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Abstract. A social network is a critical infrastructure for the propaga-
tion of an infectious disease in a population. It is important to study the
structural properties of the social network for identifying feasible pub-
lic health interventions that can effectively contain a potential epidemic
outbreak. In this work, we focus on flu-like diseases and corresponding
people-people social contact networks. We study such social infrastruc-
tures of three cities: Los Angeles, USA, Beijing, China and Delhi, In-
dia. These contact networks are different due to different construction
methodologies and the fact that the populations inherently have very dif-
ferent demographic structures and activity patterns. We compare them
in terms of static structural properties (such as clustering coefficient,
degree distribution), as well as disease dynamics and efficacy of inter-
vention (e.g., school closure). The study of our model robustness and the
comparison between different contact networks can provide valuable in-
sight on creating a global synthetic population and social infrastructure
for studying public health problems.

1 Introduction

The structure of social contact networks influences the spread of infectious dis-
eases in an urban region. An important goal of network science is the devel-
opment of structure to function theory - identifying structural features of the
social network that yield insights into the disease propagation. Effective phar-
maceutical as well as non-pharmaceutical interventions (NPI) can be identified
by analyzing the social contact networks. In this work, motivated by the recent
pandemic caused by H1N1, we focus on influenza-like diseases and corresponding
people-people social contact networks. We study such social infrastructures of
three cities: Beijing, China, Delhi, India, and Los Angeles, USA. We compare
them in terms of static structural properties, as well as disease dynamics and
intervention efficacy.

We have generated synthetic populations and social contact networks for
Beijing, Delhi, and Los Angeles using different methodologies. For Los Angeles,



we use census data, Dun & Bradstreet location data, and activity survey data.
For Beijing and Delhi, we have only the LandScan population density data and
limited census data. We develop a generic methodology that takes into account
variable data availability and granularity across different regions of the world.
This model, based on LandScan data, can be applied to generate a synthetic
population, including individual demographics, home locations, and daily activ-
ities, for any area in the world. The Beijing, Delhi, and Los Angeles contact
networks are different due to different construction methodologies and the fact
that the three populations inherently have very different demographic structures
and activity patterns. To construct the contact networks, we explicitly generated
activity sequences for each individual in the population taking into account the
variability in demographic and activity patterns for each city individually. Other
works in current literature either ignore the detailed activities of the individual
persons or use the same model for every city/country in the world, and thus lose
the crucial demographic and spatial variability which has significant effect on
network structure as well as disease dynamics.

For comparison, we have first computed major structural measures for the
two networks, including degree distribution, clustering coefficient distribution,
and vulnerability distribution. Second, we run simulations to compare the ef-
ficacy of widely accepted public health interventions on the epidemic progress
in the three different populations. Our results highlight the importance of the
spatial and demographic structure of the social contact network when design-
ing effective interventions. For example, the distribution of school aged children
varies widely between the three cities. This difference affects the efficacy of NPIs
such as school closures. Structural analysis of the networks provides important
cues in this regard. The results have an important implication, namely, guide-
lines developed by global health organizations, such as WHO, should be eval-
uated and adapted by each country based on specific demographic and spatial
characteristics.

One challenge in generating a realistic synthetic population is that many im-
portant statistics or survey data are not available for regions outside the USA.
Thus, a careful synthesis of data from various related or unrelated sources is nec-
essary. LandScan data is a useful source for spatial distribution of the population.
Ferguson et al. [17] used LandScan data to generate synthetic populations and
model influenza transmission in Thailand and in a 100-km wide zone of contigu-
ous neighboring countries. Like our model, their model explicitly incorporates
household, schools, and workplaces. Thai census data was used for household size
and age distribution. Households are randomly distributed following the density
determined by LandScan data. In their model, a person is in contact with any-
one visiting the same place; however, in a realistic scenario, people mix in small
subgroups especially if the number of persons visiting the same place is large
(say, more than 100). In our model, each location is divided into sub-locations
and only the persons who are in the same sub-location are in contact. Further,
they did not build any explicit edge and contact network, which can lead to loss
of some crucial structural properties that can affect disease dynamics. Duration



of the contact between an infectious person and a susceptible person plays an
important role in transmitting the disease to the susceptible person, and the
duration depends on the activity type. In our model, contact duration for each
contact has been generated and taken into account in the simulation of disease
transmission; their model ignores individual contact duration.

In [15], Chao et al. also presented an individual-based simulation model of an
influenza epidemic, where the individuals are members of social mixing groups,
within which influenza is transmitted by random mixing. They divide the entire
population into census tracts, which in turn are subdivided into communities of
500-3,000 individuals. The population is organized as a hierarchy of increasingly
large but less intimate mixing groups. Workplaces and schools were created fol-
lowing census data. Long distance domestic travel was also considered. However,
they also did not construct the explicit contact network, and the contact dura-
tion was not considered. Uniform contact probability was used for simulating
disease transmission, which was tuned so that attack rates were similar to that
of previous known influenza outbreaks such as Asian A (H2N2) and Hong Kong
A (H3N2). Even though contact probability was tuned to international influenza
outbreaks, population and survey data of the United States were used. A sum-
marized comparison of our model with the models in [17] and [15] is given in
Table 1. Here we would like to note that although we created explicit activity
schedules for Delhi and Beijing, we created them based on an activity survey
done in the United States. As a result, these activity schedules may not reflect
real activities of the people in Beijing and Delhi. However, the strength of our
model is that once such activity data becomes available, our model can be used
more effectively.

Table 1. Comparison of our model with that in [17] and [15]

Ferguson
et al.[17]

Chao et
al.[15]

Delhi / Beijing
(our model)

Los Angeles
(our model)

Explicit edge no no yes yes

Census data yes yes yes yes

LandScan data yes no yes no

Activity survey data no no no yes

Exact location data used no no no yes

Explicit activity schedule no no yes yes

Variable contact duration no no yes yes

Transmission depends on in-
dividual contact duration

no no yes yes

International population yes no yes no

Individual-based model yes yes yes yes



Another model for generating a synthetic population along with assigned
home and work locations is given in [18]. They built a synthetic population
database. Individual level details have been included to support the infectious
disease models. Cooley et al. [16] used this database to study the spread of
seasonal influenza in North Carolina.
Our contributions. Our main contribution in this paper is two-fold: i) method-
ology for generating a coarse synthetic population and a social contact network
for any international region from very limited census data and LandScan data;
ii) a comparison of three different urban regions across the world in terms of
structural properties and disease dynamics, and showing the effect of spatial
and demographic variations. To the best of our knowledge, it is the first compar-
ison of disease dynamics of three different urban regions across the world using
an epidemic simulation methodology.

As we mentioned earlier, lack of necessary data makes it extremely hard to
model population and contact networks accurately for many areas around the
world. For most areas, such a model of population and a systematic simulation
study of epidemic disease does not exist. The previous works in [17, 15] are
the most robust and detailed models in the current literature. The discussion
above and comparison with these models [17, 15] show the competitiveness of
our model. Thus, it is reasonable to say our model and methods are as good as
any other existing models.

The rest of the paper is organized as follows: in Section 2, we provide a
summarized description of our models for generating synthetic populations and
contact networks from limited census data and LandScan data. The details of
our model are given in Appendix A and B. In Section 3, we present results of the
simulation of disease dynamics in three generated networks and compare them.
In addition to the disease dynamics, we also compare the structural properties
of these networks. We conclude the paper in Section 4.

2 Generating a Synthetic International Population and
Contact Network

In [12] we presented a method to a generate synthetic population and contact
network for cities in the United States, including Los Angeles. In this paper, we
focus on constructing population and contact networks for international cities
Delhi and Beijing. Different types and sources of data lead to different models
and methodology for generating synthetic populations and contact networks.
Table 2 shows the data along with their sources that are used in construction of
Beijing, Delhi, and Los Angeles.

In this section, we provide an overview of our model to generate synthetic
populations for international cities using LandScan data and population survey
data. The detail description of our model is given in Appendix A and B.

In the LandScan data, the area is divided into a 30 sec. × 30 sec. lati-
tude/longitude grids. The data contains the population counts for each cell. The
counts were apportioned to each cell based on likelihood coefficients which are



Table 2. Data used in construction of Delhi, Beijing, and Los Angeles Network

Network Data Source

Delhi

LandScan Oak Ridge National Lab [5]
India Census 2001 Government of India [4]
Delhi school statistics Delhi Department of Planning [3]
College/university data University Grand Commission, India [10]

Beijing
LandScan Oak Ridge National Lab [5]
China census data National Bureau of Statistics of China [6]
School data Database Center of China Economy Website [1]

Los Angeles

US census data US Census Bureau [11]
Location data Dun & Bradstreet [2] and NCES [7]
Activity survey data National Household Travel Survey [8]
Street layout NAVTEQ [9]

based on proximity to roads, slopes, land cover, nighttime lights, and other in-
formation. The LandScan data was compiled at Oak Ridge National Lab as a
part of Global Population Project [5]. The census data we used consisted of:
total population, age and gender distribution of the population, household size
distribution, workplace distribution, number of schools of different types, and
occupation distributions for different age groups.

First, we determine the cells (of LandScan data) that are within the boundary
of the area of interest (e.g., Delhi, Beijing). To find the LandScan cells inside the
area of interest, we are given a set of boundary points of a city (Delhi or Beijing).
Using Bresenham’s fast line drawing algorithm, boundary lines are computed
from these given boundary points. Then the inside cells are determined using
a flood-fill algorithm. The number of people in each cell in the LandScan data
is converted into population density. This density serves as a probability of a
household or a workplace being in this particular cell. Households, workplaces,
and schools are generated following the distribution obtained from the census
data and they are assigned a location using the LandScan density data. A list
of households with assigned location ID, size, and location is created from the
household size distribution. Similar lists for workplaces and schools are also
formed. The total number of household, workplaces, and schools and their sizes
are matched with the census data.

Synthetic populations are generated following the census data and each per-
son is assigned a household and a daytime location, which can be a workplace,
school, or a household (for persons that stay at home all day, for example, an
unemployed person, housewife, etc). A list of persons with assigned ID, age,
gender, and marital status is created from the given number of married and un-
married males and females for all age groups, which is obtained from the census
data. When assigning people to households, a set of well-defined rules are fol-
lowed to maintain a reasonable age gap and gender combination to a family; for
example, an infant normally cannot live alone in a family of size one. Similar re-



spective rules were followed for assigning daytime locations (workplaces and/or
schools) to the generated persons. When assigning a daytime location, distance
to the location from home is also considered. A daytime location at distance
d is selected randomly with probability following an exponential distribution:
f(x;λ) = λe−λx where λ is the mean distance.

Next, we generate an activity sequence for each person. Once we have the
synthetic population and their activity sequences, we can generate the contact
network. An activity sequence is a set of activities, each including at least an ac-
tivity type, a start time, a duration, and a location. We assume every individual
has at most two activity types: home activity and another associated with his
daytime location type. We define a person type for each individual based on his
daytime location type, and this type is used to determine one’s activity sequence.
Each activity location is divided into sublocations. The sublocation model is a
way of defining interactions among persons who visit the same location doing
the same activity at the same time. Each person is assigned to a sublocation
(within the activity location) randomly. The activity sequences and the sublo-
cation model define a people-location (PL) bipartite graph, where people and
locations are the vertices and there is an edge between a person P and location
L if P visits L; time of the visit is a label of the edge. Then the contact network
can be constructed from this PL graph. We define there a contact between two
persons if they are in the sublocation with the same activity at the same time.
As a result we have a contact network, where each person is a node and there
is an edge between two persons if they are in contact with each other in some
location. The contact network is generated from the activity list along with the
assigned sublocations using a previously built simulation tool EpiSimdemics [13].

3 Comparison between Beijing, Delhi, and Los Angeles

In this section, we compare the three cities, first in terms of static properties,
such as demographic structure of the populations and network structure of the
social infrastructures. We are also interested in dynamic property comparisons.
To this end, we simulate epidemic evolutions of an infectious disease on the three
populations, with the same settings. We study the difference in the epidemic
dynamics and possible sources of the difference. Finally, we use simulations to
study how the same public health intervention strategies may have different
effectiveness in containing the disease outbreak in three populations.

3.1 Population Demographics

The people in the three cities have significantly different demographics. The
major statistics are in Table 3 and we plot the age distribution and household
size distribution in Figures 1 and 2. We find that the Delhi population is much
younger with much larger household sizes than the other two. Beijing has a
smaller fraction of people of preschool or school age.



Table 3. Demographic statistics of three cities

City Population size Average age Average household size sex ratio (M/F)

Beijing 16,191,340 37.9 2.6 0.99

Delhi 12,905,750 25.6 9.1 1.22

Los Angeles 16,228,759 32.9 3.0 0.97
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3.2 Structural Properties of the Social Contact Networks

In this section, we discuss some structural properties of the three contact net-
works. Table 4 shows the sizes of the three contact networks: number of nodes,
average degree of the nodes, maximum degree and minimum degree. Average
degree in the Delhi network is the largest among these three cities and average
degree in Los Angeles is the smallest. That is, on average, a person in Delhi
gets in contact with more people than a person in Los Angeles. Figure 3 and 4
show degree distribution and clustering coefficient(CC) distribution of the three
cities. These distributions show some differences among the cities. While the dif-
ference, with respect to degree distribution and CC distribution, between Delhi
and Beijing is less, Los Angeles is more different than the other two.

The difference in the network structures of the Beijing, Delhi, and Los An-
geles social networks comes from both the demographic difference of the real
populations and the methodological difference in generating the synthetic pop-
ulations and constructing the synthetic social contact networks.

The synthetic populations are generated based on statistical properties of the
real populations. The demographic difference discussed in Section 3.1 reflects the
real populations, which is a result of fundamental cultural, social, and economical
differences, among others, between the urban areas in China, India, and the USA.
Network structure is affected by the demographic structure. For example, since
school type sublocations generally have larger sizes than work type sublocations,
more students in a populations means more connections in the network. Also
larger household size means more home type contacts. That explains why the
Delhi network has higher average degree than the Beijing network, and both
have much higher average degrees than the Los Angeles network.

For Los Angeles, we have detailed US census data, real locations, and sample
activity schedules from survey. Our methodology in generating the US synthetic
population guarantees that it is statistically indistinguishable from the real pop-
ulation. For Beijing and Delhi, we have only a few coarse statistics and LandScan
population density data. We have to adopt another methodology which can only
assure that the available distributions are observed. The people and locations in
Delhi and Beijing are randomly located. This necessarily affects where people
go and who they meet every day, which ultimately affects the structure of the
contact networks.

We point out that although we used the same US activity survey data to
create activity schedule templates for Beijing and Delhi, due to lack of data, the
people in Beijing and Delhi have only home, work, and school type activities,
while those in Los Angeles can also have shopping and other activities. Therefore,
a person in Los Angeles has more opportunity to mix with other people. On the
other hand, we set the sublocation size of Beijing and Delhi schools to 40, in
contrast to a sublocation size 25 in Los Angeles schools. These differences also
contribute to the structural differences in the three social contact networks.



Table 4. Sizes of the generated contact networks

Network No. of nodes Avg. deg. Max Deg. Min Deg.

Delhi 12,905,750 79.78 321 1

Beijing 16,191,340 66.77 313 1

Los Angeles 16,228,759 56.60 463 1
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3.3 Epidemic Dynamics and Intervention Efficacy

We compare the dynamics of infectious disease propagations in the three social
contact networks and the effectiveness of various intervention strategies using
simulations [14]. We assume that the disease is a strong influenza, which infects
about 30% (called attack rate) of each of the three populations without any in-
terventions. For the simulations in this section, we use a fast epidemic simulation
tool that our group has developed, called EpiFast. For details about the epidemic
simulations, interventions, and EpiFast, please see [14].

In Figure 5, we show the day-by-day average number of infections in the
base case for the three cities. Beijing has an earlier outbreak; and Delhi has a
higher peak and a shorter outbreak duration. The peak time of Beijing is about
two months earlier than that of Los Angeles. This implies that Beijing needs to
respond much more promptly in order to prevent a potential outbreak. The faster
outbreak of the epidemic in Beijing and Delhi may be due to denser population
and stronger mixing of people.

In Figure 6, we plot the distribution of individual vulnerability in three pop-
ulations. The vulnerability of an individual is the probability of getting infected
in a random epidemic. We estimate this measure using 1,000 simulation runs.
It seems that Beijing has more people with very low vulnerability or very high
vulnerability, while Delhi has more people with medium vulnerability. This im-
plies that interventions targeting the most vulnerable people may have better
performance in Beijing than in Delhi.



 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

 0  50  100  150  200  250  300

ne
w 

in
fe

ct
io

ns
 (f

ra
ct

io
n)

day

Average Epidemic Curves: No Intervention

Beijing
Delhi

Los Angeles

Fig. 5. Base case (no intervention) av-
erage epidemic curves.

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

cu
m

ul
at

ive
 p

ro
ba

bi
lity

vulnerability

Vulnerability Distributions

Beijing
Delhi

Los Angeles

Fig. 6. Cumulative distribution func-
tions of node vulnerability.

Next, we partition each population into subpopulations according to age:
preschool, school age, adults, and senior. We plotted the epidemic curve for each
subpopulation. This allows us to find out which group of people are particularly
vulnerable (i.e., more frequently infected) in each population. By comparing
Figures 7 and 8, we find that school age children are most vulnerable in general;
but in Beijing their vulnerability is especially high. And the senior age group
in Beijing are very resistant to the disease. This explains Beijing’s vulnerability
distribution shown in Figure 6.

Preschool (< 5)
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School age (5 to 18)

Overall Avg
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Fig. 7. Base case average epidemic
curve of each age group in Beijing.
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Fig. 8. Base case avg. epidemic curve
of each age group in Los Angeles.

Now, we apply different public health intervention measures and compare
their effectiveness in different cities. Interventions can be categorized into phar-
maceutical interventions (PI’s), e.g. vaccination and antiviral administration;
and non-pharmaceutical interventions (NPI’s), e.g. generic social distancing,
school closure, and work closure [14]. PI’s reduce the infectivity and vulnera-
bility of the intervened people; while NPI’s reduce people-people contact and
therefore weaken the connectivity of the contact network. For vaccination we
assume the vaccines are enough to cover 25% of the population. For antiviral we



assume 50% coverage. For each NPI strategy, we assume a compliance rate of
50% (i.e., 50% of the population will comply). We assume that vaccines are ap-
plied at the beginning of the epidemic; while the other interventions are applied
when the infectious people in the population reaches 1%. For each setting, we
run 25 replicates and take the average.

The epidemic curves are shown in Figure 9, and Figure 10-15 show the
heatmaps of the densities of the infected populations of the three cities on the
peak days. We find that vaccination is the most effective. With only 25% of the
population vaccinated, the epidemic size decreases by more than 60% for Bei-
jing, 80% for Delhi, and 97% for Los Angeles. Since the Beijing and Delhi social
networks are more connected than Los Angeles, 25% vaccination suppresses the
epidemic although it is not enough to contain the outbreak completely. In Los
Angeles, the outbreak diminishes. For NPI’s it seems that school closure is more
effective than work closure. Despite the difference in school age subpopulation
size and school type sublocation model among three cities, school closure appears
to be similarly effective among them. For work closure intervention, its impact
on the epidemic evolution is significant in Beijing in the short run, although the
efficacy does not last and the outbreak returns.

The policy implication of these simulations is that vaccination seems to be the
most effective intervention measure, school closure is the most effective among
the NPI’s, and that an epidemic is much more urgent for Beijing than for Delhi
and Los Angeles.

Finally, we point out that our methodology for constructing Beijing and Delhi
synthetic populations and contact networks can naturally make use of data of
better quality and more details. As more and more data becomes available, the
constructed synthetic population becomes closer and closer to the real one. The
difference between such a population and the Los Angeles synthetic population
due to methodology difference will diminish and the difference between the real
populations will become the dominant source for the different epidemic dynamics
presented in simulations. This means our simulations of epidemic evolutions and
public health interventions will be more realistic and can provide better decision
support for pandemic planning and controlling.

4 Conclusion

We presented a model to generate contact networks for Delhi and Beijing from
limited and inadequate census data, and provided simulation results on dynam-
ics of influenza-like disease in these networks. We also compared these results
with the Los Angeles network, which has been generated from comparatively
rich data sources. These results show the effects of spatial and demographic
variation on disease dynamics and contact network structure. For more accurate
results, the network methods need substantial improvements with additional de-
tails incorporated in the model. However, this model provided us useful insight
toward understanding the structure of the contact network formed by the people
of various cities and the differences between them caused by demographic differ-
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Fig. 10. Delhi – school closure with
25% compliance.

Fig. 11. Delhi – Vaccination with 25%
compliance.



Fig. 12. Beijing – school closure with
25% compliance.

Fig. 13. Beijing – Vaccination with
25% compliance.

Fig. 14. LosAngeles – school closure
with 25% compliance.

Fig. 15. LosAngeles – Vaccination
with 25% compliance.



ences, as well as the differences in disease dynamics. Our future work includes
continuous refinement of our model as more useful data become available.

Another interesting and important future work on these networks is to an-
alyze sensitivity of the structures of these networks on disease dynamics. One
particular experiment is to randomly switch the end points of the edges (shuffling
the edges) such that degree of each node remains invariant. Then compare the
disease dynamics in this shuffled network with that in the original network. Such
an experiment can help us understand how disease dynamics can be affected by
the network structures beyond degree distribution.
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A Detailed Method of Generating International
Population

In this section, we describe the details of our model to generate synthetic popu-
lations using LandScan data and population survey data. In the LandScan data,
the area is divided into a grid of cells with the size of each cell being 32′′ × 32′′.
The data contains the number of population in each cell. First we determine the
cells (of LandScan data) that are within the boundary of the area of interest
(e.g., Delhi, Beijing). The number of people in each cell in the LandScan data
is converted into population density. This density serves as a probability of a
household or a workplace being in this particular cell. Households, workplaces,
and schools are generated following the distribution obtained from the census
data and they are assigned a location using the LandScan density data. Synthetic
populations are generated following the census data and each person is assigned
a household and a daytime location, which can a workplace, school, or a house-
hold (for persons that stay at home all day, for example, an unemployed person,
housewife, etc). Then we generate activity sequence for each person. Once we
have the synthetic population and their activity sequence, we can generate the
contact network. The details of the methodology are given in the subsequent
subsections.

A.1 Finding the LandScan cells inside the area of interest

We are given the cells of LandScan data and the boundary points of a city (Delhi
and Beijing). Each boundary point is a pair of latitude and longitude. We want
to find the cells inside the boundary. First determine a bounding box as follow.

1. From the boundary points, find the maximum and minimum latitude: max-
lat and min-lat. Similarly, find max-long and min-long. These max-lat, min-
lat, max-long, and min-long define a bounding rectangle.

2. Let there are m × n cells in this bounding rectangle. Let (x, y) be the co-
ordinates of a point P in terms of latitude and longitude. We define cell
coordinates of P to be (r, c) in terms of row and column, where 1 ≤ r ≤ m
and 1 ≤ c ≤ n.

Then find the cells inside boundary as below.

1. Convert coordinates of the boundary points from (latitude, longitude) to cell
coordinates (row,column): if a boundary point (x,y) belongs to cell (r, c), its
cell coordinate is (r, c).

2. Next, determine the cells that are on the boundary of the city. For each pair
of consecutive boundary points (r1, c1) and (r2, c2), use Bresenham’s line
drawing algorithm to determine the cells on this line.

3. Using a flood fill algorithm, find the inside cells.



A.2 Generating household

Given: The household size distribution.
Output: A list of households with assigned Location ID (LID), size, and loca-
tion.
Procedure:

1. Normalize the household size distribution data to the probability data of
each household size. The sum of the probability data is 1.

2. For each household in a size group, assign household identifier (HID) se-
quentially beginning with 0, randomly assign a household size according to
the household size probability. If the size is given as a range, assign the size
uniformly randomly from the range.

3. Given a location type ID (TypeID) for household type, assign the LID of
each household by LID = TypeID × 10000000 + HID.

4. For each household, randomly pick a cell within the boundary with the
probability from population spatial distribution. Then pick a location within
the cell uniformly at random.

A.3 Generating Workplaces

Given: The workplace size distribution; population size N ; the daytime-location
probability data, i.e., the probabilities that a person will be assigned to work-
place, school, or household respectively.
Output: A list of workplace with assigned Location ID (LID), size, and location.
Procedure: The number of workplace can be estimated by integrating informa-
tion from population size and the probability of daytime location as workplace.

1. Normalize the workplace size distribution data to the probability data of
each workplace size. The sum of the probability data is 1.

2. For each workplace in a size group, assign workplace identifier (WID) se-
quentially beginning with 0, randomly assign a workplace size according to
the workplace size probability.

3. Given a location type ID (TypeID) for workplace type, assign the LID of
each workplace by LID = TypeID × 10000000 + WID.

4. For each workplace, randomly pick a cell within the boundary with the
probability from population spatial distribution. Then pick a location within
the cell uniformly at random.

A.4 Generating Schools

Given: The number of schools of each type, such as kindergarten, elementary
school, junior high school, senior high school, college, graduate school, etc.
Output: A list of schools (of different types) with assigned Location ID (LID),
size, and location.
Procedure:



1. For each school in each school type, assign school identifier (SID) sequen-
tially beginning with 0, randomly pick a cell within the boundary with the
probability from population spatial distribution. Then pick a location within
the cell uniformly at random.

2. Given a location type ID (TypeID) for each school type, assign the LID of
each school by LID = TypeID × 10000000 + SID.

A.5 Generating person ID, age, gender, and marital status

Given: Age ranges and for each range, the number of married and non-married
males and females.
Output: a list of persons with assigned ID, age, gender, and marital status.
Procedure: For age range [x, y], let Mu,Mm, Fu, and Fm be the numbers of un-
married male, married male, unmarried female, and married female respectively.
Then follow the steps below.

1. For each person, assign person identifier (PID) sequentially begin with 0.
2. For a person in age range [x, y], assign age uniformly at random from the

range [x, y].
3. For Mu persons in the age range [x, y], assign gender to “male” and marital

status to “non-married”; and so on.

A.6 Generating individual persons and assigning people to
household

Given: Household, workplace, and school data; the age ranges and for each
range, the number of males and females.
Output: A list of persons with assigned ID, age, gender and household
Procedure: Persons are generated household by household, i.e., sequentially
generate a list of person for household 1, 2, 3, ... and so on. The number of
persons generated for each household should be equal to the household size.
When generating persons in each household, the following steps are followed.

1. Given the age and gender data, normalize the data to joint probability dis-
tribution data. For age range i, which spans [xi, yi], let Mi and Fi be the
numbers of male and female respectively. The normalized probability for Mi

and Fi will be Mi/
∑
i(Mi + Fi), and Fi/

∑
i(Mi + Fi), respectively.

2. Randomly generate the age and gender for a person according to the age
and gender joint probability data. For a person in age range [xi, yi], assign
age uniformly at random from the range [xi, yi].

3. Repeat from Step 2 until all persons in the household are generated.
4. Send the list of persons in this household to a verification function, which

justifies whether the generated persons follow a reasonable age gap and gen-
der combination to a family. For example, an infant normally cannot live
alone in a family of size one. If the verification function returns FALSE,
repeat generating person for this family from Step 2; otherwise, continue the
following steps.



5. For each person in the list, assign person identifier (PID) sequentially. (The
first person in the first household begin the PID with 0.)

6. Repeat generating persons for all the households as above.

A.7 Assigning people to daytime locations

Given: Person data; daytime location data, i.e., workplace, school, and house-
hold; for each age, the daytime-location probability data, i.e., the probabilities
that a person will be assigned to workplace, school, or household respectively.
Output: A list of persons with assigned daytime location.
Procedure: We assign the daytime location for the person sequentially from
PID = 0. For each person, the following steps are followed.

1. Randomly generate the daytime location type L according to the daytime-
location probability at the age of this person.

2. Let the location coordinates of the person’s household H be (xH , yH). Then
we can envision a home cell, where H is located, is surrounded by multiple
rectangular rings of cells. The four edges of each ring have equal vertical or
horizontal distance to the central home cell. Figure 16 illustrates an example
of rings, where H is in home cell, cells on ring 1 are at distance 1 to the home
cell and cells on ring 2 are at distance 2 to the home cell. Randomly select a
ring at distance d, where d = bxc and x follows an exponential distribution
, i.e.,

f(x;λ) =

{
λe−λx if x ≥ 0,
0 if x < 0,

where λ is the mean distance.
3. Search for the first location with type L on ring d with a clockwise direction.

The search begins from the cell that is picked uniformly at random on the
ring. If the target location type has a population capacity, then we should
find the location not fully filled.

4. Repeat from Step 2 until L is found or a Step 2 has been continuously tried
for R times.

5. If L has not been found after R attempts, continuously search L from the
inner-most ring to the outer-most ring.

6. Assign the location, found by the above searching, to the person.

B Generating Contact Network

In this section we describe the procedures to create a social contact network
for the synthetic population generated in Section A. To create contact network,
we need to generate daily activities for each individual in the population. Each
activity describes what the person is doing, at which location, from what time,
and for how long.



Fig. 16. Ring to the home location.

B.1 Generating Activity File

Here we describe a methodology to generate activities for the synthetic popu-
lation. The activity lists are required for creating a social contact network for
running EpiFast simulations. The list describes an activity sequence for each
individual. An activity sequence is a set of activities, each including at least an
activity type, a start time, a duration, and a location. Each individual will follow
their sequence every day.

We assume that from the previous procedures we have generated for each
individual the daytime location and location type, and the nighttime location.
The nighttime location is always his home location. The daytime location type
includes home, work, or one of several school types.

We assume that every individual has at most two activity types: home
activity and another associated with the daytime location type. We define a
PersonType for each individual based on the daytime location type.

For each PersonType we make up several activity sequences as templates,
and define a distribution on them. Each activity sequence template includes
activity types, start times, and durations for the activities. For now we will only
have home activities and day-time activities corresponding to the individual’s
PersonType. We will consider shopping and other activities in the future.

To generate the activity list for each individual, based on the PersonType,
we randomly choose an activity sequence template according to the distribution.
For each activity in the sequence, if it is a home activity we assign home location
of this individual as the activity location; otherwise we find the daytime location
of this individual and assign it as the activity location.



Using this activity file, contact network is generated following the sublocation
model as described below.

B.2 Sublocation Model

The sublocation model is a way of defining interactions among persons who visit
the same location at the same time. Each activity location, say L, is divided
into sublocations, say L1, L2, . . ., and each person visiting location L is randomly
assigned a sublocation in this location. Then we define there is a contact between
two persons if they are in the sublocation at the same time. The activity list and
the capacity of a sublocation for each type of activity location is given as input
to the sublocation modeling. The details of the model is given below:

1. A 24-hour day is divided into 15-minute slots. For each location L determine
the number of people visiting L for acticity A in each time slot t; let this
number be denoted by N(L,A, t).

2. For each A and L, compute Nmax(L,A) = max
t
N(L,A, t).

3. Let the capacity of sublocation for activity A at location L be M(L,A). For
each L and A, generate Nmax(L,A)/M(L,A) sublocations within location
L.

4. For each activity in the activity file, assign a sublocation uniformly at ran-
dom.

The activity list along with the assigned sublocations are fed to a simulation
software EpiSimdemics [13] to generate the contact network. From the given
input, EpiSimdemics identifies the persons who are in the same sublocation
at the same time and their contact durations. In the resultant contact network,
each person is a node, an edge exists between two persons if they are in the same
sublocation at the same time, and the contact durations are the edge weights.


