & Pvr,s 
        s � s – 1  
UNTIL RootCount(Pnn) ≥ k 
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Pi(vi) = Pti,1 & Pti,2 & Pti,3 & … & Pti,m, m is the number of bits in a band. The 

algorithm for computing value P-trees is given in figure 4.3 (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

     Figure 4.3(a): Algorithm to find closed-KNN set based on   4.3(b): Algorithm to compute  

                         Max metric (Perfect Centering).                 value P-trees 

If the number of exact matching i.e. root count of Pnn is less than k, we expand 

neighborhood along each dimension. For each band i, we calculate range P-tree Pri =  

Pi(vi-1) | Pi(vi) | Pi(vi+1). ‘|’ is the P-tree OR operator. Pri represents the pixels having a 

value either vi-1 or vi or vi+1 i.e. any value in the range [vi-1, vi+1] of band i. The 

ANDed result of these range P-trees, Pri for all i, produce the expanded neighborhood, 

the pixels having band values in the ranges of the corresponding bands. We continue 

this expansion process until root count of Pnn is greater than or equal to k. The 

algorithm is given in figure 4.3(a). 

 
4.2.3 Finding the plurality class among the nearest neighbors  

For the classification purpose, we don’t need to consider all bits in the class band. 

If the class band is 8 bits long, there are 256 possible classes. Instead of considering 256 

classes we partition the class band values into fewer groups by considering fewer 

significant bits. For example if we want to partition into 8 groups we can do it by 

Algorithm: Finding value P-tree 

Input: Pi,j for all j, basic P-trees of all 
the bits of band i and the value vi for 
band i. 
Output: Pi(vi), the value p-tree for the 
value vi 
// m is the number of bits in each band
// bi,j is the jth bit of value vi 

FOR j = 1 TO m DO 
IF bi,j = 1 Ptij � Pi,j 
ELSE Pti,j � P’i,j 

Pi(v) � Pti,1 
FOR j = 2 TO m DO 

Pi(v) � Pi(v) & Pti,j 
 
 

Algorithm: Finding the P-tree representing closed-KNN set using 
max distance metric (perfect centering) 
Input: Pi,j for all i and j, basic P-trees of all the bits of all bands of the 
training dataset and vi for all i, the band values for the target pixel 
Output: Pnn, the P-tree representing the closed-KNN set 
// n is the number of bands where nth band is the class band 
// m is the number of bits in each band 

FOR i = 1 TO n-1 DO 
Pri � Pi(vi) 

Pnn � Pr1 
FOR i = 2 TO n-1 DO 

Pnn � Pnn & Pri    // the initial neighborhood for exact matching 
d � 1           // distance for the first expansion         
WHILE RootCount(Pnn) < k DO 

FOR i = 1 to n-1 DO 
Pri � Pri | Pi(vi-d) | Pi(vi+d)   // neighborhood expansion 

Pnn � Pr1     // ‘|’ is the P-tree OR operator 
FOR i = 2 TO n-1 DO 

Pnn � Pnn AND Pri   // updating closed-KNN set 
d � d + 1    
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truncating the 5 least significant bits and keeping the most significant 3 bits. The 8 

classes are 0, 1, 2, 3, 4, 5, 6 and 7. Using these 3 bits we construct the value P-trees 

Pn(0), Pn(1), Pn(2), Pn(3), Pn(4), Pn(5), Pn(6), and Pn(7).  

An 1 value in the nearest neighbor P-tree, Pnn, indicates that the corresponding 

pixel is in the nearest neighbor set. An 1 value in the value P-tree, Pn(i), indicates that 

the corresponding pixel has the class value i. Therefore Pnn & Pn(i) represents the 

pixels having a class value i and are in the nearest neighbor set. An i which yields the 

maximum root count of Pnn & Pn(i) is the plurality class. The algorithm is given in 

figure 4.4. 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 4.4: Algorithm to find the plurality class 

 

4.3 Performance Analysis 
We performed experiments on two sets of Arial photographs of the Best 

Management Plot (BMP) of Oakes Irrigation Test Area (OITA) near Oaks, North 

Dakota, United States. The latitude and longitude are 45°49’15”N and 97°42’18”W 

respectively. The two images “29NW083097.tiff” and “29NW082598.tiff” have been 

taken in 1997 and 1998 respectively. Each image contains 3 bands, red, green and blue 

reflectance values. Three other separate files contain synchronized soil moisture, nitrate 

and yield values.  Soil moisture and nitrate are measured using shallow and deep well 

Algorithm: Finding the plurality class 

Input: Pn(i), the value P-trees for all class i and the closed-KNN P-tree, Pnn 
Output: the plurality class 
// c is the number of different classes 

class � 0 
P � Pnn & Pn(0) 
rc � RootCount(P) 
FOR i = 1 TO c - 1 DO 

P � Pnn & Pn(i) 
IF rc < RootCount(P)  

 rc � RootCount(P) 
class � i 
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lysimeters. Yield values were collected by using a GPS yield monitor on the harvesting 

equipments. The datasets are available at http://datasurg.ndsu.edu/.   

Among those 6 bands we consider the yield as class attribute. Each band is 8 bits 

long. So we have 8 basic P-trees for each band and 40 (for the other 5 bands except 

yield) in total. For the class band, yield, we considered only the most significant 3 bits. 

Therefore we have 8 different class labels for the pixels. We built 8 value P-trees from 

the yield values – one for each class label.  

The original image size is 1320×1320. For experimental purpose we form 16×16, 

32×32, 64×64, 128×128, 256×256 and 512×512 image by choosing pixels that are 

uniformly distributed in the original image. In each case, we form one test set and one 

training set of equal size. For each of the above sizes we tested KNN with Manhattan, 

Euclidian, Max and HOBS distance metrics and our two P-tree methods, Perfect 

Centering and HOBS. The accuracies of these different implementations are given in 

the figure 4.5 for both of the datasets.   
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(a) 29NW083097.tiff and associated other files (1997 dataset) 
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  (b) 29NW082598.tiff and associated other files (1998 dataset) 

Figure 4.5: Accuracy of different implementations for the 1997 and 1998 datasets    
 

We see that both of our P-tree based closed-KNN methods outperform the KNN 

methods for both of the datasets. The reasons are discussed in section 3. We discussed 

in section 3.1, why the perfect centering methods performs better than HOBS. We also 

implemented the HOBS metric for KNN standard. From the result we can see that the 

accuracy is very poor. The HOBS metric is not suitable for a KNN approach since 

HOBS does not provide a neighborhood with the target pixel in the exact center. 

Increased accuracy of HOBS in P-tree implementation is the effect of closed-KNN, 

which is explained in section 3. In a P-tree implementation, the ease of computability 

for closed-KNN using HOBS makes it a superior method. The P-tree based HOBS is 

the fastest method where as the KNN-HOBS is still the poorest (figure 4.7). 

Another observation is that for 1997 data (Figure 4.5(a)), in KNN implementations, 

the max metric performs much better than other three metrics. For the 1998 dataset, 

max is competitive with other three metrics. In many cases, as well as for image data, 

max metrics can be the best choice. In our P-tree implementations, we also get very 
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high accuracy with the max distance (perfect centering method). We can understand 

this by examining the shape of the neighborhood for different metrics (figure 4.6).      

 
 
 
 
 
 
 
 
 
         (a) Max & Euclidian                        (b) Max & Manha

Figure 4.6: Comparison of neighborhood for different distance metrics (
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Figure 4.7: Classification time per sample for the different implementations for the 
1997 and 1998 datasets. Both of the size and classification time are plotted in 
logarithmic scale.    
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methods. For the smaller dataset, the perfect centering method is about 2 times faster 

than the others and for the larger dataset, it is 10 times faster. This is also true for the 

HOBS method. The reason is that as dataset size increases, there are more and larger 

pure-0 and pure-1 quadrants in the P-trees, which increases the efficiency of the 

ANDing operations. 

 
4.4 Conclusion 

In this paper we proposed a new approach to k-nearest neighbor classification for 

spatial data streams by using a new data structure called the P-tree, which is a lossless 

compressed and data-mining-ready representation of the original spatial data. Our new 

approach, called closed-KNN, finds the closure of the KNN set, we call closed-KNN, 

instead of considering exactly k nearest neighbor. Closed-KNN includes all of the 

points on the boundary even if the size of the nearest neighbor set becomes larger than 

k. Instead of examining individual data points to find nearest neighbors, we rely on the 

expansion of the neighborhood. The P-tree structure facilitates efficient computation of 

the nearest neighbors. Our methods outperform the traditional implementations of KNN 

both in terms of accuracy and speed.    

We proposed a new distance metric called Higher Order Bit Similarity (HOBS) 

that provides an easy and efficient way of computing closed-KNN using P-trees while 

preserving the classification accuracy at a high level.  
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CHAPTER 5: PAPER 2 

FAST K-CLUSTERING ALGORITHM ON SPATIAL DATA 

USING P-TREES 
  
Abstract 

k-clustering is the method of grouping objects into k groups with the objective of 

reducing the intra-cluster squared distance or variance; that is the objects in the same group 

are similar. We apply k-clustering methods to image data with millions of pixels and multi-

bands per pixel of data. So far k-means is the best algorithm to minimize the total intra-

cluster variance. k-means is an iterative algorithm that initially selects k cluster centers 

randomly or by some predefined method and, in each iteration, it assigns each pixel to its 

nearest center and updates the cluster centers using the mean of the clusters. The process of 

reforming the clusters and their centers requires extensive computation in each iteration, 

since every data point is typically examined, a distance calculated and a sum formed. To 

solve the speed issue, in the last decade, various k-cluster algorithms such as median-cut, 

mean-split and variance-based method have been proposed. Median-cut and mean split are 

fast enough but are not good optimizers. As the variance-based method produces 

optimization very close to k-means but still suffers from speed issue. We propose a new 

fast P-tree based k-clustering method that provides optimization as good as variance based 

method. Our experiments show that the P-tree implementation of the k-clustering algorithm 

is on the order of 10 times faster than existing implementations. This speed is particularly 

important in mining data streams. 
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5.1 Introduction 

Clustering is a fundamental problem that arises in many applications in different 

fields such as data mining, image processing, and bioinformatics [4]. The process of 

grouping a set of physical or abstract objects into classes of similar objects is called 

clustering. A cluster is a collection of data objects that are similar to one another within the 

same cluster and are dissimilar to the objects in other clusters. A cluster of data objects can 

be treated collectively as one group in many applications [3].  

Multi-band image data are increasingly available from variety of sources, including 

commercial and government satellites, as well as airborne and ground based sensors [1]. 

This is accompanied by an increased spatial resolution as well as an increased number of 

bands. A typical image can have millions of pixels with tens of bands per pixel. There are 

different types of RSI images, such as TM, SPOT, AVHRR, TIFF, etc. For example, a TM 

image (Thematic Mapper) contains 7 bands, which are B (Blue), G (Green), R (Red), RIR 

(Reflective-Infrared), MIR (Mid-Infrared), TIR (Thermal Infrared), and MIR2 

(Mid_Infrared2) [2]. Typically, a TM scene contains 40M pixels. A TIFF image of 

agricultural data may contain the Bands red, green, blue, yield, soil moisture, nitrogen, etc. 

We apply k-means clustering to TIFF images containing 1320 × 1320 pixels with three 8-

bit bands, red, green and blue. That is, more than 5MB of data. The reflectance value in 

each band ranges from 0 to 255. 

 The image analyst’s challenge is to identify the important and useful features in the 

image without being overwhelmed by the sheer volume of data. One response to this 

challenge is provided by algorithms, which segments the image by clustering pixels into 

classes based on the band similarity of each pixel to other member of the class. As well as 
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providing the analyst with a picture summarizing the spatial organization of the different 

band types, these clustering algorithms also provide a very real compression of data [1].  

 
Wan et al [5] described clustering as a procedure that can be viewed as one of finding 

groupings in a set of events by extremizing some criterion function. In a variety of 

problems, such unsupervised learning, multivariate data analysis, and digital image 

processing, the collection of data can be represented as a set of points in a 

multidimensional vector space. One of the most widely used criterion functions for 

clustering analysis is the variance or the sum of squared Euclidean distances measured 

from the cluster centers. The main task in clustering analysis is then to seek the groupings 

that minimize the sum-of-squared-errors. 

 Sum of the squared error or total variance = ( )∑∑
= ∈

k

i Cp
i

i

pcd
0

2
2 ,   

Where k is the number of clusters, ci is the center or mean of the cluster Ci and 

( )pcd i ,
2
2  is the squared Euclidian distance of point p from the cluster center or mean ci. 

In [4], Yair Bartal et al provided an algorithm to minimize the sum of the pair-wise squared 

distance of the points in the clusters.  

 Sum of the pair-wise squared distance = ( )∑ ∑
= ∈

k

i Cqp i

qpd
0 ,

2
2 ,  

In this paper we provide an algorithm to minimize the sum of the squared error or 

total variance. The problem of finding the global minimum solution is NP-complete [6]. To 

solve the problem, a number of approximate clustering algorithms developed [4, 7, 8, 9, 

10]. These techniques can be divided into two categories: iterative optimization and 

divisive approach. K-means is a iterative optimization procedure that is most frequently 
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used for finding a local minimum solution. The converging time required by the k-means 

approaches can easily become unmanageable, particularly for a large clustering problem. 

However k-means provides the best optimization among the algorithms mentioned.  

On the other hand, a heuristic approach based divisive techniques tries to reduce the 

computational complexity and at the same time produce and acceptable solution. Divisive 

approaches initially assume there is a one cluster containing all of the given data points. 

Then divide it into two clusters and recursively it selects one of the clusters chosen by 

some heuristic method and divide it into another two clusters; continues this until process 

until there are k clusters. Median-cut [7], mean-split [9], variance-based k-Clustering [4] 

are important among divisive algorithms. In section 5.2 we reviewed this methods. All of 

these divisive approaches partition a cluster by a hyperplane perpendicular to one of the 

coordinate axes. Variance-based method gives a better approximation to k-means but 

slower than the other two methods. This method finds the optimal cut-point in an axis by 

examining each point in the axis. Instead we propose a method to find the optimal cut point 

by k-means type convergence techniques that avoids examination of each point in the axis. 

This makes our algorithm faster than variance-based method while keeping the cluster 

quality as good as variance-based method. Our method can be called a hybrid method that 

uses the k-means type convergence technique in the divisive approach. Our main 

improvement in speed is using P-trees to compute the sum and variance in each step of the 

algorithm without scanning databases. This makes our algorithm order of 10 times faster 

than the other methods. Details of our algorithm are discussed in section 5.3. 
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5.2 Review of the k-Clustering Algorithms 
 
5.2.1 k-Means Algorithm 

The k-means iterative procedure has received considerable attention in clustering 

analysis since it produces a very good minimization of the sum-of-the-squared-error or 

total variance function. This algorithm first selects k initial cluster centers. Then, the k 

clusters are formed by associating each data point with its closest cluster center. The 

centroids or means of these K clusters become the new cluster centers. The above 

procedure is repeated until the new cluster centers are the same as the previous ones. 

Although the k-means algorithm has been widely used in many applications, it has been 

shown only recently [11] that it converges to a local minimum solution in a finite number 

of iterations if a quadratic metric is used. 

With the spatial-storage scheme, the time complexity of this algorithm is proportional 

to O(mTNK). The number of iterations T necessary for the algorithm to converge depends 

on the distribution of the data points, the number of clusters required, the size of the space, 

and the choice of initial cluster centers. For a large clustering problem, the computation can 

be very costly. For example, it may take more than twenty hours on a VAX 780 computer 

to reduce 256 clusters for a full-color image [9]. 

 
5.2.2 The Mean-Split Algorithm 

Considering the whole data space, a big hyperbox, as the initial cluster, all of the 

divisive techniques split the hyperboxes with a hyperplane perpendicular to an axis until 

there are k hyperboxes. All of the techniques share the following common steps. 

a) Based on some heuristic select a hyperbox to split. 

b) Select an axis along which the hyperbox to be split. 
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c) Select the cut point on the selected axis. 

d) Split the hyperbox into two sub-hyperboxes using a hyperplane perpendicular to 

the selected hyperbox at the selected cut-point.  

e) Repeat the process until there are k hyper boxes. Each hyperbox is a cluster. 

The different divisive approaches differ in different strategies in selecting the hyperbox, 

axis and cut-point. 

In mean-split algorithm, when a hyperbox is created by splitting, it is assigned a 

number of clusters. If the number of clusters assigned to cluster is more than one, it is 

selected to split. The initial big hyperbox is assigned all of the k clusters. If L be the 

number of clusters assigned to a hyperbox, when the hyperbox is split into two sub-

hyperboxes, then Li clusters are assigned to the ith sub-hyperbox according to the following 

formula: 

( ) 








+
−+

+
=

21

1

21
1

VV
V

nn
nLL i

i αα ,  i = 1, 2 

where ni is the number of data points in sub-hyperbox i and Vi is the volume of the 

hyperbox i. The parameter α is restricted to the range 0.5 ≤ α ≤ 0.7. 

Min-split algorithm selects the axis that has the projected distribution of the data points 

with the largest spread and the mean of the projected distribution is the cut-point. 

The main advantage of the mean-split algorithm is that it has a lower computational 

cost: O(mN log k) for time and O(mN) for space; m is the dimensionality of the data and N 

is the total number of data points. But there are draw backs associated with this algorithm. 

To partition a hyperbox by a plane passing through the mean does not necessarily produce 

a lower quantization error. 
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5.2.3 Variance-Based Algorithm 

Variance-based algorithm is another divisive algorithm that selects the hyperbox with 

the largest variance to split. Then it takes the projection of the data points along each 

dimension and examines each point in that dimension to find which cut-point gives the 

largest variance reduction in the projected data. That cut-point and axis are chosen to split 

the hyperbox.      

Letting µ and σ2 be the mean and variance or the projected 1-dimensional distribution, the 

optimal cut-point topt is defined by: 

 
( ) ( )[ ]twtwt

topt
2
22

2
11

2maxarg σσσ −−=  

  where wi and ( )ti
2σ  are the weight and variance of the ith interval (i = 1, 2). optt can also be 

expressed as ( ){ } 







−= t

w
wt

topt 1
2

1maxarg µµ . 

This algorithm produces better minimization of the quantization error, which is closer to 

that of k-means algorithm but suffers from the higher computational cost, which is O(mNk), 

since almost every point along an axis is examined. 

 
5.3 Our Algorithm 
 

We propose an approximate divisive algorithm that arbitrarily chooses a cut-point and 

iteratively converges to the optimal cut-point instead examining every single point in the 

interval and we compute the mean and the variance by using P-trees with scanning the 

databases that makes it faster than any algorithm discussed above. In terms of quality of the 

clusters, our algorithm produces as good minimization as variance-based method.     
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Finding the optimal cut-point on an axis includes the following steps: 

a) take the projection of the data point on the specified axis that forms 1-dimensional 

data. 

b) Arbitrarily select two points m1 and m2 (m1 < m2) as initial means on the axis. 

c) Assign data point p to the cluster C1 if p ≤ (m1 + m2) / 2, otherwise assign p to C2. 

d) Update m1 and m2 with the means of C1 and C2. 

e) Repeat the process until there is no change in m1 and m2. 

f) The optimal cut-point is (m1 + m2) / 2. 

 
Select the hyperbox and the axis that gives the maximum difference between m1 and 

m2 i.e. max (m2 – m1 ) and split the hyperbox through the cut point (m1 + m2) / 2. At each 

splitting we do not need to compute the optimal cut-point for each of hyperboxes. At the 

time of forming the two new hyperboxes by splitting some big hyperbox, we find its 

optimal cut-point and axis and store it until these hyperboxes are split further.  

The number of iterations to find the cut-point is much less than the number of points 

along the axis and the computation required in each iteration is as same as the computation 

required for each examining point in the variance-based method. Therefore our method 

finds the optimal cut-point in fewer steps than the variance based method.  

We represent each cluster by a template P-tree. A template P-tree represents a subset 

of the data points or pixels. The template P-tree, Pt, contains a 1 bit for a pixel if the pixel 

is in that subset, otherwise there is a 0 bit in Pt for that pixel. In our algorithm, the P-tree, 

Pci, representing the cluster Ci is the template P-tree for Ci. The template P-tree for initial 

cluster, PC1, is a pure1-tree (defined in section 3.2) i.e. C1 contains all of the pixels. 
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  In step (c) of the above algorithm we do not compare each individual data point p to 

assign to a cluster. Suppose we want to find optimal cut-point along the axis j of the cluster 

Ci. We compute the interval P-tree Pj(0, (m1+m2)/2) and Pj((m1+m2)/2, UPPER), where 

UPPER is largest possible band-value. Then the two new clusters are: 

PCi1 = PCi & Pj(0, (m1+m2)/2) 

PCi2 = PCi & Pj((m1+m2)/2, UPPER) 

 And note that  Pj((m1+m2)/2, UPPER) = P′ j(0, (m1+m2)/2) 

To compute interval P-trees by ORing value P-trees for each of the values in the interval is 

costly if the length of the interval is large. We provide an optimal algorithm (Algorithm 

5.1) to compute interval P-tree by decomposing the interval into few subintervals such that 

each of the sub-intervals can be computed in less cost than the computation of a value P-

tree.  

 
Algorithm 5.1 Computing Interval P-trees 

Input: An interval [v1, v2] of the band i and the basic P-trees for the band i, Pi,j, for j = 0, 1, 

2, …, b – 1, where b is the number of bits in band i. 

Output: Pint, the interval P-tree Pi(v1, v2). 

1. Initialize Pint by pure0 tree P0: Pint ← P0 

2. Find an integer n∈ [v1, v2+1], such that n is divisible by 2t for some non-negative 

integer t and no integer in the interval [v1, v2+1] is divisible by 2t+1. Without 

examining each number in the interval, n can be calculated by the following steps. 

n ← 1 
while 2n ≤ v2 + 1  do 
 n ← 2n 
m ← n / 2 
while n < v1 do 
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while n + m > v2 + 1 do 
m ← m /  2 

 n ← n + m 
 

3. a) Initialize n1 by n: n1 ← n 

b) Find a positive integer r such that n1 – 2r ≥ v1 and n1 – 2r+1 < v1 

c) Psub ← Pi, 0 & Pi, 1 & Pi, 2 & …& Pi, b-r-1, Psub is the interval P-tree for the sub-      

interval [n1 – 2r, n1 – 1], i.e. Pi(n1 – 2r, n1 – 1). 

    Pint ← Pint & Psub 

     n1 ← n1 – 2r    

   d) If n1 > v1, repeat step b and c.   
 

4. a) Initialize n2 by n: n2 ← n 

b) Find a positive integer r such that n2 + 2r ≤ v2 +1 and n1 + 2r+1 > v2 + 1 

c) Psub ← Pi, 0 & Pi, 1 & Pi, 2 & …& Pi, b-r-1, Psub is the interval P-tree for the sub-

interval [n2, n2 + 2r – 1], i.e. Pi(n2 , n2 + 2r – 1). 

    Pint ← Pint & Psub 

     n2 ← n2 + 2r    

   d) If n2 ≤ v2, repeat step b and c.   

 
To compute the mean and variance of a cluster or interval we perform AND operations on 

P-trees and use the root counts of the P-trees instead of scanning the databases. ANDing of 

P-trees is very much faster than the database scanning. 

  
5.3.1 Computation of Sum and Mean from the P-trees 
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If the basic P-trees that are constructed from the original dataset are given, we compute the 

sum of the band-values of the pixels by ( )∑
−

=

−−
1

0
,

12
n

j
ji

jn Prc  (the notations of the symbols have 

been given in section 3.2 of chapter 3). If the number of bits, n, in each band-value is 8 

(n=8), then it requires the computation of only 8 terms. The root of P-trees, ( )jiPrc ,  can 

directly be found in the header of a P-tree (section 3.3). The proof of the expression is 

given in theorem 5.1. The mean can be calculated by dividing sum by the number of pixels, 

N. Theorem 5.1 calculates the sum of band-values for all of the pixels. But after dividing 

the first, cluster, which contains all of the pixels in the space, to calculate the sum for the 

pixels that are included in a particular cluster, we use 

sum = ( )∑
−

=
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jn PPrc   (theorem 5.2) 
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where Pt is the template P-tree or mask P-tree.  

 

Lemma 5.1: ∑∑
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= the number of pixels having ‘1’ in the jth bit of ith band.   

=  the number of 1s in the P-tree Pi,j  

= rc(Pi,j).  
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Theorem 5.1: Summation of the values for bands i of all pixels, ( )∑
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Lemma 5.2: For single-bit operands then bit-wise ‘AND’ operation (&) and multiplication 

produce the same result and the result is also a 1-bit value; that is a × b = a & b if a and b 

are 1-bit values i.e. either 1 or 0. 

Proof: Using a truth-table to examine all possible combinations of values of a and b 

a b a × b a & b 

0 0 0 0 

0 1 0 0 

1 0 0 0 

1 1 1 1 
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The data from the table show that for any 1-bit values a and b, a × b = a & b. And both (a 

× b) and (a & b) are 1-bit value.    

 
Theorem 5.2: Summation of the values for band i of the pixels represented by the template 

P-tree or mask P-tree, tP , is ( ) ( )∑
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5.3.2 Computation of Variance from the P-trees 

Variance is defined by ( )∑ − 21 µx
N

 that can be simplified to ∑ − 221 µx
N

. Theorem 5.1 

and 5.2 allow us to compute mean, µ , from the P-tree; now if we can find ∑
2x using the 

P-tree, then we do not need to scan databases to perform any computation required by the 

algorithm. Theorem 5.3 and 5.4 facilitates the computation of the sum of the squared band-

values.     
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Theorem 5.3: Summation of the squared values for bands i of all pixels, 
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Theorem 5.4: Summation of the squared values for band i of the pixels represented by the 

template P-tree or mask P-tree, tP , is ( ) ( )∑∑
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Proof: Proof can easily be constructed by following the techniques used in proving the 

theorems 5.2 and 5.3. 

 

5.4 Conclusion 

In this paper we proposed a new k-Clustering algorithm that combined the 

convergence techniques of k-means algorithm into the divisive k-clustering techniques 

using P-trees to produce a fast clustering techniques that minimze the sum of the squared 

error. Our new algorithm is faster than any k-clustering algorithms while the optimization 

of the sum of the squared error is as good as the variance-based method. 

We provided theorems to calculate the mean and variance from the P-trees without 

scanning the database that saves computational time significantly. In this paper we also 

included an optimal algorithm to compute the interval P-trees. 
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CHPATER 6: GENERAL CONCLUSION 
 
 

In this thesis we analyzed distance metric-based data mining techniques using P-

trees. Various distance metrics are considered and their behaviors are analyzed. We 

developed the fast techniques of computing neighborhoods and partitions, which made by 

the decision boundaries of the distance metrics, using P-trees. We successfully used those 

techniques to develop fast classification and clustering algorithms.  

A new distance metric is proposed that can be used efficiently in P-tree-based 

computation. We included the proof that the new proposed distance metric satisfies the 

criteria of the distance metrics. 

Some interesting and useful properties of P-trees have been revealed. We found 

proved some useful theorems that enable statistical computations such as finding sum, 

mean and variance from the P-trees without scanning databases. 
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