

 64 Int. J. Business Intelligence and Data Mining, Vol. x, No. x, 200x

 Copyright © 2007 Inderscience Enterprises Ltd.

An efficient weighted nearest neighbour classifier
using vertical data representation

William Perrizo
Department of Computer Science,
North Dakota State University,
P.O. Box 5164, Fargo, ND 58105-5164, USA
E-mail: william.perrizo@ndsu.edu

Qin Ding*
Department of Computer Science,
Pennsylvania State University at Harrisburg,
Middletown, PA 17057, USA
Fax: +1-717-948-6352 E-mail: qding@psu.edu
*Corresponding author

Maleq Khan
Department of Computer Science,
Purdue University, 250 N. University St.,
West Lafayette, IN 47907, USA
E-mail: mmkhan@cs.purdue.edu

Anne Denton
Department of Computer Science and Operations Research,
North Dakota State University,
P.O. Box 5164, Fargo, ND 58105-5164, USA
E-mail: anne.denton@ndsu.edu

Qiang Ding
Jiangsu Telecom Co., Ltd.,
Huan Cheng Nan Lu #88, Nantong, Jiangsu 226001, China
E-mail: qding74@gmail.com

Abstract: The k-nearest neighbour (KNN) technique is a simple yet effective
method for classification. In this paper, we propose an efficient weighted
nearest neighbour classification algorithm, called PINE, using vertical data
representation. A metric called HOBBit is used as the distance metric.
The PINE algorithm applies a Gaussian podium function to set weights to
different neighbours. We compare PINE with classical KNN methods
using horizontal and vertical representation with different distance metrics.
The experimental results show that PINE outperforms other KNN methods in
terms of classification accuracy and running time.

 An efficient weighted nearest neighbour classifier 65

Keywords: nearest neighbours; classification; data mining; vertical data;
spatial data.

Reference to this paper should be made as follows: Perrizo, W., Ding, Q.,
Khan, M., Denton, A. and Ding, Q. (200x) ‘An efficient weighted nearest
neighbour classifier using vertical data representation’, Int. J. Business
Intelligence and Data Mining, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: William Perrizo is a Professor of Computer Science
at North Dakota State University. He holds a PhD Degree from the
University of Minnesota, a Master’s Degree from the University of Wisconsin
and a Bachelor’s Degree from St. John’s University. He has been a Research
Scientist at the IBM Advanced Business Systems Division and the USA
Air Force Electronic Systems Division. His areas of expertise are data
mining, knowledge discovery, database systems, distributed database systems,
high-speed computer and communications networks, precision agriculture and
bioinformatics. He is a member of ISCA, ACM, IEEE, IAAA and AAAS.

Qin Ding is an Assistant Professor in Computer Science at Pennsylvania State
University at Harrisburg, USA. She received her PhD in Computer Science
from North Dakota State University, USA, MS and BS in Computer Science
from Nanjing University, China. Her research interests include data mining,
database, bioinformatics and spatial data.

Maleq Khan received BS in Computer Science and Engineering from
Bangladesh University of Engineering and Technology, Bangladesh and MS in
Computer Science from North Dakota State University, ND, USA. He is
currently working toward the PhD Degree in Computer Science at Purdue
University, IN, USA. His research interests include distributed algorithms,
communication networks, wireless sensor networks, bioinformatics and data
mining.

Anne Denton is an Assistant Professor in Computer Science at North Dakota
State University, USA. Her research interests are in data mining, knowledge
discovery in scientific data and bioinformatics. Specific interests include data
mining of diverse data, in which objects are characterised by a variety of
properties such as numerical and categorical attributes, graphs, sequences,
time-dependent attributes and others. She received her PhD in Physics from the
University of Mainz, Germany and her MS in Computer Science from North
Dakota State University, Fargo, ND, USA.

Qiang Ding received his MS and PhD in Computer Science from North Dakota
State University, USA, BS in Computer Science from Nanjing University,
China. He was an Assistant Professor in Computer Science at Concordia
College, MN, USA, before he joined Jiangsu Telecom Co., Ltd., China.
His research interests include database and data mining.

1 Introduction

The nearest neighbour technique (Cover and Hart, 1967; Cover, 1968; Dasarathy, 1991;
Duda and Hart, 1973; McLachlan, 1992; Safar, 2005) is a simple yet effective method for
classification. Given a set of training data, a KNN classifier predicts the class value for a
new sample X by searching the training set for the KNNs of X based on certain distance

 66 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

metric and then assigning to X the most frequent class occurring in its KNNs. The value
of k, i.e., the number of neighbours, is pre-specified. Nearest neighbour classifiers are
lazy learners in that a classifier is not built until a new sample needs to be classified.
They differ from eager classifiers, such as decision tree induction (Breiman et al., 1984;
Quinlan, 1993; Jeong and Lee, 2005; James, 1985; Fu, 2005).

In classical KNN methods, data are represented in horizontal format. Each training
observation is a tuple that consists of n features (or called attributes). Each time when a
new sample needs to be classified, the entire training data set is scanned to find the
KNNs of this new sample. The database scan can be costly if the training data is
extremely large. In this paper, we propose a nearest neighbour algorithm, called Podium
Incremental Neighbour Evaluator (PINE), using vertical data representation. Vertical data
representation can usually provide high compression ratio for large datasets. Vertical
representation is particularly suitable for spatial data, not only because the spatial data set
is typically large, but also because the continuity of spatial neighbourhood provides
potential for even higher compression ratio using vertical representation.

In most KNN methods, each of the KNNs casts an equal vote for the class of the new
sample. In the PINE algorithm, we apply a Gaussian podium function to different
neighbours with different weights. The podium function is chosen in such a way that the
neighbours close to the sample have higher impact than others in determining the class of
the sample. In addition, all the samples in the database are considered neighbours, though
some samples have very low or even zero weights. By doing so, there will be no need to
pre-specify the k value and more importantly, high classification accuracy will be
achieved.

The idea of using weights in KNN is not new. It is common to assign weights to
different features in the distance metrics since some features may be more relevant than
others in terms of ‘closeness’ or distance (Fu and Wang, 2005). Weights can also be
assigned to the instances. Cost and Salzberg presented a method of attaching weights to
different instances for learning with symbolic features (Cost and Salzberg, 1993).
Some instances are more reliable and are considered ‘exemplars’. These reliable
exemplars are given smaller weights to make them appear closer to a new sample. In our
work, based on the distances from the new sample, we partition the entire training set into
different groups (called ‘rings’) and then assign a weight to each ring using a podium
function. The podium function establishes a riser height for each step of the podium
weighting function as the distance from the sample grows. The idea of a podium function
is similar to the concept of a ‘radial basis function’ (Neifeld and Psaltis, 1993;
Ali and Smith, 2005).

In this paper, we use a vertical data representation called P-tree1 (Perrizo et al.,
2001a; Ding et al., 2002). P-trees are compact and data-mining-ready structure, which
provides lossless representation of the original horizontal data. P-trees represent
bit information that is obtained from the data through a separation into bit planes.
The multi-level structure is used to achieve high compression. A consistent multi-level
structure is maintained across all bit planes of all attributes. This is done so that a simple
multi-way logical AND operation can be used to reconstruct count information for any
attribute value or tuple.

Different metrics can be defined for ‘closeness’ of two data points. In this paper, we
use a metric called High Order Basic Bit similarity (HOBBit) (Khan et al., 2002).
HOBBit distance metric is particularly suitable for spatial data.

 An efficient weighted nearest neighbour classifier 67

We run the PINE algorithm on very large real image datasets. Our experimental
results show that it is much faster to build a KNN classifier using vertical data
representation than using horizontal data representation for very large datasets. It also
shows that the PINE algorithm achieves higher classification accuracy than other KNN
methods.

The rest of the paper is organised as follows. In Section 2, we review the vertical
P-tree structure. In Section 3, we introduce the HOBBit metric and detail our PINE
algorithm. Performance analysis is given in Section 4. Section 5 concludes the paper.

2 The vertical P-tree structure review

We use a vertical structure, called a Peano Count Tree (P-tree), to represent the data.
We first split each attribute value into bits. For example, for image data, each band is an
attribute and the value is represented as a byte (8 bits). The file for each individual bit is
called a bSQ file. For an attribute with m-bit values, we have m bSQ files. We organise
each bSQ bit file, Bij (the file constructed from the jth bits of ith attribute), into a P-tree.
An example of an 8 × 8 bSQ file and its P-tree is given in Figure 1.

Figure 1 P-tree and PM-tree

In this example, 39 is the count of 1’s in the bSQ file, called root count. The numbers at
the next level, 16, 8, 15 and 16, are the 1-bit counts for the four major quadrants.
Since the first and last quadrant is made up of entirely 1-bits and 0-bits respectively
(called pure1 and pure0 quadrant respectively), we do not need sub-trees for these two
quadrants. This pattern is continued recursively. Recursive raster ordering is called the
Peano or Z-ordering in the literature – therefore, the name P-trees. The process will
eventually terminate at the ‘leaf’ level where each quadrant is a 1-row-1-column
quadrant.

For each band, assuming 8-bit data values, we get 8 basic P-trees, one for each bit
position. For band Bi we will label the basic P-trees, Pi,1, Pi,2, …, Pi,8, where Pi,j is a
lossless representation of the jth bit of the values from the ith band. However, the Pi,j
provides much more information and is structured to facilitate many important data
mining processes.

For efficient implementation, we use a variation of P-trees, called PM-tree
(Pure Mask tree), in which mask instead of count is used. In the PM-tree, 3-value logic is
used, i.e., 11 represents a pure1 quadrant, 00 represents a pure0 quadrant and
01 represents a mixed quadrant. To simplify, we use 1 for pure1, 0 for pure0 and m for
mixed. This is illustrated in the third part of Figure 1.

 68 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

P-tree algebra contains operators AND, OR, NOT and XOR, which are the
pixel-by-pixel logical operations on P-trees (Ding et al., 2002). The NOT operation is a
straightforward translation of each count to its quadrant-complement. The AND and OR
operations are shown in Figure 2.

Figure 2 P-tree algebra (AND and OR)

The basic P-trees can be combined using simple logical operations to produce P-trees for
the original values (at any level of precision, 1-bit precision, 2-bit precision, etc.). We let
Pb,v denote the P-tree for attribute, b and value, v, where v can be expressed in any bit
precision. Using the 8-bit precision for values, Pb,11010011 can be constructed from the
basic P-trees as:

Pb,11010011 = Pb1 AND Pb2 AND Pb3′ AND Pb4 AND Pb5′ AND Pb6′
 AND Pb7 AND Pb8

Where ′ indicates the NOT operation. The AND operation is simply the pixel-wise AND
of the bits.

Similarly, the data in the relational format can be represented as P-trees also. For any
combination of values (v1,v2, …, vn), where vi is from attribute-i, the quadrant-wise count
of occurrences of this combination of values is given by:

1 2 1 2(, , ,) 1, 2, ,AND AND AND
n nv v v v v n vP P P P=… …

P-trees are implemented in an efficient way, which facilitates fast P-tree operations
and considerable saving of space. More details can be found in Ding et al. (2002) and
Perrizo et al. (2001b).

 An efficient weighted nearest neighbour classifier 69

3 Distance-weighted nearest neighbour classification using vertical data
representation

In classical KNN classification techniques, there is a limit placed on the number of
neighbours. In our distance-weighted neighbour classification approach, the podium or
distance weighting function establishes a riser height for each step of the podium
weighting function as the distance from the sample grows. This approach gives users
maximum flexibility in choosing just the right level of influence for each training sample
in the entire training set. The real question is, can this level of flexibility be offered
without imposing a severe penalty with respect to the speed of the classifier.
Traditionally, sub-sampling, neighbour-limiting and other restrictions are introduced
precisely to ensure that the algorithm will finish its classification in reasonable time.
The use of the compressed, data-mining-ready data structure, the P-tree, in fact, makes
PINE even faster than traditional methods. This is critically important in classification
since data are typically never discarded and therefore the training set will grow without
bound. The classification technique must scale well or it will quickly become unusable in
this setting. PINE scales well since its accuracy increases as the training set grows while
its speed remains very reasonable (see the performance study below). Furthermore,
since PINE is lazy (does not require a training phase in which a closed form classifier is
pre-built), it does not incur the expensive delays required for rebuilding a classifier when
new training data arrives. Thus, PINE gives us a faster and more accurate classifier.

Before explaining how distance-weighted neighbour classifier PINE using P-trees
works, we give an overview of the technique of KNN classification and illustrate how to
calculate KNN using P-trees without considering weights. In KNN the basic idea is that
the tuples that most likely belong to the same class are those that are similar in the other
attributes. This continuity assumption is consistent with the properties of a spatial
neighbourhood.

Based on some pre-selected distance metric or similarity measure, such as Euclidean
distance, classical KNN finds the k most similar or nearest training samples to an
unclassified sample and assigns the plurality class of those k samples to the new sample
(Dasarathy, 1991; Neifeld and Psaltis, 1993). The value for k is pre-selected by the user
based on the accuracy required (usually the larger the value of k, the more accurate the
classifier) and the delay time required for classifying with that k-value (usually the larger
the value of k the slower the classifier). The steps of the classification process are:

• determine a suitable distance metric

• find the KNNs using the selected distance metric

• find the plurality class of the KNNs (voting on the class labels of the KNNs)

• assign that class to the sample to be classified.

We use a distance metric called HOBBit, which provides an efficient method of
computation based on P-trees. Instead of examining individual training samples to find
the nearest neighbours, we start our initial neighbourhood of the target sample within a
specified distance in the feature space based on this metric, and then successively expand
the neighbourhood area until there are at least k tuples in the neighbourhood set.

 70 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

Of course, there may be more boundary neighbours equidistant from the sample than
are necessary to complete the KNN set, in which case, one can either use the larger set or
arbitrarily ignore some of them. Traditional methods find the exact KNN set, since that is
easiest using traditional techniques although it is clear that allowing some samples at that
distance to vote and not others, will skew the result. Instead, the P-tree-based KNN
approach builds a closed nearest neighbour set (closed-KNN) (Khan et al., 2002), that is,
we include all of the boundary neighbours. The inductive definition of the closed-KNN
set is given below.

a If x ∈ KNN, then x ∈ closed-KNN

b If x ∈ closed-KNN and d(T, y) ≤ d(T, x), then y ∈ closed-KNN, where,
d(T, x) is the distance of x from target T

c Closed-KNN does not contain any tuple which cannot be produced
by steps (a) and (b).

Experimental results show closed-KNN yields higher classification accuracy than KNN
does. If there are many tuples on the boundary, inclusion of some but not all of them
skews the voting mechanism. The P-tree implementation requires no extra computation to
find the closed-KNN. Our neighbourhood expansion mechanism automatically includes
the entire boundary of the neighbourhood. P-tree algorithms avoid the examination of
individual data points, which improves the classification efficiency.

3.1 Higher Order Basic bit (HOBBit) distance

Using a suitable distance or similarity metric is very important in KNN methods
because it can strongly affect performance. There is no metric that works best for
all the cases. Research has been done to find the right metric for the right problem
(Short and Fukanaga, 1980, 1981; Friedman, 1994; Myles and Hand, 1990; Hastie and
Tibshirani, 1996; Domeniconi et al., 2002).

The most commonly used distance metric is Euclidean metric. For two data points,
X = <x1, x2, x3, …, xn–1> and Y = <y1, y2, y3, …, yn–1>, the Euclidean similarity function is
defined as

1
2

2
1

(,) ()
n

i i
i

d X Y x y
−

=
= −∑

It can be generalised to the Minkowski similarity function,

1

1
(,) | |

n
qq

q i i i
i

d X Y w x y
−

=
= −∑

If q = 2, this gives the Euclidean function. If q = 1, it gives the Manhattan distance,
which is

1

1
1

(,) | |
n

i i
i

d X Y x y
−

=

= −∑

 An efficient weighted nearest neighbour classifier 71

If q = ∞, it gives the max function
1

1
(,) max | |

n

i ii
d X Y x y

−

∞ =
= −

In this paper we use the HOBBit distance metric (Khan et al., 2002), which is a natural
choice for spatial data. The HOBBit metric measures distance based on the most
significant consecutive bit positions starting from the left (the highest order bit).
Similarity or closeness is of interest. When comparing two values bitwise from left to
right, once a difference is found, any further comparisons are not needed.

The HOBBit similarity between two integers A and B is defined by

SH(A, B) = max{s|0 ≤ i ≤ s ⇒ ai = bi} (1)

where ai and bi are the ith bits of A and B respectively.
The HOBBit distance between two tuples X and Y is defined by

1

1
(,) max{ (,)}

n

H H i ii
d X Y m S x y

−

=
= − (2)

where m is the number of bits in binary representations of the values; n – 1 is the number
of attributes used for measuring distance (the nth being the class attribute); and xi and yi
are the ith attributes of tuples X and Y. The HOBBit distance between two tuples is a
function of the least similar pairing of attribute values in them.

From the experiments, we found that HOBBit distance is more suitable for spatial
data than other distance metrics.

3.2 Closed-KNN

To find the closed KNN set, first we look for the tuples which are identical to the target
tuple in all 8 bits of all bands, i.e., the tuples, X, having distance from the target T,
dH(X, T) = 0. If, for instance, t1 = 105 (01101001b = 105d) is a target attribute value, the
initial interval of interest is [105, 105] ([01101001, 01101001]). If over all tuples the
number of matches is less than k, we compare attributes on the basis of the seven
most significant bits, not caring about the 8th bit. The expanded interval of interest would
be [104,105] ([01101000, 01101001] or [0110100-, 0110100-]). If k matches still have
not been found, removing one more bit from the right gives the interval [104, 107]
([011010--, 011010--]). Continuing to remove bits from the right we get intervals,
[104, 111], then [96, 111] and so on.

This process is implemented using P-trees as follows. Pi,j is the basic P-tree for bit j of
band i and P′i,j is the complement of Pi,j. Let bi,j be the jth bit of the ith band of the target
tuple, and for implementation purposes let the representation of the P-tree depend on the
value of bij. Define:

Pti,j = Pi,j if bi,j = 1,

 = P′i,j, otherwise.

 72 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

Then the root count of Pti,j is the number of tuples in the training dataset having the same
value as the jth bit of the ith band of the target tuple. Define:

Pvi,1–j = Pti,1 & Pti,2 & Pti,3 & … & Pti,j (3)

where & is the P-tree AND operator and n is the number of bands. Pvi,1–j counts the tuples
having the same bit values as the target tuple in the higher order j bits of ith band. Then a
neighbourhood P-tree can be formed as follows:

Pnn(j) = Pv1,1–j & Pv2,1–j & Pv3,1–j & … & Pvn–1,1–j (4)

We calculate the initial neighbourhood P-tree, Pnn(8), matching exactly in all bands,
considering 8-bit values. Then we calculate Pnn(7), matching in seven higher order bits;
then Pnn(6) and so on. We continue as long as the root count of Pnn(j) is less than k.
Let us denote the final Pnn(j) by Pcnn. Pcnn represents the closed-KNN set and the root
count of Pcnn is the number of the nearest tuples. A bit of one in Pcnn for a tuple means
that the tuple is in the closed-KNN set. For the purpose of classification, we do not need
to consider all bits in the class band. If the class band is 8 bits long, there are 256 possible
classes. Instead, we partition the class band values into fewer, say 8, groups by truncating
the 5 least significant bits. The 8 classes are 0, 1, 2, …, 7. Using the leftmost 3 bits we
construct the value P-trees Pn(0), Pn(1), …, Pn(7). The P-tree Pcnn & Pn(i) represents the
tuples having a class value i that are in the closed-KNN set, Pcnn. An i, which yields the
maximum root count of Pcnn & Pn(i) is the plurality class; that is

predicted class arg max{RC(& ())}ni
Pcnn P i= (5)

where, RC(P) is the root count of P.

3.3 PINE: weighted nearest neighbour classifier using vertical data
representation

The continuity assumption of KNN tells us that tuples that are more similar to a given
tuple have more influence on classification than tuples that are less similar. Therefore
giving more voting weight to closer tuples than distant tuples increases the classification
accuracy. Instead of considering the KNNs, we include all of the points, using the largest
weight, 1, for those matching exactly, and the smallest weight, 0, for those furthest away.
Figure 3 shows the neighbourhood rings using HOBBit metric. Many weighting
functions which decrease with distance can be used (e.g., Gaussian, Kriging, etc.).
A simple example of such function is a linear podium function (shown in Figure 4) which
decreases step-by-step with distance.

Note that the HOBBit distance metric is ideally suited to the definition of
neighbourhood rings, because the range of points that are considered equidistant grows
exponentially with distance from the centre. Adjusting weights is particularly important
for small to intermediate distances where the podiums are small. At larger distances
where fine-tuning is less important the HOBBit distance remains unchanged over a large
range, i.e., podiums are wider. Ideally, the 0-weighted ring should include all training
samples that are judged to be too far away (by a domain expert) to influence class.

 An efficient weighted nearest neighbour classifier 73

Figure 3 Neighbourhood rings using HOBBit metric

Figure 4 An example of a linear podium function

We number the rings from 0 (outermost) to m (innermost). Let wj be the weight
associated with the ring j. Let cij be the number of neighbour tuples in the ring j
belonging to the class i. Then the total weight vote by the class i is given by:

0
()

m

j ij
j

V i w c
=

=∑ (6)

This can easily be transformed to:

0 1
0 1

() ()
m m m

il j j ik
k j k j

V i w c w w c−
= = =

= + −

∑ ∑ ∑ (7)

 74 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

Let circle j be the circle formed by the rings j, j + 1, …, m, that is, the ring j including all
of its inner rings. Referring to equation (4), the P-tree, Pnn(j), represents all of the tuples
in the circle j. Therefore, {Pnn(j) & Pn(i)} represents the tuples in the circle j and class i;
Pn(i) is the P-tree for class i. Hence:

RC{ () & ()}
m

ik n
k j

c Pnn j P i
=

=∑ (8)

0 1
1

() RC{ (0) & ()} [()RC{ () & ()}]
m

n j j n
j

V i w Pnn P i w w Pnn j P i−
=

= + −∑ (9)

An i which yields the maximum weighted vote, V(i), is the plurality class or the predicted
class; that is:

predicted class arg max{ ()}
i

V i= (10)

4 Performance analysis

We have performed experiments to evaluate PINE on real data sets. An example data set
is given in Figure 5. This data set includes an aerial TIFF image (with Black grey, Light
grey and White grey bands) and associated ground data, such as nitrate, moisture and
yield, of the Oaks area in North Dakota. In this data set, yield is the class label attribute,
i.e., the goal is to predict the yield based on the values of other attributes. This data set
and some other data sets are available at http://www.cs.ndsu.nodak.edu/~datasurg/.

Figure 5 An image dataset: (a) TIFF image; (b) nitrate map; (c) moisture map and (d) yield map

 (a) (b)

 (c) (d)

 An efficient weighted nearest neighbour classifier 75

We tested KNN with Manhattan, Euclidean, Max and HOBBit distance metrics;
closed-KNN with the HOBBit metric and PINE. In PINE, HOBBit was used as
the distance function and the Gaussian function was used as the podium function.
The function is exp(–(22×d)/(2 × σ2)), where d is the HOBBit distance and the variance σ
is 24. The mapping of the function is given in Table 1.

Table 1 Gaussian weighs as the function of HoBBit distance

HOBBit distance 0 1 2 3 4 5 6 7
Gaussian weigh 1.00 1.00 0.97 0.88 0.61 0.14 0 0

The comparison of the accuracy is given in Figure 6. We observed that PINE achieves
higher classification accuracy than closed-KNN does. Especially when the training
set size increases, the improvement of PINE over closed-KNN is more apparent.
In additional, PINE performs much better than classical KNN methods using various
metrics. All these classifiers work better than raw guessing, which is 12.5% in the data
set with eight classes.

Figure 6 Comparison of classification accuracy for KNN using different metrics, closed-KNN
and PINE

In terms of running time, from Figure 7, we observed that both closed-KNN and PINE
are much faster than classical KNN methods using various metrics (notice that both the
size and classification time are plotted in logarithmic scale). The reason behind this is
because both PINE and closed-KNN use vertical data representation, which provides fast
calculation of nearest neighbours. We can also see that PINE is slightly slower than

 76 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

closed-KNN. This is expected because in PINE all the training samples are included as
neighbours while in closed-KNN only k samples (with possibly extra points on the
boundary) are selected as neighbours to be involved in the calculation. However,
this additional time cost is relatively small. On the average, PINE is eight times faster
than classical KNN, and closed-KNN is ten times faster. Both PINE and closed-KNN
increase at a lower rate than classical KNN methods do when the training set size
increases.

Figure 7 Comparison of classification time per sample (size and classification time are plotted
in logarithmic scale)

5 Conclusions

In this paper, we propose a weighted nearest neighbour classifier, called PINE. PINE uses
a vertical data structure P-tree and a distance metric called HOBBit. A Gaussian podium
function is used to weight the different neighbours based on the distance from the sample
data. PINE does not require providing the number of neighbours in advance. PINE is
particular useful for classification on large data sets, such as spatial data sets, which have
high compression ratio using vertical data representation. Performance analysis shows
that PINE outperforms classical KNN methods in terms of accuracy and speed of
classification on spatial data.

In addition, PINE has potential for efficient classification on data streams. In data
streams, new data keep arriving, so the classification efficiency will be an important
issue. PINE provides high efficiency as well as accuracy for classification on data
streams. As the areas of data mining applications grow (Chen and Liu, 2005), our
approach has potential to be extended to some of these areas, such as DNA microarray
data analysis and medical image analysis.

 An efficient weighted nearest neighbour classifier 77

Acknowledgement

This work is partially supported by GSA Grant K96130308.

References
Ali, S. and Smith, K.A. (2005) ‘Kernel width selection for SVM classification: a meta-learning

approach’, International Journal of Data Warehousing and Mining, Idea Group Inc., Vol. 1,
No. 4, pp.78–97.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classfication and Regression
Trees, Wadsworth, Belmont.

Chen, S.Y. and Liu, X. (2005) ‘Data mining from 1994 to 2004: an application-orientated review’,
International Journal of Business Intelligence and Data Mining, Inderscience Publishers,
Vol. 1, No. 1, pp.4–21.

Cost, S. and Salzberg, S. (1993) ‘A weighted nearest neighbour algorithm for learning with
symbolic features’, Machine Learning, Vol. 10, No. 1, pp.57–78.

Cover, T.M. (1968) ‘Rates of convergence for nearest neighbour procedures’, Proceedings of
Hawaii International Conference on Systems Sciences, Honolulu, Hawaii, USA, pp.413–415.

Cover, T.M. and Hart, P. (1967) ‘Nearest neighbour pattern classification’, IEEE Trans. on
Information Theory, pp.21–27.

Dasarathy, B.V. (1991) Nearest-Neighbour Classification Techniques, IEEE Computer Society
Press, Los Alomitos, CA.

Ding, Q., Khan, M., Roy, A. and Perrizo, W. (2002) ‘The P-tree algebra’, Proceedings of ACM
Symposium on Applied Computing, pp.426–431.

Domeniconi, C., Peng, J. and Gunopulos, D. (2002) ‘Locally adaptive metric nearest neighbour
classification’, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No. 9,
pp.1, 281–1, 285.

Duda, R.O. and Hart, P.E. (1973) Pattern Classification and Scene Analysis, Wiley, New York.
Friedman, J. (1994) Flexible Metric Nearest Neighbour Classification, Technical report, Stanford

University, Stanford, CA, USA.
Fu, L. (2005) ‘Novel efficient classifiers based on data cube’, International Journal of Data

Warehousing and Mining, Idea Group Inc., Vol. 1, No. 3, pp.15–27.
Fu, X. and Wang, L. (2005) ‘Data dimensionality reduction with application to improving

classification performance and explaining concepts of data sets’, International Journal of
Business Intelligence and Data Mining, Inderscience Publishers, Vol. 1, No. 1, pp.65–87.

Hastie, T. and Tibshirani, R. (1996) ‘Discriminant adaptive nearest neighbour classification’,
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 6, pp.607–615.

James, M. (1985) Classification Algorithms, John Wiley & Sons, New York.
Jeong, M. and Lee, D. (2005) ‘Improving classification accuracy of decision trees for different

abstraction levels of data’, International Journal of Data Warehousing and Mining,
Idea Group Inc., Vol. 1, No. 3, pp.1–14.

Khan, M., Ding, Q. and Perrizo, W. (2002) ‘k-Nearest Neighbour classification on spatial data
streams using P-trees’, Proceedings of Pacific and Asia Knowledge Discovery and Data
Mining (PAKDD), Lecture Notes in Artificial Intelligence, Vol. 2336, pp.517–528.

McLachlan, G.J. (1992) Discriminant Analysis and Statistical Pattern Recognition, Wiley,
New York.

Myles, J.P. and Hand, D.J. (1990) ‘The multi-class metric problem in nearest neighbour
discrimination rules’, Pattern Recognition, Vol. 23, pp.1, 291–1, 297.

 78 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding

Neifeld, M.A. and Psaltis, D. (1993) ‘Optical implementations of radial basis classifiers’, Applied
Optics, Vol. 32, No. 8, pp.1370–1379.

Perrizo, W., Ding, Q., Ding, Q. and Roy, A. (2001a) ‘On mining satellite and other remotely sensed
images’, Proceedings of ACM Workshop on Research Issues on Data Mining and Knowledge
Discovery, Santa Barbara, CA, USA, pp.33–44.

Perrizo, W., Ding, Q., Ding, Q. and Roy, A. (2001b) ‘Deriving high confidence rules from spatial
data using Peano count trees’, Lecture Notes in Computer Science, Vol. 2118, pp.91–102.

Quinlan, J.R. (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann.
Safar, M. (2005) ‘K nearest neighbour search in navigation systems’, Mobile Information Systems,

IOS Press, Vol. 1, No. 3, pp.207–224.
Short, R. and Fukanaga, K. (1980) ‘A new nearest neighbour distance measure’, Proceedings of

International Conference on Pattern Recognition, Miami Beach, FL, USA, pp.81–86.
Short, R. and Fukanaga, K. (1981) ‘The optimal distance measure for nearest neighbour

classification’, IEEE Trans. on Information Theory, Vol. 27, pp.622–627.

Note
1P-tree technology is patented by North Dakota State University (William Perrizo, primary inventor
of record); patent number 6,941,303 issued September 6, 2005.

Website
TIFF image data sets, available at http://www.cs.ndsu.nodak.edu/~datasurg/.

