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Abstract: The k-nearest neighbour (KNN) technique is a simple yet effective 
method for classification. In this paper, we propose an efficient weighted 
nearest neighbour classification algorithm, called PINE, using vertical data 
representation. A metric called HOBBit is used as the distance metric.  
The PINE algorithm applies a Gaussian podium function to set weights to 
different neighbours. We compare PINE with classical KNN methods  
using horizontal and vertical representation with different distance metrics.  
The experimental results show that PINE outperforms other KNN methods in 
terms of classification accuracy and running time. 
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1 Introduction 

The nearest neighbour technique (Cover and Hart, 1967; Cover, 1968; Dasarathy, 1991; 
Duda and Hart, 1973; McLachlan, 1992; Safar, 2005) is a simple yet effective method for 
classification. Given a set of training data, a KNN classifier predicts the class value for a 
new sample X by searching the training set for the KNNs of X based on certain distance 
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metric and then assigning to X the most frequent class occurring in its KNNs. The value 
of k, i.e., the number of neighbours, is pre-specified. Nearest neighbour classifiers are 
lazy learners in that a classifier is not built until a new sample needs to be classified. 
They differ from eager classifiers, such as decision tree induction (Breiman et al., 1984; 
Quinlan, 1993; Jeong and Lee, 2005; James, 1985; Fu, 2005). 

In classical KNN methods, data are represented in horizontal format. Each training 
observation is a tuple that consists of n features (or called attributes). Each time when a 
new sample needs to be classified, the entire training data set is scanned to find the  
KNNs of this new sample. The database scan can be costly if the training data is 
extremely large. In this paper, we propose a nearest neighbour algorithm, called Podium 
Incremental Neighbour Evaluator (PINE), using vertical data representation. Vertical data 
representation can usually provide high compression ratio for large datasets. Vertical 
representation is particularly suitable for spatial data, not only because the spatial data set 
is typically large, but also because the continuity of spatial neighbourhood provides 
potential for even higher compression ratio using vertical representation. 

In most KNN methods, each of the KNNs casts an equal vote for the class of the new 
sample. In the PINE algorithm, we apply a Gaussian podium function to different 
neighbours with different weights. The podium function is chosen in such a way that the 
neighbours close to the sample have higher impact than others in determining the class of 
the sample. In addition, all the samples in the database are considered neighbours, though 
some samples have very low or even zero weights. By doing so, there will be no need to 
pre-specify the k value and more importantly, high classification accuracy will be 
achieved. 

The idea of using weights in KNN is not new. It is common to assign weights to 
different features in the distance metrics since some features may be more relevant than 
others in terms of ‘closeness’ or distance (Fu and Wang, 2005). Weights can also be 
assigned to the instances. Cost and Salzberg presented a method of attaching weights to 
different instances for learning with symbolic features (Cost and Salzberg, 1993).  
Some instances are more reliable and are considered ‘exemplars’. These reliable 
exemplars are given smaller weights to make them appear closer to a new sample. In our 
work, based on the distances from the new sample, we partition the entire training set into 
different groups (called ‘rings’) and then assign a weight to each ring using a podium 
function. The podium function establishes a riser height for each step of the podium 
weighting function as the distance from the sample grows. The idea of a podium function 
is similar to the concept of a ‘radial basis function’ (Neifeld and Psaltis, 1993;  
Ali and Smith, 2005). 

In this paper, we use a vertical data representation called P-tree1 (Perrizo et al., 
2001a; Ding et al., 2002). P-trees are compact and data-mining-ready structure, which 
provides lossless representation of the original horizontal data. P-trees represent  
bit information that is obtained from the data through a separation into bit planes.  
The multi-level structure is used to achieve high compression. A consistent multi-level 
structure is maintained across all bit planes of all attributes. This is done so that a simple 
multi-way logical AND operation can be used to reconstruct count information for any 
attribute value or tuple. 

Different metrics can be defined for ‘closeness’ of two data points. In this paper, we 
use a metric called High Order Basic Bit similarity (HOBBit) (Khan et al., 2002). 
HOBBit distance metric is particularly suitable for spatial data. 
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We run the PINE algorithm on very large real image datasets. Our experimental 
results show that it is much faster to build a KNN classifier using vertical data 
representation than using horizontal data representation for very large datasets. It also 
shows that the PINE algorithm achieves higher classification accuracy than other KNN 
methods. 

The rest of the paper is organised as follows. In Section 2, we review the vertical  
P-tree structure. In Section 3, we introduce the HOBBit metric and detail our PINE 
algorithm. Performance analysis is given in Section 4. Section 5 concludes the paper. 

2 The vertical P-tree structure review 

We use a vertical structure, called a Peano Count Tree (P-tree), to represent the data.  
We first split each attribute value into bits. For example, for image data, each band is an 
attribute and the value is represented as a byte (8 bits). The file for each individual bit is 
called a bSQ file. For an attribute with m-bit values, we have m bSQ files. We organise 
each bSQ bit file, Bij (the file constructed from the jth bits of ith attribute), into a P-tree. 
An example of an 8 × 8 bSQ file and its P-tree is given in Figure 1. 

Figure 1 P-tree and PM-tree 

 

In this example, 39 is the count of 1’s in the bSQ file, called root count. The numbers at 
the next level, 16, 8, 15 and 16, are the 1-bit counts for the four major quadrants.  
Since the first and last quadrant is made up of entirely 1-bits and 0-bits respectively 
(called pure1 and pure0 quadrant respectively), we do not need sub-trees for these two 
quadrants. This pattern is continued recursively. Recursive raster ordering is called the 
Peano or Z-ordering in the literature – therefore, the name P-trees. The process will 
eventually terminate at the ‘leaf’ level where each quadrant is a 1-row-1-column 
quadrant. 

For each band, assuming 8-bit data values, we get 8 basic P-trees, one for each bit 
position. For band Bi we will label the basic P-trees, Pi,1, Pi,2, …, Pi,8, where Pi,j is a 
lossless representation of the jth bit of the values from the ith band. However, the Pi,j 
provides much more information and is structured to facilitate many important data 
mining processes. 

For efficient implementation, we use a variation of P-trees, called PM-tree  
(Pure Mask tree), in which mask instead of count is used. In the PM-tree, 3-value logic is 
used, i.e., 11 represents a pure1 quadrant, 00 represents a pure0 quadrant and  
01 represents a mixed quadrant. To simplify, we use 1 for pure1, 0 for pure0 and m for 
mixed. This is illustrated in the third part of Figure 1. 
 
 



   

 

   

   
 

   

   

 

   

   68 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding    
 

    
 
 

   

   
 

   

   

 

   

       
 

P-tree algebra contains operators AND, OR, NOT and XOR, which are the  
pixel-by-pixel logical operations on P-trees (Ding et al., 2002). The NOT operation is a 
straightforward translation of each count to its quadrant-complement. The AND and OR 
operations are shown in Figure 2. 

Figure 2 P-tree algebra (AND and OR) 

 

The basic P-trees can be combined using simple logical operations to produce P-trees for 
the original values (at any level of precision, 1-bit precision, 2-bit precision, etc.). We let 
Pb,v denote the P-tree for attribute, b and value, v, where v can be expressed in any bit 
precision. Using the 8-bit precision for values, Pb,11010011 can be constructed from the 
basic P-trees as: 

Pb,11010011 = Pb1 AND Pb2 AND Pb3′ AND Pb4 AND Pb5′ AND Pb6′  
 AND Pb7 AND Pb8 

Where ′ indicates the NOT operation. The AND operation is simply the pixel-wise AND 
of the bits. 

Similarly, the data in the relational format can be represented as P-trees also. For any 
combination of values (v1,v2, …, vn), where vi is from attribute-i, the quadrant-wise count 
of occurrences of this combination of values is given by: 

1 2 1 2( , , , ) 1, 2, ,AND AND AND
n nv v v v v n vP P P P=… …  

P-trees are implemented in an efficient way, which facilitates fast P-tree operations  
and considerable saving of space. More details can be found in Ding et al. (2002) and 
Perrizo et al. (2001b). 
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3 Distance-weighted nearest neighbour classification using vertical data 
representation 

In classical KNN classification techniques, there is a limit placed on the number of 
neighbours. In our distance-weighted neighbour classification approach, the podium or 
distance weighting function establishes a riser height for each step of the podium 
weighting function as the distance from the sample grows. This approach gives users 
maximum flexibility in choosing just the right level of influence for each training sample 
in the entire training set. The real question is, can this level of flexibility be offered 
without imposing a severe penalty with respect to the speed of the classifier. 
Traditionally, sub-sampling, neighbour-limiting and other restrictions are introduced 
precisely to ensure that the algorithm will finish its classification in reasonable time.  
The use of the compressed, data-mining-ready data structure, the P-tree, in fact, makes 
PINE even faster than traditional methods. This is critically important in classification 
since data are typically never discarded and therefore the training set will grow without 
bound. The classification technique must scale well or it will quickly become unusable in 
this setting. PINE scales well since its accuracy increases as the training set grows while 
its speed remains very reasonable (see the performance study below). Furthermore,  
since PINE is lazy (does not require a training phase in which a closed form classifier is 
pre-built), it does not incur the expensive delays required for rebuilding a classifier when 
new training data arrives. Thus, PINE gives us a faster and more accurate classifier. 

Before explaining how distance-weighted neighbour classifier PINE using P-trees 
works, we give an overview of the technique of KNN classification and illustrate how to 
calculate KNN using P-trees without considering weights. In KNN the basic idea is that 
the tuples that most likely belong to the same class are those that are similar in the other 
attributes. This continuity assumption is consistent with the properties of a spatial 
neighbourhood. 

Based on some pre-selected distance metric or similarity measure, such as Euclidean 
distance, classical KNN finds the k most similar or nearest training samples to an 
unclassified sample and assigns the plurality class of those k samples to the new sample 
(Dasarathy, 1991; Neifeld and Psaltis, 1993). The value for k is pre-selected by the user 
based on the accuracy required (usually the larger the value of k, the more accurate the 
classifier) and the delay time required for classifying with that k-value (usually the larger 
the value of k the slower the classifier). The steps of the classification process are: 

• determine a suitable distance metric 

• find the KNNs using the selected distance metric 

• find the plurality class of the KNNs (voting on the class labels of the KNNs) 

• assign that class to the sample to be classified. 

We use a distance metric called HOBBit, which provides an efficient method of 
computation based on P-trees. Instead of examining individual training samples to find 
the nearest neighbours, we start our initial neighbourhood of the target sample within a 
specified distance in the feature space based on this metric, and then successively expand 
the neighbourhood area until there are at least k tuples in the neighbourhood set. 
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Of course, there may be more boundary neighbours equidistant from the sample than 
are necessary to complete the KNN set, in which case, one can either use the larger set or 
arbitrarily ignore some of them. Traditional methods find the exact KNN set, since that is 
easiest using traditional techniques although it is clear that allowing some samples at that 
distance to vote and not others, will skew the result. Instead, the P-tree-based KNN 
approach builds a closed nearest neighbour set (closed-KNN) (Khan et al., 2002), that is, 
we include all of the boundary neighbours. The inductive definition of the closed-KNN 
set is given below. 

a If x ∈ KNN, then x ∈ closed-KNN 

b If x ∈ closed-KNN and d(T, y) ≤ d(T, x), then y ∈ closed-KNN, where,  
d(T, x) is the distance of x from target T 

c Closed-KNN does not contain any tuple which cannot be produced  
by steps (a) and (b). 

Experimental results show closed-KNN yields higher classification accuracy than KNN 
does. If there are many tuples on the boundary, inclusion of some but not all of them 
skews the voting mechanism. The P-tree implementation requires no extra computation to 
find the closed-KNN. Our neighbourhood expansion mechanism automatically includes 
the entire boundary of the neighbourhood. P-tree algorithms avoid the examination of 
individual data points, which improves the classification efficiency. 

3.1 Higher Order Basic bit (HOBBit) distance 

Using a suitable distance or similarity metric is very important in KNN methods  
because it can strongly affect performance. There is no metric that works best for  
all the cases. Research has been done to find the right metric for the right problem  
(Short and Fukanaga, 1980, 1981; Friedman, 1994; Myles and Hand, 1990; Hastie and 
Tibshirani, 1996; Domeniconi et al., 2002). 

The most commonly used distance metric is Euclidean metric. For two data points, 
X = <x1, x2, x3, …, xn–1> and Y = <y1, y2, y3, …, yn–1>, the Euclidean similarity function is 
defined as 

1
2

2
1

( , ) ( )
n

i i
i

d X Y x y
−

=
= −∑  

It can be generalised to the Minkowski similarity function, 
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If q = 2, this gives the Euclidean function. If q = 1, it gives the Manhattan distance, 
which is 
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If q = ∞, it gives the max function 
1

1
( , ) max | |

n

i ii
d X Y x y

−

∞ =
= −  

In this paper we use the HOBBit distance metric (Khan et al., 2002), which is a natural 
choice for spatial data. The HOBBit metric measures distance based on the most 
significant consecutive bit positions starting from the left (the highest order bit). 
Similarity or closeness is of interest. When comparing two values bitwise from left to 
right, once a difference is found, any further comparisons are not needed. 

The HOBBit similarity between two integers A and B is defined by 

SH(A, B) = max{s|0 ≤ i ≤ s ⇒ ai = bi} (1) 

where ai and bi are the ith bits of A and B respectively. 
The HOBBit distance between two tuples X and Y is defined by 

1

1
( , ) max{ ( , )}

n

H H i ii
d X Y m S x y

−

=
= −  (2) 

where m is the number of bits in binary representations of the values; n – 1 is the number 
of attributes used for measuring distance (the nth being the class attribute); and xi and yi 
are the ith attributes of tuples X and Y. The HOBBit distance between two tuples is a 
function of the least similar pairing of attribute values in them. 

From the experiments, we found that HOBBit distance is more suitable for spatial 
data than other distance metrics. 

3.2 Closed-KNN 

To find the closed KNN set, first we look for the tuples which are identical to the target 
tuple in all 8 bits of all bands, i.e., the tuples, X, having distance from the target T, 
dH(X, T) = 0. If, for instance, t1 = 105 (01101001b = 105d) is a target attribute value, the 
initial interval of interest is [105, 105] ([01101001, 01101001]). If over all tuples the 
number of matches is less than k, we compare attributes on the basis of the seven  
most significant bits, not caring about the 8th bit. The expanded interval of interest would 
be [104,105] ([01101000, 01101001] or [0110100-, 0110100-]). If k matches still have 
not been found, removing one more bit from the right gives the interval [104, 107] 
([011010--, 011010--]). Continuing to remove bits from the right we get intervals,  
[104, 111], then [96, 111] and so on. 

This process is implemented using P-trees as follows. Pi,j is the basic P-tree for bit j of 
band i and P′i,j is the complement of Pi,j. Let bi,j be the jth bit of the ith band of the target 
tuple, and for implementation purposes let the representation of the P-tree depend on the 
value of bij. Define: 

Pti,j = Pi,j      if   bi,j = 1, 

 = P′i,j,    otherwise. 
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Then the root count of Pti,j is the number of tuples in the training dataset having the same 
value as the jth bit of the ith band of the target tuple. Define: 

Pvi,1–j = Pti,1 & Pti,2 & Pti,3 & … & Pti,j (3) 

where & is the P-tree AND operator and n is the number of bands. Pvi,1–j counts the tuples 
having the same bit values as the target tuple in the higher order j bits of ith band. Then a 
neighbourhood P-tree can be formed as follows: 

Pnn(j) = Pv1,1–j & Pv2,1–j & Pv3,1–j & … & Pvn–1,1–j (4) 

We calculate the initial neighbourhood P-tree, Pnn(8), matching exactly in all bands, 
considering 8-bit values. Then we calculate Pnn(7), matching in seven higher order bits; 
then Pnn(6) and so on. We continue as long as the root count of Pnn(j) is less than k.  
Let us denote the final Pnn(j) by Pcnn. Pcnn represents the closed-KNN set and the root 
count of Pcnn is the number of the nearest tuples. A bit of one in Pcnn for a tuple means 
that the tuple is in the closed-KNN set. For the purpose of classification, we do not need 
to consider all bits in the class band. If the class band is 8 bits long, there are 256 possible 
classes. Instead, we partition the class band values into fewer, say 8, groups by truncating 
the 5 least significant bits. The 8 classes are 0, 1, 2, …, 7. Using the leftmost 3 bits we 
construct the value P-trees Pn(0), Pn(1), …, Pn(7). The P-tree Pcnn & Pn(i) represents the 
tuples having a class value i that are in the closed-KNN set, Pcnn. An i, which yields the 
maximum root count of Pcnn & Pn(i) is the plurality class; that is 

predicted class arg max{RC( & ( ))}ni
Pcnn P i=  (5) 

where, RC(P) is the root count of P. 

3.3 PINE: weighted nearest neighbour classifier using vertical data 
representation 

The continuity assumption of KNN tells us that tuples that are more similar to a given 
tuple have more influence on classification than tuples that are less similar. Therefore 
giving more voting weight to closer tuples than distant tuples increases the classification 
accuracy. Instead of considering the KNNs, we include all of the points, using the largest 
weight, 1, for those matching exactly, and the smallest weight, 0, for those furthest away. 
Figure 3 shows the neighbourhood rings using HOBBit metric. Many weighting  
functions which decrease with distance can be used (e.g., Gaussian, Kriging, etc.).  
A simple example of such function is a linear podium function (shown in Figure 4) which 
decreases step-by-step with distance. 

Note that the HOBBit distance metric is ideally suited to the definition of 
neighbourhood rings, because the range of points that are considered equidistant grows 
exponentially with distance from the centre. Adjusting weights is particularly important 
for small to intermediate distances where the podiums are small. At larger distances 
where fine-tuning is less important the HOBBit distance remains unchanged over a large 
range, i.e., podiums are wider. Ideally, the 0-weighted ring should include all training 
samples that are judged to be too far away (by a domain expert) to influence class. 
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Figure 3 Neighbourhood rings using HOBBit metric 

 

Figure 4 An example of a linear podium function 

 

We number the rings from 0 (outermost) to m (innermost). Let wj be the weight 
associated with the ring j. Let cij be the number of neighbour tuples in the ring j 
belonging to the class i. Then the total weight vote by the class i is given by: 

0
( )

m

j ij
j

V i w c
=

=∑  (6) 

This can easily be transformed to: 

0 1
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m m m
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Let circle j be the circle formed by the rings j, j + 1, …, m, that is, the ring j including all 
of its inner rings. Referring to equation (4), the P-tree, Pnn(j), represents all of the tuples 
in the circle j. Therefore, {Pnn(j) & Pn(i)} represents the tuples in the circle j and class i; 
Pn(i) is the P-tree for class i. Hence: 

RC{ ( ) & ( )}
m

ik n
k j

c Pnn j P i
=

=∑  (8) 

0 1
1

( ) RC{ (0) & ( )} [( )RC{ ( ) & ( )}]
m

n j j n
j

V i w Pnn P i w w Pnn j P i−
=

= + −∑  (9) 

An i which yields the maximum weighted vote, V(i), is the plurality class or the predicted 
class; that is: 

predicted class arg max{ ( )}
i

V i=  (10) 

4 Performance analysis 

We have performed experiments to evaluate PINE on real data sets. An example data set 
is given in Figure 5. This data set includes an aerial TIFF image (with Black grey, Light 
grey and White grey bands) and associated ground data, such as nitrate, moisture and 
yield, of the Oaks area in North Dakota. In this data set, yield is the class label attribute, 
i.e., the goal is to predict the yield based on the values of other attributes. This data set 
and some other data sets are available at http://www.cs.ndsu.nodak.edu/~datasurg/. 

Figure 5 An image dataset: (a) TIFF image; (b) nitrate map; (c) moisture map and (d) yield map 

 
 (a) (b) 

 
 (c) (d) 
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We tested KNN with Manhattan, Euclidean, Max and HOBBit distance metrics;  
closed-KNN with the HOBBit metric and PINE. In PINE, HOBBit was used as  
the distance function and the Gaussian function was used as the podium function.  
The function is exp(–(22×d)/(2 × σ2)), where d is the HOBBit distance and the variance σ 
is 24. The mapping of the function is given in Table 1. 

Table 1 Gaussian weighs as the function of HoBBit distance 

HOBBit distance 0 1 2 3 4 5 6 7 
Gaussian weigh 1.00 1.00 0.97 0.88 0.61 0.14 0 0 

The comparison of the accuracy is given in Figure 6. We observed that PINE achieves 
higher classification accuracy than closed-KNN does. Especially when the training  
set size increases, the improvement of PINE over closed-KNN is more apparent.  
In additional, PINE performs much better than classical KNN methods using various 
metrics. All these classifiers work better than raw guessing, which is 12.5% in the data 
set with eight classes. 

Figure 6 Comparison of classification accuracy for KNN using different metrics, closed-KNN 
and PINE 

 

In terms of running time, from Figure 7, we observed that both closed-KNN and PINE 
are much faster than classical KNN methods using various metrics (notice that both the 
size and classification time are plotted in logarithmic scale). The reason behind this is 
because both PINE and closed-KNN use vertical data representation, which provides fast 
calculation of nearest neighbours. We can also see that PINE is slightly slower than 
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closed-KNN. This is expected because in PINE all the training samples are included as 
neighbours while in closed-KNN only k samples (with possibly extra points on the 
boundary) are selected as neighbours to be involved in the calculation. However,  
this additional time cost is relatively small. On the average, PINE is eight times faster 
than classical KNN, and closed-KNN is ten times faster. Both PINE and closed-KNN 
increase at a lower rate than classical KNN methods do when the training set size 
increases. 

Figure 7 Comparison of classification time per sample (size and classification time are plotted  
in logarithmic scale) 

 

5 Conclusions 

In this paper, we propose a weighted nearest neighbour classifier, called PINE. PINE uses 
a vertical data structure P-tree and a distance metric called HOBBit. A Gaussian podium 
function is used to weight the different neighbours based on the distance from the sample 
data. PINE does not require providing the number of neighbours in advance. PINE is 
particular useful for classification on large data sets, such as spatial data sets, which have 
high compression ratio using vertical data representation. Performance analysis shows 
that PINE outperforms classical KNN methods in terms of accuracy and speed of 
classification on spatial data. 

In addition, PINE has potential for efficient classification on data streams. In data 
streams, new data keep arriving, so the classification efficiency will be an important 
issue. PINE provides high efficiency as well as accuracy for classification on data 
streams. As the areas of data mining applications grow (Chen and Liu, 2005), our 
approach has potential to be extended to some of these areas, such as DNA microarray 
data analysis and medical image analysis. 



   

 

   

   
 

   

   

 

   

    An efficient weighted nearest neighbour classifier 77    
 

    
 
 

   

   
 

   

   

 

   

       
 

Acknowledgement 

This work is partially supported by GSA Grant K96130308. 

References 
Ali, S. and Smith, K.A. (2005) ‘Kernel width selection for SVM classification: a meta-learning 

approach’, International Journal of Data Warehousing and Mining, Idea Group Inc., Vol. 1, 
No. 4, pp.78–97. 

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classfication and Regression 
Trees, Wadsworth, Belmont. 

Chen, S.Y. and Liu, X. (2005) ‘Data mining from 1994 to 2004: an application-orientated review’, 
International Journal of Business Intelligence and Data Mining, Inderscience Publishers,  
Vol. 1, No. 1, pp.4–21. 

Cost, S. and Salzberg, S. (1993) ‘A weighted nearest neighbour algorithm for learning with 
symbolic features’, Machine Learning, Vol. 10, No. 1, pp.57–78. 

Cover, T.M. (1968) ‘Rates of convergence for nearest neighbour procedures’, Proceedings of 
Hawaii International Conference on Systems Sciences, Honolulu, Hawaii, USA, pp.413–415. 

Cover, T.M. and Hart, P. (1967) ‘Nearest neighbour pattern classification’, IEEE Trans. on 
Information Theory, pp.21–27. 

Dasarathy, B.V. (1991) Nearest-Neighbour Classification Techniques, IEEE Computer Society 
Press, Los Alomitos, CA. 

Ding, Q., Khan, M., Roy, A. and Perrizo, W. (2002) ‘The P-tree algebra’, Proceedings of ACM 
Symposium on Applied Computing, pp.426–431. 

Domeniconi, C., Peng, J. and Gunopulos, D. (2002) ‘Locally adaptive metric nearest neighbour 
classification’, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No. 9, 
pp.1, 281–1, 285. 

Duda, R.O. and Hart, P.E. (1973) Pattern Classification and Scene Analysis, Wiley, New York. 
Friedman, J. (1994) Flexible Metric Nearest Neighbour Classification, Technical report, Stanford 

University, Stanford, CA, USA. 
Fu, L. (2005) ‘Novel efficient classifiers based on data cube’, International Journal of Data 

Warehousing and Mining, Idea Group Inc., Vol. 1, No. 3, pp.15–27. 
Fu, X. and Wang, L. (2005) ‘Data dimensionality reduction with application to improving 

classification performance and explaining concepts of data sets’, International Journal of 
Business Intelligence and Data Mining, Inderscience Publishers, Vol. 1, No. 1, pp.65–87. 

Hastie, T. and Tibshirani, R. (1996) ‘Discriminant adaptive nearest neighbour classification’,  
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 6, pp.607–615. 

James, M. (1985) Classification Algorithms, John Wiley & Sons, New York. 
Jeong, M. and Lee, D. (2005) ‘Improving classification accuracy of decision trees for different 

abstraction levels of data’, International Journal of Data Warehousing and Mining,  
Idea Group Inc., Vol. 1, No. 3, pp.1–14. 

Khan, M., Ding, Q. and Perrizo, W. (2002) ‘k-Nearest Neighbour classification on spatial data 
streams using P-trees’, Proceedings of Pacific and Asia Knowledge Discovery and Data 
Mining (PAKDD), Lecture Notes in Artificial Intelligence, Vol. 2336, pp.517–528. 

McLachlan, G.J. (1992) Discriminant Analysis and Statistical Pattern Recognition, Wiley,  
New York. 

Myles, J.P. and Hand, D.J. (1990) ‘The multi-class metric problem in nearest neighbour 
discrimination rules’, Pattern Recognition, Vol. 23, pp.1, 291–1, 297. 

 



   

 

   

   
 

   

   

 

   

   78 W. Perrizo, Q. Ding, M. Khan, A. Denton and Q. Ding    
 

    
 
 

   

   
 

   

   

 

   

       
 

Neifeld, M.A. and Psaltis, D. (1993) ‘Optical implementations of radial basis classifiers’, Applied 
Optics, Vol. 32, No. 8, pp.1370–1379. 

Perrizo, W., Ding, Q., Ding, Q. and Roy, A. (2001a) ‘On mining satellite and other remotely sensed 
images’, Proceedings of ACM Workshop on Research Issues on Data Mining and Knowledge 
Discovery, Santa Barbara, CA, USA, pp.33–44. 

Perrizo, W., Ding, Q., Ding, Q. and Roy, A. (2001b) ‘Deriving high confidence rules from spatial 
data using Peano count trees’, Lecture Notes in Computer Science, Vol. 2118, pp.91–102. 

Quinlan, J.R. (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann. 
Safar, M. (2005) ‘K nearest neighbour search in navigation systems’, Mobile Information Systems, 

IOS Press, Vol. 1, No. 3, pp.207–224. 
Short, R. and Fukanaga, K. (1980) ‘A new nearest neighbour distance measure’, Proceedings of 

International Conference on Pattern Recognition, Miami Beach, FL, USA, pp.81–86. 
Short, R. and Fukanaga, K. (1981) ‘The optimal distance measure for nearest neighbour 

classification’, IEEE Trans. on Information Theory, Vol. 27, pp.622–627. 

Note 
1P-tree technology is patented by North Dakota State University (William Perrizo, primary inventor 
of record); patent number 6,941,303 issued September 6, 2005. 

Website 
TIFF image data sets, available at http://www.cs.ndsu.nodak.edu/~datasurg/. 




