
Parallel Algorithms for Switching Edges in
Heterogeneous GraphsI

Hasanuzzaman Bhuiyana,b,∗, Maleq Khanb,∗∗, Jiangzhuo Chenb, Madhav
Marathea,b

aDepartment of Computer Science, Virginia Tech,
2202 Kraft Drive, Blacksburg, VA 24061, USA

bNetwork Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute,
Virginia Tech, 1880 Pratt Drive, Blacksburg, VA 24061, USA

IA preliminary version of this paper entitled “Fast Parallel Algorithms for Edge-Switching
to Achieve a Target Visit Rate in Heterogeneous Graphs” [1] has appeared in the proceedings
of the 43rd International Conference on Parallel Processing (ICPP), 2014. This work has
been partially supported by DTRA CNIMS Contract HDTRA1-11-D-0016-0001, DTRA Grant
HDTRA1-11-1-0016, NSF NetSE Grant CNS-1011769, NSF SDCI Grant OCI-1032677, NIH
MIDAS Grant 5U01GM070694-11 and NSF DIBBs Grant ACI-1443054.

∗Corresponding author
∗∗Principal corresponding author

Email addresses: mhb@vbi.vt.edu (Hasanuzzaman Bhuiyan), maleq@vbi.vt.edu (Maleq
Khan), chenj@vbi.vt.edu (Jiangzhuo Chen), mmarathe@vbi.vt.edu (Madhav Marathe)

Preprint submitted to Journal of Parallel and Distributed Computing May 24, 2016

Abstract

An edge switch is an operation on a graph (or network) where two edges

are selected randomly and one of their end vertices are swapped with each

other. Edge switch operations have important applications in graph theory and

network analysis, such as in generating random networks with a given degree

sequence, modeling and analyzing dynamic networks, and in studying various

dynamic phenomena over a network. The recent growth of real-world networks

motivates the need for efficient parallel algorithms. The dependencies among

successive edge switch operations and the requirement of keeping the graph

simple (i.e., no self-loops or parallel edges) as the edges are switched lead to

significant challenges in designing a parallel algorithm. Addressing these chal-

lenges requires complex synchronization and communication among the proces-

sors leading to difficulties in achieving a good speedup by parallelization. In this

paper, we present distributed memory parallel algorithms for switching edges in

massive networks. These algorithms provide good speedup and scale well to a

large number of processors. On a network with 20 million vertices and 587 mil-

lion edges, a speedup of 110 is achieved using 640 processors. One of the steps

in our edge switch algorithms requires the computation of multinomial random

variables in parallel. This paper presents the first non-trivial parallel algorithm

for the problem, which achieves a speedup of 925 using 1024 processors.

Keywords: edge switch, random network generation, network dynamics,

multinomial distribution, parallel algorithms.

2

1. Introduction

Edge switch, also known as edge swap, edge flip, edge shuffle, edge rewiring,

etc., is an operation that swaps the end vertices of the edges in a network. Many

variations of this problem have been studied [2, 3, 4, 5, 6, 7, 8, 9, 10] with diverse

real-world applications. In the most commonly used edge switch operation, two

randomly selected edges (a, b) and (c, d) are replaced with edges (a, d) and (c, b)

respectively, i.e., the end vertices of the selected edges are swapped with each

other. This operation is repeated either a given number of times or until a

specified criteria is satisfied. It is easy to see that an edge switch operation

preserves the degree of each vertex.

This problem has many important applications. It can be used in generating

random networks with a given degree sequence. There has been a lot of work on

random graph generation, because of the popularity of network models in diverse

applications. Most of the prior work involves sequential algorithms, and much

of it is restricted to regular graphs; we briefly summarize the main approaches

here. A popular method for random graph generation is the configuration model

(also referred to as the “pairing” model) [11, 12, 13], which involves creating

stubs for vertices, choosing pairs of stubs at random, and then connecting them

by edges. Unfortunately, this leads to parallel edges, unless the degrees are very

small. This basic approach has been modified in various ways to avoid parallel

edges in the case of regular graphs [13, 14, 15] (see [12] for a good discussion).

Blitzstein et al. [12] gives a simple algorithm for generating random graphs

with a given degree sequence using sequential importance sampling, based on

the Erdős-Gallai characterization.

By using the Havel-Hakimi method [16], a network can be generated follow-

ing a given degree sequence. Since it is deterministic, this method generates the

same network each time it is run with the same degree sequence whereas there

can be many different networks with the same degree distribution. However,

edge switching can be combined with the Havel-Hakimi method to generate a

random network with a given degree sequence [4, 2, 3]. Once a network is gen-

3

erated using the Havel-Hakimi method, by randomly switching the edges we

can generate a random network with the same degree sequence. The mixing

time was shown to be bounded by a large polynomial by Cooper et al. [2], and

extended by Feder et al. [3] to variants of the edge switch process.

Edge switching is also used in modeling and studying various dynamic net-

works such as peer-to-peer networks [3]. Other applications of edge switching

include the generation of randomly labeled bipartite graphs with a given degree

sequence [6], independent realizations of graphs with a prescribed joint degree

distribution using a Markov chain Monte Carlo approach [7], and studying the

sensitivity of network topology on dynamics over a network such as disease

dynamics over a social contact network [17].

Edge switching can be paired with additional constraints such as imposing a

connectivity requirement, allowing or not allowing parallel edges and loops, etc.

NetworkX [18] has a sequential implementation of edge switching that does not

allow parallel edges, but allows loops, and provides the option of imposing con-

nectivity constraints on the graph. A connectivity constraint requires a graph

to remain connected after an edge switch operation. Some theoretical studies of

edge switching for restricted graph classes can be found in the literature, such

as the study of mixing time of the Markov chain introduced by this operation

[2, 4]. However, no effort was given to design parallel algorithms for switch-

ing edges in a graph. For smaller graphs, sequential implementation of edge

switching suffices, but this may not work for massive networks for the following

reasons: (i) a massive network with billions of edges simply may not fit in the

memory of a single computing machine, and (ii) a sequential algorithm may

take a prohibitively long time. These issues can be addressed by a distributed

memory parallel algorithm where the network is partitioned and each processor

contains one partition.

Our Contributions. In this paper, we present distributed memory parallel

algorithms for switching edges in massive graphs with the constraint that the

graph remains simple. The dependencies among successive edge switch opera-

tions and the requirement of keeping the graph simple lead to significant chal-

4

lenges in designing a parallel algorithm. To deal with these challenges, it requires

complex synchronization and communication among the processors, which in

turn makes it challenging to gain any speedup by parallelization. The perfor-

mance of the algorithms also depend on partitioning of the graph. We study

several partitioning schemes in conjunction with the algorithms and present

their trade-offs. One of the parallel algorithms achieves a speedup of 110 us-

ing 640 processors, allowing it to perform 115 billion edge switches in a very

large power-law network with 10 billion edges in less than 3 hours using 1024

processors. The algorithms require generating multinomial random variables in

parallel, which is also a non-trivial problem. To the best of our knowledge, there

is no existing parallel algorithm for the problem, and we present here a novel

parallel algorithm for generating multinomial random variables, which achieves

a speedup of 925 using 1024 processors.

Organization. The rest of the paper is organized as follows. Section 2

describes the preliminaries and notations used in the paper. The edge switching

problem and the sequential algorithm are briefly explained in Section 3. We

present our main parallel algorithm for switching edges in Section 4. In Sec-

tion 5, we present our parallel algorithms using several hash-based partitioning

schemes. The parallel algorithm for generating multinomial random variables

is presented in Section 6. Finally, we conclude in Section 7.

2. Preliminaries

Below are the notations, definitions and computation model used in this

paper.

Notations. We are given a simple graph G = (V,E), where V is the set

of vertices, and E is the set of edges. A simple graph is an undirected graph

with no self-loops or parallel edges. A self-loop is an edge from a vertex to

itself. Parallel edges are two or more edges connecting the same pair of vertices.

There are total n = |V | vertices labeled as 0, 1, 2, . . . , n− 1, and m = |E| edges

in the graph G. If (u, v) ∈ E, we say u and v are neighbors of each other. The

5

neighbors of a vertex u ∈ V are stored in the adjacency list of u, denoted as

N(u), i.e., N(u) = {v ∈ V |(u, v) ∈ E}. The degree of u is du = |N(u)|. The

terms node and vertex, graph and network, neighbor list and adjacency list, loop

and self-loop, label and vertex-id are used interchangeably throughout the paper.

We use H,K,M and B to denote hundreds, thousands, millions and billions,

respectively; e.g., 1M stands for one million. For the parallel algorithms, let p

be the number of processors, and Pi the processor with rank i.

Edge Switch. An edge switch operation replaces two edges e1 = (u1, v1)

and e2 = (u2, v2), selected uniformly at random from E, by new edges e3 =

(u1, v2) and e4 = (u2, v1), as shown in Figure 1. If u1 = v2 or u2 = v1, then the

above edge switch creates self-loops. The edge switch creates parallel edges, if

edge (u1, v2) or (u2, v1) already exist in the graph.

u1

u2 v2

v1 u1 v1

u2 v2

Before edge switch After edge switch

e1

e2

e3

e4

Figure 1: An edge switch operation replaces two randomly selected edges e1 = (u1, v1) and

e2 = (u2, v2) by new edges e3 = (u1, v2) and e4 = (u2, v1).

Visit Rate. Due to edge switch operations, some edges of the given graph

G are changed (visited), and some edges that do not participate in any edge

switch operation remain unchanged (not visited). We define visit rate as the

fraction of edges of G that have been changed by a sequence of edge switch

operations. If m′ is the number of edges of G that have been changed due to

switching edges, then visit rate x = m′/m.

Binomial Distribution. Suppose that N independent trials are to be

performed, where each trial results in a success with probability q, and in a

failure with probability (1 − q). If X represents the number of successes that

6

occur among N trials, then X is said to be a binomial random variable. The

distribution of X is a binomial distribution with parameters N and q, and

denoted by equation (1). The probability of getting exactly i successes in N

trials is given in equation (2).

X ∼ B(N, q) (1)

Pr{X = i} =

(
N

i

)
qi(1− q)N−i (2)

Multinomial Distribution. Let N be the number of independent trials

to be performed, where each trial has ` possible outcomes 0, 1, . . . , ` − 1 with

probability q0, q1, . . . , q`−1 respectively, such that qi ≥ 0 for 0 ≤ i ≤ ` − 1

and
∑

i qi = 1. Let the random variable Xi indicates the number of times the

outcome i appears among N independent trials. Then X = 〈X0, X1, . . . , X`−1〉

has a multinomial distribution with parameters N, q0, q1, . . . , q`−1, and denoted

as follows.

〈X0, X1, . . . , X`−1〉 ∼ M(N, q0, q1, . . . , q`−1) (3)

Computation Model. We develop algorithms for distributed memory par-

allel systems. Each processor has its own local memory. The processors do not

have any shared memory and can communicate with each other and exchange

data by message passing.

3. Sequential Edge Switch

We are given a simple graph G = (V,E) and the number of edge switch

operations t to be performed. A random edge switch operation comprises of

choosing a pair of edges e and e′ uniformly at random from the set of edges in

the graph and switching the end vertices of e and e′. A sequence of such t pairs

of edges are switched.

3.1. Determining the Number of Edges to Switch for a Given Visit Rate

During an edge switch operation, a selected edge can be categorized as one of

the following two types. (i) Original edge: an edge that has not participated in

7

any of the previous edge switch operations and is still unchanged. (ii) Modified

edge: any edge participating in an edge switch operation is replaced by a new

edge, and such a new edge is called a modified edge.

Let T be the total number of edges switched to achieve a visit rate x. Since

edge switching is a random process, performing the same number of edge switch

operations in different executions of the same edge switching algorithm may

exhibit different visit rates. Thus having an exact value of T in advance is not

possible. However, we can calculate the expected value of T as described below.

As we demonstrate later in this section, using this expected value of T leads to

a very close approximation of the visit rate. Finding the expected value of T

is similar to the coupon collector problem [19]. Our goal is to have m′ = mx

modified edges in the graph by switching a sequence of pairs of edges. The

remainder (m −m′) of the edges remain unchanged. At some point there are

already (i − 1) modified edges in the graph. From this point to have the i-th

modified edge we need Ti number of edges switched. The probability of selecting

the i-th original edge from the graph, given that there are (i−1) modified edges,

is pi = m−(i−1)
m . Here, T and Ti are random variables, and Ti has geometric

distribution with expectation 1/pi. Using the linearity of expectation,

E[T] =

mx∑
i=1

E[Ti] =

mx∑
i=1

1

pi
=

mx∑
i=1

m

m− (i− 1)

= m

 m∑
i=1

1

i
−

m(1−x)∑
i=1

1

i


= m

(
Hm −Hm(1−x)

)
(4)

where Hm is the m-th harmonic number. For large m, Hm ≈ lnm, and conse-

quently E[T] ≈ −m ln(1 − x) for x < 1, and E[T] ≈ m lnm for x = 1. Note

that every edge switch operation involves two edges. Now if we assign t to be

E[T]/2, we obtain a visit rate extremely close to x as demonstrated below.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
b

se
rv

ed
 v

is
it

 r
at

e
(x

 ´
)

Desired visit rate (x)

Average of observed visit rate
Error-bar of observed visit rate

Figure 2: Observed visit rate is almost equal

to the desired visit rate for Miami network.

The error is so small that the error-bar is

almost invisible.

Desired

visit

rate

Observed visit rate

Average error

rate (%)

Standard

deviation

0.1 0.00745 8.13E-6

0.2 0.00858 1.41E-5

0.3 0.00907 1.76E-5

0.4 0.00802 3.52E-5

0.5 0.00687 2.34E-5

0.6 0.00650 3.38E-5

0.7 0.00701 4.37E-5

0.8 0.01030 5.55E-5

0.9 0.00824 4.46E-5

1.0 2.4E-6 2.06E-8

Table 1: Average error rate and standard

deviation of observed visit rates for Miami

network are near to 0. For each desired visit

rate, 10 experiments are performed.

We perform experiments on a contact network of Miami city having m =

52.7M edges (see Section 4.7 for details) to achieve a visit rate of x = 1, i.e.,

visit all of the 52.7M edges. The expected value of T is calculated using E[T] ≈

m lnm, and the edge switching algorithm performs t = 468.5M edge switch

operations. We repeat this experiment 10 times and observe a visit rate of x′ = 1

(visiting all edges) for 20% times, x′ = 0.99999998 (visiting all but one edge)

for 60% times and x′ = 0.99999994 (visiting all but three edges) for 20% times.

Thus the observed visit rates are extremely close to x. We perform additional

experiments for desired visit rates x = 0.1, 0.2, . . . , 1 on Miami network. Each

experiment is repeated 10 times. Figure 2 demonstrates that the observed visit

rates are almost equal to the desired visit rates. We plot the minimum and

maximum of observed visit rates using error-bars. These values are so close to

the desired visit rates that they almost overlap with each other and it is difficult

to distinguish them in the figure. To better understand the differences between

the desired and observed visit rates, we further compute the average error rate

and standard deviation of the observed visit rates, which are shown in Table 1.

The average error rate (%) is calculated as
∑

i |xi−x′
i|

exi
×100%, where xi and x′i are

9

the desired and observed visit rates, respectively, in the i-th experiment and e

is the total number of experiments. The maximum, minimum and average error

rates of the total 100 experiments are 0.027%, 0% and 0.007%, respectively,

which are almost negligible. Therefore, for large m, we achieve a very close

approximation of x, which is sufficient for almost all practical purposes.

Note that we can mark the modified edges and always select two original

edges for the next edge switch operation. In such a case for a visit rate x to have

mx modified edges, we simply need to perform mx/2 edge switch operations.

For a specific application, one can do so. If we do not allow a modified edge

to participate in any later edge switch operation, the process may not produce

many networks with the same degree sequence. Unrestricted and independent

random choice of the edges helps us obtain a random graph from the space of

the graphs with the same degree sequence.

Furthermore, visit rate can also be defined in other ways and converted to

t. Our parallel algorithms can be used to perform t edge switch operations,

irrespective of how t is obtained.

3.2. Keeping the Graph Simple

Because the edge switching problem deals with a simple graph, we need to

ensure that none of the edge switch operations create self-loops or parallel edges.

An edge switch between edges (u1, v1) and (u2, v2) creates

• Parallel edge: if u1 ∈ N(v2), v2 ∈ N(u1), u2 ∈ N(v1) or v1 ∈ N(u2).

• Self-loop: if u1 = v2 or u2 = v1.

An edge switch operation does not make any change to the graph if the

pair of edges remain the same after switching, and we say such an edge switch

operation is useless. An edge switch between (u1, v1) and (u2, v2) is useless if

u1 = u2 or v1 = v2. For an edge switch operation, two edges are selected and

switched if the switch is not useless and does not create parallel edges or loops.

10

3.3. Switching Edges Sequentially

The sequential algorithm is quite simple. Select a pair of edges uniformly at

random and switch them if the resultant graph remains simple. This operation

is repeated until t pairs of edges are switched. The graph, specifically the

edge set, dynamically changes with the course of edge switch process. Let

G′ = (V,E′) be such a graph where E′ is the current set of edges at a given

time. Algorithm 1 shows the pseudocode of switching edges sequentially. The

adjacency list of a vertex can be stored using a balanced binary tree. Searching

such an adjacency list of a vertex u to determine the possibility of parallel edge

creation takes O(log du) time. If (u1, v1) and (u2, v2) are the edges participating

in the i-th edge switch operation, then the time to switch t pairs of edges is

O
(∑t

i=1

∑
j∈{u1,v1,u2,v2} log dj

)
≤ O(t log dmax), where dmax is the maximum

degree of a vertex in the graph. Note that if an edge switch operation attempts

to create a parallel edge or a loop, or is useless, the edge switch operation is

restarted by selecting a new pair of edges. For a large and relatively sparse

network, this probability is very small. As a result, the number of edge switch

operations restarted is significantly smaller than t. Thus we have the runtime

O(t log dmax).

Algorithm 1 Sequential Edge Switch (G, t)

1: for i = 1 to t do

2: (u1, v1), (u2, v2)← two uniform random edges in E′

3: if u1 = u2, v1 = v2, u1 = v2, u2 = v1, u1 ∈ N(v2), or u2 ∈ N(v1) then

4: go to line 4

5: Replace (u1, v1) and (u2, v2) by (u1, v2) and (u2, v1) respectively

4. Parallel Edge Switch

Although the sequential algorithm is very simple, parallelizing the simple

edge switch operations turns out to be a non-trivial problem for the following

reasons.

11

• Multiple pairs of edges are selected and switched simultaneously by dif-

ferent processors in the parallel process, whereas the sequential process

selects and switches a sequence of pairs of edges, one pair after another.

Designing a parallel algorithm by maintaining an equivalent stochastic

process as of the sequential one leads to significant challenges.

• The requirement of keeping the graph simple requires complex synchro-

nization and communication among the processors. To achieve a good

speedup by parallelization, we need to design an efficient algorithm by

minimizing such communication and computation costs.

In this section, we present an efficient parallel algorithm for switching edges in

massive graphs, accompanied by a rigorous comparative study of several parallel

algorithms using various partitioning schemes later in Section 5.

4.1. Overview of the Algorithm

The input graph G is partitioned and distributed among the p processors.

Each partition contains a subset of the edges, and is assigned to a processor.

All the processors then perform t edge switch operations in parallel. We need

to consider two cases for an edge switch operation.

• Local Switch. Both edges may be selected from the same partition (or

processor), and this is referred to as local switch.

• Global Switch. The edges may be selected from different partitions,

which is referred to as global switch.

The processors may need to communicate with each other in order to complete

the edge switch operation. We explain the details below in the following order:

(i) data structures, (ii) partitioning the network, (iii) switching a pair of edges

by a single processor, (iv) simultaneous edge switches by all processors, (v)

properties of parallel edge switch, and (vi) experimental results.

12

4.2. Data Structures

A graph can be stored as adjacency lists or an adjacency matrix. In an

adjacency matrix, the existence of any edge can be determined in constant

time, however it takes O(n2) memory. Our algorithms use adjacency lists which

require O(m+ n) memory. Usually, N(u) contains all neighbors of u.

Reduced Adjacency List. For an edge (u, v), if N(u) and N(v) belong to

different partitions, the edge can be selected from two different partitions and

participate in two different edge switch operations at the same time leading to

an inconsistency. To ensure that any edge (u, v) can be selected only from one

partition, only the neighbors with higher labels are kept in the adjacency list

of a vertex u, i.e., N(u) = {v ∈ V |(u, v) ∈ E, u < v}, which is referred to as

reduced adjacency list. Although it is possible to deal with the above issue by

keeping all neighbors in the adjacency list, it will incur more communication

costs. Every edge switch operation involves updating four vertices’ adjacency

lists: one update for each end vertex of an edge. A reduced adjacency list

minimizes the number of updates to only two or three vertices’ adjacency lists;

the details are discussed later in Section 4.4. Thus a reduced adjacency list

reduces memory footprint, and communication and computation costs.

Straight and Cross Edge Switch. A difficulty arises from using the re-

duced adjacency list. If N(u) contains all the neighbors of u, any edge (u1, v1)

can be selected either as (u1, v1) from N(u1) (considering ordered pair), or as

(v1, u1) from N(v1). The probability of being selected each way is 1/2m. Let

(u1, v1) and (u2, v2) (considering no ordering) be two edges selected for an edge

switch operation. Depending on whether the edge (u1, v1) is selected from N(u1)

or N(v1), and the other edge (u2, v2) is chosen from N(u2) or N(v2), the edges

are replaced by either (u1, v2) and (u2, v1), or (u1, u2) and (v1, v2). Assuming

u1 < v1 and u2 < v2, there is no possibility of selecting edges as (v1, u1) and

(v2, u2) (considering ordered pair) due to the use of a reduced adjacency list.

Therefore, an edge switch between (u1, v1) and (u2, v2) (considering unordered

pair) misses the chance of generating the edges (u1, u2) and (v1, v2). This prob-

lem is solved by replacing the selected edges by either (u1, u2) and (v1, v2) with

13

probability 1/2, referred to as straight switch, or (u1, v2) and (u2, v1) with prob-

ability 1/2, referred to as cross switch, as shown in Figure 3.

u1

u2 v2

v1 u1 v1

u2 v2

Before edge switch Cross switch with prob. 1
2

u1 v1

u2 v2

or

Straight switch with prob. 1
2

e1

e2

e3

e4

e5 e6

Figure 3: Straight and cross edge switch.

4.3. Partitioning the Network

For a given simple graph G = (V,E), we partition V into p disjoint subsets,

V0, V1, . . . , Vp−1, such that
⋃

i Vi = V . The reduced adjacency list of a vertex

entirely belongs to one partition, and a subset of consecutive (in terms of vertex

labels) vertices are assigned to each partition. The input graph is partitioned in

such a way that each partition contains roughly m/p edges. Let Vi be the subset

of vertices (having consecutive vertex labels) and Ei be the subset of edges in

the partition belonging to Pi (processor with rank i) such that Ei = {(u, v) ∈

E|u ∈ Vi, u < v}. Note that the partitions are disjoint, i.e., Ei

⋂
Ej = ∅ for

i 6= j, and
⋃

iEi = E. As the graph is dynamically changing with edge switch

operations, let us denote Ei to be the current set of edges in Pi at a given time.

We refer to this partitioning scheme as Consecutive Partitioning (CP).

4.4. Switching a Pair of Edges by a Single Processor

A simple approach to perform an edge switch operation is that processor Pi

can select one pair of edges uniformly at random from the entire graph (i.e.,

selecting two processors from [0, p− 1] and request them for edges) and switch

them by exchanging messages among the processors. However, this approach

incurs significant synchronization and communication costs. Instead, Pi selects

one edge (u1, v1), referred to as first edge, uniformly at random from Ei, and

14

another edge (u2, v2), referred to as second edge, from the entire graph. To select

a second edge, Pi selects a processor Pj with probability |Ej |/|E| and requests

Pj to select an edge (u2, v2) from Ej uniformly at random. If Pi = Pj , then it is

a local switch, otherwise it is a global switch. Due to the use of reduced adjacency

lists, one of the replacing edges (e3, e4, e5 or e6 in Figure 3) may belong to a

different processor Pk (Pi 6= Pk 6= Pj); in this case, processor Pi, Pj and Pk

work together to update the reduced adjacency lists of respective vertices by

exchanging messages and thus complete the edge switch operation. A high-level

overview of an edge switch operation is given in Algorithm 2. During the course

of an edge switch operation, if any processor Px detects a possibility of creating

loops or parallel edges, Px notifies all other processors that are involved in the

edge switch operation. Then the initiating processor (Pi in the above example)

restarts the edge switch operation by selecting a new pair of edges.

Algorithm 2 Switching a Pair of Edges Initiated by Pi

1: e1 ← a uniform random edge in Ei

2: Pj ← a random processor in [0, p − 1], where probability of choosing Px is

|Ex|
|E|

3: if Pi = Pj then

4: Choose an edge e2 from Ei to switch with edge e1

5: Switch the edges e1 and e2 (Pi may communicate with a different proces-

sor Pk to complete the edge switch operation)

6: else

7: Send message 〈e1, request to select an edge from Ej〉 to Pj

8: Upon receipt of the above message, Pj executes the following:

9: Choose an edge e2 from Ej to switch with edge e1

10: Pi and Pj work together to switch e1 and e2 (Pj may communicate with

a different processor Pk to complete the edge switch operation)

Local Switch. Pi selects two edges (u1, v1) and (u2, v2) from Ei uniformly

15

at random such that the edge switch does not create loops, and it is not useless.

Pi decides between a straight and a cross switch with equal probability. If it

is a cross switch, Pi checks whether (u1, v2) and (u2, v1) create parallel edges.

If no parallel edge is created, Pi removes (u1, v1) and (u2, v2), adds (u1, v2)

and (u2, v1), thus completing the edge switch operation. If the edge switch is

a straight switch, Pi determines Pk such that min(v1, v2) ∈ Vk. If Pi = Pk,

Pi determines whether (u1, u2) and (v1, v2) create parallel edges. If they do

not create any parallel edge, Pi removes (u1, v1) and (u2, v2), adds (u1, u2) and

(v1, v2) and completes the edge switch operation. If Pi 6= Pk, Pi checks whether

(u1, u2) creates parallel edges. If the graph remains simple, Pi sends a message

to Pk requesting to add (v1, v2). If (v1, v2) does not create parallel edges, Pk

adds (v1, v2) and sends a message back to Pi informing it of the updates at Pk.

Upon receiving this message, Pi removes (u1, v1), (u2, v2) and adds (u1, u2).

Global Switch. In a global switch, two edges are selected from two different

processors, say Pi and Pj , i < j. Assuming Pi initiates the edge switch opera-

tion, Pi selects an edge e1 = (u1, v1) from Ei uniformly at random. Pi sends a

message containing the edge e1 and a request to select an edge from Ej , to Pj .

Upon receiving this message from Pi, processor Pj selects e2 = (u2, v2) from Ej

uniformly at random, and decides between a straight and a cross switch with

equal probability. At this point, Pj knows the new edges that will replace e1

and e2; we refer to these new edges as potential edges until the updates take

place. Next we describe the cross switch in detail.

Processor Pj checks whether u2 = v1 and v1 = v2 to detect a loop and a

useless edge switch respectively. If it does not create a loop and is not useless,

Pj determines Pk such that min(u2, v1) ∈ Vk. We need to consider the following

three cases.

i. Case Pk = Pj:

Pj checks whether (u2, v1) creates parallel edges. If a parallel edge is not

created, then Pj sends v2 to Pi. Pi checks whether (u1, v2) creates par-

allel edges. If the graph remains simple, Pi removes edge (u1, v1), adds

16

edge (u1, v2), and sends a message back to Pj informing the updates at Pi.

Upon receiving this message, Pj removes (u2, v2) and adds (u2, v1), thus

completing the edge switch operation.

ii. Case Pk = Pi:

Pj sends a message, containing e2 and a request to add both the new edges

to Pi. Processor Pi checks whether (u1, v2) and (u2, v1) create parallel

edges. If no parallel edge is created, Pi removes (u1, v1), adds edges (u1, v2)

and (u2, v1), and sends a message back to Pj indicating the updates at Pi.

Then Pj completes the edge switch operation by removing (u2, v2).

iii. Case Pi 6= Pk 6= Pj:

Pj sends (u2, v1) and v2 to Pk. If (u2, v1) does not create any parallel edge,

Pk sends v2 to Pi. Pi checks whether (u1, v2) creates any parallel edge.

If the graph remains simple, Pi removes (u1, v1), adds (u1, v2), and sends

messages to Pj and Pk notifying the updates taken place at Pi. Then Pj

removes edge (u2, v2), and Pk adds edge (u2, v1), thus completing the edge

switch operation.

A similar approach is followed for i > j and for a straight switch as well.

The use of reduced adjacency lists eliminates the following two constraints: (i)

u1 = u2, and (ii) u1 = v2 if i < j, or u2 = v1 if i > j.

4.5. Simultaneous Edge Switches by All Processors

In a sequential algorithm, pairs of edges are selected randomly, one pair after

another; as a result, the number of edges selected from each partition Ei may not

be equal. To have an equivalent parallel algorithm, we need to select the same

number of edges from each partition Ei as the sequential algorithm would do.

Let Xi be the number of first edges selected from Ei by a sequential algorithm.

A sequential algorithm does not need to know Xi in advance. However, for

the parallel algorithm, for each i, Xi needs to be determined in advance so

that processors can simultaneously perform edge switches in parallel. For any

edge switch operation, the probability that the first edge is selected from Ei is

17

qi = |Ei|/|E| for i = 0, 1, . . . , p − 1, and we have
∑p−1

i=0 qi = 1. Then it is easy

to see that the random variables Xi for i = 0, 1, . . . , p − 1 are multinomially

distributed with parameters (t, q0, q1, . . . , qp−1); i.e.,

〈X0, X1, . . . , Xp−1〉 ∼ M(t, q0, q1, . . . , qp−1) (5)

The time complexity of the best known sequential algorithm, known as con-

ditional distributed method [20], for generating multinomial variables is Θ(t).

Thus to have an efficient parallel algorithm for our edge switching problem, we

need to use an efficient parallel algorithm for generating multinomial random

variables. To the best of our knowledge, there is no existing parallel algorithm

for this problem. In Section 6, we present an efficient parallel algorithm for

computing multinomial random variables that runs in O
(

t
p + p log p

)
time.

Each processor Pi simultaneously performs Xi number of edge switches and

serves other processors’ requests as well. After completing one edge switch, Pi

proceeds to its next edge switch operation. Below we discuss two issues that

arise from performing edge switch operations simultaneously.

1. Creating parallel edges in a new way. Even after maintaining all the

constraints to keep a graph simple, parallel edges can be created in a different

way. As multiple pairs of edges are switched by multiple processors simulta-

neously, the same new edge can be created by multiple processors at the same

time. For example, more than one instance of an edge (u, v) is created simul-

taneously if more than one of the following four edge switches are performed

simultaneously by different processors, where ‘−’ denotes an end vertex of an

edge. (i) Cross edge switch between (u,−) and (−, v). (ii) Cross edge switch

between (−, u) and (v,−). (iii) Straight edge switch between (u,−) and (v,−).

(iv) Straight edge switch between (−, u) and (−, v). Keeping track of potential

edges at each processor ensures no parallel edges will be created in the above

mentioned way.

2. Changing probability values with the course of edge switch pro-

cess. As the edges are switched, the number of edges changes (i.e., increases

or decreases) among the partitions due to the use of reduced adjacency lists.

18

As a result, the probability values (qi) of selecting edges from different parti-

tions change, which need to be updated dynamically. However, updating the

probability values after every edge switch operation incurs a large communica-

tion costs, which in turn slows down the algorithm significantly. To deal with

this difficulty, the processors perform a fixed number of edge switch operations,

referred to as step-size and denoted by s, in a step, and then update the prob-

ability values that are used in the next step. Therefore, the algorithm performs

edge switch operations in a number of steps. At the beginning of each step, s

edge switch operations are distributed among p processors using multinomial

distribution. The program terminates when all of the t edge switch operations

are performed in d tse steps. With a reasonable step-size, a very close approx-

imation of the sequential algorithm is achieved. The experimental results are

shown later in Section 4.7.

Summary of the Parallel Algorithm. Let s be the step-size, and q be the

probability vector 〈q0, q1, . . . , qp−1〉. All the processors perform s edge switch

operations in one step, thus requiring total d tse number of steps. If t%s 6= 0,

(t − sb tsc) number of edge switch operations are performed in the last step.

Below is a summary of the parallel algorithm.

1) Generating multinomial random variables. At the beginning of

each step, s edge switch operations are distributed among p processors using the

parallel algorithm for generating multinomial random variables with parameters

(s, q0, q1, . . . , qp−1). This takes O
(

s
p + p log p

)
time. Let us denote Si to be the

number of edge switch operations that a processor Pi performs in the current

step.

2) Performing edge switch operations. To perform an edge switch oper-

ation, a processor Pi selects one edge e1 from Ei, and the other edge e2 from the

entire graph, and completes the edge switch operation in conjunction with other

processors (details in Section 4.4). Each processor Pi simultaneously performs

such Si number of edge switch operations and serves other processors’ requests

as well. For an edge switch operation, a constant amount of message exchange

is required; edges are updated in constant time and checking for parallel edges

19

takes O (log dmax) time. Thus, performing Si edge switch operations at Pi takes

O (Si log dmax) time.

3) Updating probability vector and termination. After completing

Si edge switch operations in the current step, Pi sends end-of-step signals (or

messages) to each processor requiring O (log p) time. Pi continues to serve

requests from other processors until receiving end-of-step signals from every

processor, i.e., the end of the current step. At the end of each step, Pi receives

|Ej | from each Pj by exchanging messages and it takes O (log p) time. Pi updates

q with the received |Ej |s in O(p) time. Then, in the next step, s number of edge

switch operations are again distributed among p processors using multinomial

distribution with the updated q and edge switch operations are performed. This

process continues until t edge switch operations are performed in d tse steps.

4.6. Properties of Parallel Edge Switch

In this section, we examine some stochastic properties of the parallel edge

switch process and study how stochastically similar it is to the sequential edge

switch process.

Recall that in the sequential edge switch process, one pair of edges is selected

uniformly at random, and the edges are switched before selecting the next pair

of edges. After completing the i-th edge switch operation, one or both of the

two new edges generated by the i-th switch can be selected for the (i + 1)-

th edge switch operation. In the parallel edge switch process, multiple pairs of

edges are selected and switched simultaneously by different processors, and thus,

the edges generated simultaneously by multiple processors cannot be selected

for a simultaneous edge switch operation (restricting its choice). It raises the

question of whether these two processes are stochastically equivalent or how

close are they stochastically? We try to answer this question by studying the

similarity of their effect, i.e., the resultant graphs generated by these two edge

switch processes beginning with the same initial graph.

The stochastic equivalence of the sequential and parallel edge switch pro-

cesses can be defined as follows. Let Gt
s and Gt

p be the resultant graphs after

20

performing t number of edge switch operations by the sequential and paral-

lel edge switch processes, respectively, where both processes begin with the

same initial graph G. We say the two processes are stochastically equivalent if

Pr{Gt
s = G′} = Pr{Gt

p = G′} for all graphs G′ with the same degree sequence

as G.

Theoretical analysis of the above stochastic equivalence seems to be diffi-

cult. Experimental analysis can also be prohibitively time consuming. As the

space of the graphs with a given degree sequence can be very large, estimating

probabilities of generating G′ by a reasonable number repetitions of the edge

switch processes can be error prone.

Instead, we measure “similarity” of the two stochastic processes. We say

the sequential and parallel processes are similar if they satisfy the following two

conditions.

1. The distribution of the number of edges switched among different parti-

tions (i.e., subsets of edges) is the same in both Gt
s and Gt

p, the resultant

graphs of the sequential and parallel processes, respectively. This goal

is achieved by the use of multinomial distribution as described before in

Section 4.5.

2. At the end of the edge switch processes, the distribution of the number of

edges across different sets of vertices is the same for both sequential and

parallel processes. Let ns(Vi, Vj) and np(Vi, Vj) be the number of cross

edges between the sets of vertices Vi and Vj in the resultant graphs Gt
s

and Gt
p, respectively. For any positive integer t, after switching t pairs of

edges, the distribution of ns(Vi, Vj) and np(Vi, Vj), for all i, j, are same.

The resultant graphs, Gt
s and Gt

p, are divided into r partitions (i.e., 0 ≤

i, j ≤ r− 1), with each partition containing an equal number of vertices having

consecutive vertex labels. Note that the i-th partition Vi of Gt
s and Gt

p have

the same set of vertices with vertex labels in
[
i|V |
r , (i+1)|V |

r − 1
]

(assuming n

is a multiple of r). The edge difference ED(Gt
s, G

t
p) across different sets of

vertices between Gt
s and Gt

p is computed using equation (6). We define error rate

21

ER(Gt
s, G

t
p) between Gt

s and Gt
p as shown in equation (7), where the maximum

value of ED(Gt
s, G

t
p) can be 2m. Due to randomness, some error rate can be

observed even between two resultant graphs, Gt
s1 and Gt

s2, generated by the

sequential process in two different runs. If ER(Gt
s, G

t
p) is roughly equal to

ER(Gt
s1, G

t
s2), then the sequential and parallel processes are said to be similar.

For a same pair of resultant graphs Gt
s and Gt

p, the value of ER(Gt
s, G

t
p) is

different for different values of r. As a result, for a particular value of r, we are

interested in how close ER(Gt
s, G

t
p) and ER(Gt

s1, G
t
s2) are to each other rather

than the value of the error rate. The experimental results are explained in next

section.

ED(Gt
s, G

t
p) =

∑
i,j≥i

|ns(Vi, Vj)− np(Vi, Vj)| (6)

ER(Gt
s, G

t
p) =

ED(Gt
s, G

t
p)

2m
× 100% (7)

4.7. Experimental Results

In this section, we present strong and weak scaling of our parallel algorithm,

demonstrate the similarity of the sequential and parallel edge switch processes,

and analyze the trade-offs between step-size, error rate and speedup.

Experimental Setup. We use a high performance computing cluster of

64 Intel Sandy Bridge compute nodes (Dell C6220). Each computing node

consists of a dual-socket Intel Sandy Bridge E5-2670 2.60GHz 8-core processor

(16 cores per node) and 64GB of 1600MHz DDR3 RAM. The computing nodes

are interconnected by Qlogic QDR Infiniband interconnects. To implement our

algorithm, we use MPICH2 implementation (version 1.9) of MPI.

Datasets. We use both real-world and artificial networks for the experi-

ments. A summary of the networks is provided in Table 2. New York, Los An-

geles, and Miami are synthetic, yet realistic social contact networks [21]. Each

vertex represents a person in that city, and each edge represents any ‘physical’

contact between two persons within a 24 hour time period. Flickr is an image

based online community network [22]. LiveJournal is a social network blogging

22

Table 2: Datasets used in the experiments.

Network Type of network Vertices Edges Avg. Degree

New York Social Contact 20.38M 587.3M 57.63

Los Angeles Social Contact 16.33M 479.4M 58.66

Miami Social Contact 2.1M 52.7M 50.4

Flickr Online Community 2.3M 22.8M 19.83

LiveJournal Social 4.8M 42.8M 17.83

Small World Random 4.8M 48M 20

Erdős-Rényi Erdős-Rényi Random 4.8M 48M 20

PA-100M Pref. Attachment 100M 1B 20

PA-1B Pref. Attachment 1B 10B 20

site [22]. The small world graph is generated using the Watts-Strogatz small

world graph model [23], Erdős-Rényi is generated using the Erdős-Rényi graph

model [24], and PA is generated using the Preferential Attachment graph model

[25].

Strong Scaling. Figure 4 showcases the strong scaling of the parallel al-

gorithm of edge switch. The algorithm performs t edge switch operations to

achieve a visit rate of x = 1 using a step-size of t/100. We have experimented

with eight different graphs, and achieved a maximum speedup of 85 using 1024

processors for the LiveJournal graph.

Weak Scaling. The weak scaling of our parallel algorithm is shown in

Figure 5. In one experiment, we increase the graph size with the increase of

processors, and use Preferential Attachment graphs with (p × 0.1M) vertices

and an average degree of 20. In another experiment, we use a fixed Preferential

Attachment graph with 102.4M vertices and 1.024B edges. In both the experi-

ments we use t = p× 10M and step size = t/1000. Ideally, the parallel runtime

should remain constant. However, in practice the communication increases with

the increase of processors, leading to a higher runtime. Our algorithm shows

good weak scaling as the runtime increases linearly in both the cases.

23

 0

 20

 40

 60

 80

 0 200 400 600 800 1000

S
p
ee

d
u
p

Number of processors

Miami
NewYork

LosAngeles
PA-100M

Flickr
LiveJournal
SmallWorld
ErdosRenyi

Figure 4: Strong scaling of our algorithm on

eight different graphs using visit rate = 1 and

step-size = t/100.

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

P
ar

al
le

l
ti

m
e

(m
in

u
te

s)

Number of processors

Fixed graph size
Varying graph size

Figure 5: Weak scaling of our algorithm

with fixed and varying size PA graphs. In

one experiment, we use a fixed graph having

102.4M vertices and 1.024B edges while in

the other experiment, we increase (or vary)

graph size with the increase of processors.

The varying graphs have (p× 0.1M) vertices

and an average degree of 20, where p is the

number of processors. For both experiments,

we use t = p× 10M and step-size = t/1000.

Similarity of the Outcomes of the Parallel and Sequential Algo-

rithms and Determining Suitable Step-size. We use visit rate x = 1,

current calendar time as random seed, r = 20 partitions, p = 1024 processors,

and average value of 10 experiments. Figure 6 shows that better strong scaling

is achieved for a larger step-size on the Miami graph. For a particular step-size,

error rate remains roughly constant with the increase of processors on the Mi-

ami graph, as shown in Figure 7. The effects of step-size on speedup and error

rate for the Miami graph are shown in Figure 8 and Figure 9 respectively. Both

the speedup and error rate increase with the increase of step-size.

While keeping the error rate to a minimum, we want to achieve as much

speedup as possible. From Figure 9, we observe that with up to a 2M step-

size, the error rate between the resultant graphs generated by the sequential and

parallel algorithms is roughly same as the error rate between the resultant graphs

24

 0

 20

 40

 60

 80

 0 200 400 600 800 1000

S
p

ee
d

u
p

Number of processors

9.4M
4.7M
2.3M
1.6M

0.75M
50K

Figure 6: A comparison of strong scaling per-

formance on Miami graph for different step-

sizes: 9.4M, 4.7M, 2.3M, 1.6M, 0.75M, and

50K.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000

E
rr

o
r

ra
te

 (
%

)

Number of processors

9.4M
4.7M
2.3M
1.6M

0.75M
50K

Figure 7: Error rate with increasing number

of processors on Miami graph using different

step-sizes: 9.4M, 4.7M, 2.3M, 1.6M, 0.75M,

and 50K.

 0

 20

 40

 60

 80

 0 2 4 6 8 10

S
p
ee

d
u
p

Step-size (millions)

160 Processor
640 Processor

1024 Processor

Figure 8: Speedup with increasing step-size

on Miami graph using 160, 640 and 1024 pro-

cessors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

E
rr

o
r

ra
te

 (
%

)

Step-size (millions)

1 Processor
160 Processor
640 Processor

1024 Processor

Figure 9: Error rate with increasing step-size

on Miami graph using 1, 160, 640 and 1024

processors.

generated by two different execution of the sequential algorithm. Hence, 2M can

be a suitable step-size for the Miami graph, since the error rate is minimal, and a

good speedup factor of 50 using 1024 processors is achieved at the same time. If

we further increase the step-size, both the speedup and error rate increase. For

example, using a step-size of 9.4M , the error rate is a negligible 0.4%, however

a higher speedup factor of 62 is achieved using 1024 processors. Figure 10 and

11 illustrate the effect of step-size on speedup and error rate, respectively, for

25

 0

 20

 40

 60

 80

 0 2 4 6 8

S
p

ee
d

u
p

Step-size (millions)

Miami
ErdosRenyi
LiveJournal

Flickr

Figure 10: Speedup with increasing step-size

for different graphs using 1024 processors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8

E
rr

or
 r

at
e

(%
)

Step-size (millions)

Miami
ErdosRenyi
LiveJournal

Flickr

Figure 11: Error rate with increasing step-

size for different graphs using 1024 proces-

sors.

different graphs. Suitable step-size may vary from graph to graph, depending

on the graph size and type of the graph. For example, the error rate is roughly

constant for different step-sizes on Erdős-Rényi and LiveJournal graphs, though

it varies for Flickr and Miami graphs as shown in Figure 11. A suitable step-size

for Flickr, Miami, LiveJournal and Erdős-Rényi graphs can be 1.5M , 2M , 4M

and 8M respectively. In general, if we use a lower step-size, say 2M , for any

medium-sized graph (having more than 20M edges), we expect to have a very

small error rate along with a good speedup. The above experiments show that

the sequential and the parallel edge switch processes are similar with a suitable

step-size.

How Network Properties Change with Edge Switching? We also

analyze how some network properties change with edge switch operations by

the sequential and parallel algorithms. We use Miami, LiveJournal, and Flickr

graphs with a step-size of 2M , and vary the visit rate from 0.1 to 1. Figure 12

and 13 show that the average clustering coefficient and average shortest path

distance of a graph change exactly the same way with edge switches by the

sequential and parallel algorithms. Small variation in average shortest path

distance is observed due to using approximate computation, since the exact

computation is very time consuming.

26

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

Visit rate

Miami-Parallel
Miami-Sequential

LiveJournal-Parallel
LiveJournal-Sequential

Flickr-Parallel
Flickr-Sequential

Figure 12: Average clustering coefficient

changes similarly with edge switch operations

by the sequential and parallel algorithms.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 0.2 0.4 0.6 0.8 1A
v

g
.

sh
o

rt
es

t
p

at
h

 d
is

ta
n

ce
 (

ap
p

ro
x

.)

Visit rate

Miami-Parallel
Miami-Sequential

LiveJournal-Parallel
LiveJournal-Sequential

Flickr-Parallel
Flickr-Sequential

Figure 13: Average shortest path distance

(approximate) changes similarly with edge

switch operations by the sequential and par-

allel algorithms.

Edge Switching in Large Networks. Our parallel algorithm is able to

perform more than 115B edge switch operations on a Preferential Attachment

graph with 1B vertices and 10B edges in less than 3 hours using 1024 processors.

Due to the large size of the graph, the sequential algorithm is not even able to

work on such a large graph.

5. Parallel Algorithms Using Hash-Based Partitioning

Partitioning schemes usually have good impact on the performance of par-

allel graph algorithms in terms of both runtime and memory. In the previous

section, we presented a parallel algorithm for switching edges using a simple con-

secutive partitioning (CP) scheme. A good partitioning scheme for the parallel

algorithm should have the following properties.

• It can efficiently partition a given network.

• Given a vertex v, the partition where v belongs to can be efficiently de-

termined.

• The workload is uniformly distributed among the processors for different

types of network.

27

The workload at a processor Pi is the number of edge switch operations Pi

performs, which is proportional to the number of edges belonging to Pi. We use

CP scheme because it reasonably fulfills all the criteria of a good partitioning

scheme. In the CP scheme, a graph is partitioned such that each partition

contains a subset of vertices having consecutive labels (or vertex-ids) and almost

an equal number of edges; it is easy to determine which vertex belongs to which

subset of consecutive vertices, therefore to which partition (or processor). It

shows reasonably good performance as well. During the course of an edge switch

process, the number of edges gradually change among the processors, which

in turn makes the number of edge switches performed by processors skewed

over time. As a result, in many cases, CP does not exhibit a well-balanced

workload distribution among the processors. We discuss this phenomena later

in this section. We also present a rigorous comparative study of several parallel

algorithms using various partitioning schemes. Our experiments show that hash-

based partitioning (HP) schemes demonstrate good performance in general as

well as outperform the CP scheme in many cases. The rest of the section

describes a few more parallel algorithms using several HP schemes and illustrates

their performance. We further investigate the trade-offs between the HP and

CP schemes with experimental results.

Among other options, one simple way to partition a given network is as-

signing vertices to partitions uniformly at random. This approach may assign

almost an equal number of vertices to the partitions although the number of

edges may vary among them. However, to determine which vertex belongs to

which partition, each processor requires O(n) memory to map all vertex labels

to partitions. Therefore assigning vertices arbitrarily among the processors may

not be a good choice.

5.1. Hash-Based Partitioning

Another approach can be to use a hash-based partitioning scheme. A hash

function can be a simple algebraic expression mapping vertex labels to parti-

tions. Hash functions are deterministic in nature, and by using some simple hash

28

functions it can be very easy and efficient to determine which vertex belongs

to which partition, thus obeying the first two criteria of a good partitioning

scheme. Hash functions may assign different number of vertices and edges to

partitions, although in many cases they may exhibit good workload distribution

among the processors.

Overview of the Parallel Algorithms using the HP Schemes. The

parallel algorithms using the HP schemes use the same data structure as before

(Section 4.2). The graph is partitioned and distributed among the processors

using the HP schemes. Once the graph is partitioned, the rest of the parallel

algorithms remain the same for all schemes. That is, t edge switch operations

are performed in a number of steps by p processors. At the beginning of a step,

s edge switch operations are distributed among the processors by generating

multinomial random variables in parallel. Each processor simultaneously per-

forms edge switch operations as described in Section 4.4 and 4.5. At the end

of every step, each processor updates the probability values of selecting edges

from different partitions, which are then used in the next step of computation.

All of the t edge switch operations are performed in such d tse steps.

Partitioning the Network. Given a hash function h, a vertex v is assigned

to a partition belonging to processor Pi iff h(v) = i. The partition assigned to

Pi contains a subset of vertices, Vi = {v ∈ V |h(v) = i} and a subset of edges,

Ei = {(u, v) ∈ E|u ∈ Vi, u < v} such that
⋃

i Vi = V and
⋃

iEi = E. Note that

the partitions are disjoint, i.e., for i 6= j, Vi
⋂
Vj = φ and Ei

⋂
Ej = φ.

A good hash function for the partitioning schemes should have the following

properties.

• It is simple and efficient to determine which vertex belongs to which par-

tition.

• Vertices are dispersed and well-distributed among the processors, i.e., all

of the partitions are almost equal in size.

Division hash function (HP-D), multiplication hash function (HP-M), and uni-

versal hashing (HP-U) are few such hash functions and they are described below.

29

5.1.1. Division Hash Function

A simple hash function can be a division function (HP-D) [26]. This scheme

uses the following function:

h(v) = v mod p (8)

where p is the number of processors.

5.1.2. Multiplication Hash Function

Another simple hash function is a multiplication function (HP-M) [26]. The

hash function is:

h(v) = bp(va− bvac)c (9)

where a ∈ (0, 1) is a constant. The fractional part of va is extracted by va−bvac

and is then multiplied by the number of processors p to determine the partition

where v belongs to. Although this scheme works with any value of a ∈ (0, 1), we

use a = (
√

5−1)/2 as suggested in [26] to obtain a reasonably good performance.

5.1.3. Universal Hashing

The division and multiplication hash functions are quite simple. However

their workload distributions among the processors are dependent on the vertex

labels of the input graph. If there is an adversary which knows the hash function

being used in advance, the adversary can artificially manipulate the graph by

assigning vertex labels in such a way that the workload distribution becomes

skewed. For example, many high degree vertices can be assigned to a partition

making the workload at the processor containing that partition significantly

higher compared to other processors. To deal with such exploitation of hash

functions by an adversary, universal hashing [26] can be a good choice. This

scheme uses the following hash function:

h(v) = (((av + b) mod c) mod p) (10)

where c is a large prime number such that all vertex labels are in the range

[0, c− 1], a ∈ [1, c− 1] is a random integer, and b ∈ [0, c− 1] is another random

30

integer. Since a and b are selected randomly, this method arbitrarily selects a

hash function from a large set of hash functions. As a result, there is no way

for the adversary to know the exact hash function in advance, or exploit it to

create a worse case scenario.

5.2. Experimental Results on Hash-Based Partitioning

In this section, we showcase the performance of the parallel algorithms us-

ing the HP schemes and demonstrate the trade-offs between the HP and CP

schemes. The algorithms perform edge switch operations to achieve a visit rate

of x = 1 using a step-size of t/100 for all experiments unless otherwise specified.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

Sp
ee

du
p

Number of processors

NewYork
Miami

LosAngeles
SmallWorld
ErdosRenyi

Flickr
LiveJournal

PA-100M

Figure 14: Strong scaling of the parallel algorithm using the HP-U partitioning scheme on

eight different graphs.

Strong Scaling. Figure 14 illustrates strong scaling of the parallel algo-

rithm using the HP-U partitioning scheme on eight different graphs. A good

speedup of 110 is achieved using 640 processors on NewYork graph. Speedup

varies for different graphs because of the types of graphs and difference in work-

load distribution among the processors. Speedup starts decreasing after some

point with the increase of the number of processors indicating the domination

of communication costs over computation costs.

A comparison of strong scaling performance of the parallel algorithms using

31

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

S
p
ee

d
u

p

Number of processors

HP-D
HP-M
HP-U

CP

(a) Miami graph

 0

 15

 30

 45

 60

 75

 0 200 400 600 800 1000

S
p
ee

d
u

p

Number of processors

HP-D
HP-M
HP-U

CP

(b) PA-100M graph

Figure 15: A comparison of strong scaling of the parallel algorithms using the HP-D, HP-M,

HP-U and CP partitioning schemes for Miami and PA-100M graphs.

different schemes on Miami and PA-100M graph is demonstrated in Figure 15.

The HP-D and HP-M schemes show good speedup as HP-U does. The HP-U

scheme shows better strong scaling for Miami graph whereas CP outperforms

the other schemes for PA-100M graph. To understand why speedup varies

for different schemes and how good the schemes perform for different types

of graphs, we further investigate workload distributions of different schemes

on Miami and PA-100M graphs. We use p = 1024 processors for rest of the

experiments in this section.

Load Balancing. Figure 16 and 17 show distributions of vertices and edges

(at the beginning of execution), respectively, among the processors in different

schemes on Miami graph. The HP schemes assign roughly an equal number of

vertices whereas the CP scheme initially assigns almost an equal number of edges

among the processors. Due to the use of reduced adjacency lists, the number

of vertices assigned to processors by CP scheme gradually increases with the

increase of processor ranks despite having an equal number of edges among the

processors. The number of edges initially assigned to all the processors by the

HP schemes are very close to each other and the distribution can be considered

as roughly load balanced although is not as perfect as that of the CP scheme.

All parallel algorithms start the edge switch process with almost an equal

32

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

N
o.

 o
f

ve
rt

ic
es

 (
x

10
3)

Rank of processors

HP-D
HP-M
HP-U

CP

Figure 16: Distribution of vertices among the

processors in HP-D, HP-M, HP-U and CP

partitioning schemes for Miami graph.

 4.5

 4.75

 5

 5.25

 5.5

 5.75

 6

 0 200 400 600 800 1000

N
o.

 o
f

ed
ge

s
(x

 1
04)

Rank of processors

HP-D
HP-M
HP-U

CP

Figure 17: Distribution of edges (at the be-

ginning of execution) among the processors

in HP-D, HP-M, HP-U and CP partitioning

schemes for Miami graph.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

N
o.

 o
f

ed
ge

s
(x

 1
04)

Rank of processors

HP-D
HP-M
HP-U

CP

Figure 18: Distribution of edges (after com-

pleting execution) among the processors in

HP-D, HP-M, HP-U and CP partitioning

schemes for Miami graph.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

N
o.

 o
f

ed
ge

 s
w

itc
he

s
(x

10
5)

Rank of processors

HP-D
HP-M
HP-U

CP

Figure 19: Distribution of workload (number

of edge switch operations) among the proces-

sors in HP-D, HP-M, HP-U and CP parti-

tioning schemes for Miami graph.

number of edges at each processor as shown in Figure 17. Recall that the number

of edges gradually change among the processors with the progress of the edge

switch process. As a result, at the completion of the edge switch process, the

processors may end up with number of edges different than the numbers at

the beginning of the process. Figure 18 shows the distribution of edges at the

completion of an edge switch process using different schemes on Miami graph.

33

The CP scheme shows highly skewed distribution of edges compared to the HP

schemes. The skewness exhibited in the CP scheme is a combined effect of the

following reasons.

• A reduced adjacency list uses the ordering of vertex labels (from 0 to n−1)

to store an edge (u, v): N(u) stores v if and only if u < v.

• The same ordering of vertex labels is used to assign a consecutive subset

of vertices to a partition.

For example, let (u1, v1) be an edge belonging to the partition in the highest

ranked processor Pp−1, participating in an edge switch operation with another

edge (u2, v2) belonging to the partition in Pi (i < p− 1). There is a probability

that both of the replacing edges (edge e3 and e4, or e5 and e6 in Figure 3) can

belong to N(u2) and N(v2), which reside in some processors other than Pp−1,

thus decreasing one edge from the partition in Pp−1 and increasing one edge

in the partition in Pj (j 6= p − 1). The occurrence of such scenario increases

for graphs having a high clustering coefficient. Note that Miami is a synthetic

yet realistic contact network with maximum, minimum, and average degree

of 425, 1, and 50.4 respectively. It has a good clustering among the vertices

that is gradually destroyed with progression of the edge switch process. For

the Miami graph, most of the edges in the partition belonging to the highest

ranked processor are replaced by edges with one end vertex belonging to some

other partition, thus destroying the clustering among the vertices in the highest

ranked processor as well as decreasing the number of edges in the partition

substantially. As a result, some processors contain a higher number of edges

compared to other processors at the end of the edge switch process. Since the

number of edge switch operations performed at a processor Pi depends on the

number of edges at Pi, the skewness in the number of edges among the processors

with the course of the edge switch process results in an imbalanced workload

distribution as shown in Figure 19 for the Miami graph.

In contrast, the HP schemes do not assign consecutive vertices to a partition.

Thus a subset of vertices having dispersed vertex labels along with their reduced

34

adjacency lists belongs to a partition. As a result, the change in the number of

edges among the partitions during the edge switch process is significantly less

than that of the CP scheme for the Miami graph, leading to a better workload

distribution in the HP schemes as shown in Figure 19. Hence, all of the HP

schemes outperform the CP scheme for the Miami graph, which is illustrated

in Figure 15. Among the three HP schemes, HP-U outperforms the others by a

slight margin.

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 11

 0 200 400 600 800 1000

N
o.

 o
f

ed
ge

 s
w

itc
he

s
(x

10
6)

Rank of processors

HP-M
HP-D

(a) HP-M and HP-D schemes

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 11

 0 200 400 600 800 1000

N
o.

 o
f

ed
ge

 s
w

itc
he

s
(x

10
6)

Rank of processors

HP-U
CP

(b) HP-U and CP schemes

Figure 20: Distribution of workload (number of edge switch operations) among the processors

in HP-D, HP-M, HP-U and CP partitioning schemes for PA-100M graph.

On the other hand, Figure 20 illustrates that the CP scheme exhibits better

workload distribution for a Preferential Attachment graph having 100M vertices

and 1B edges. PA graph has a very highly skewed degree distribution, i.e., it has

few very high degree and many low degree vertices. The maximum, minimum,

and average degree of PA-100M graph is 55225, 10, and 20 respectively. The

CP scheme assigns a consecutive subset of vertices to partitions and uses the

degrees of vertices to ensure that all the partitions have an equal number of

edges; whereas the HP schemes assign vertices to partitions using only vertex

labels; they neither use the degree of vertices nor consider the number of edges

already assigned to a partition. As a result, the HP schemes assign several

high degree vertices to some processors for the PA graph, thus making the

initial edge distribution slightly more skewed compared to the CP scheme. Since

35

PA is a random graph having a very low clustering coefficient, the number of

edges initially assigned to processors vary negligibly with the course of the edge

switch process in the CP scheme. As a result, the CP scheme has an advantage

of a better initial edge distribution, and thus demonstrates a better workload

distribution and speedup compared to the HP schemes as shown in Figure 20

and 15 respectively.

 0

 10

 20

 30

 40

 0 200 400 600 800 1000

N
o.

 o
f

ed
ge

 s
w

itc
he

s
(x

10
7)

Rank of processors

HP-D
HP-M
HP-U

CP

Figure 21: A worse case scenario of distribution of workload (number of edge switch opera-

tions) among the processors for the HP-D scheme on PA-100M graph.

A Worse Case Scenario for the HP-D Scheme. Unlike the CP scheme,

where each partition contains almost an equal number of edges, one potential

disadvantage of the HP schemes is that if there is an adversary aware of the

exact hash function being used as the partitioning scheme, the adversary may

generate a worse case scenario by artificially manipulating vertex labels of a

graph. We simulate such a scenario for the HP-D scheme using 1024 processors.

We intentionally reassign vertex labels of the PA-100M graph in such a way

that all of the n/p highest degree vertices are assigned to a processor, say Pk.

Thus Pk has a very high number of edges compared to other processors despite

having an equal number of vertices among the processors. As a result, Pk

performs substantially higher number of edge switch operations compared to

36

other processors as shown in Figure 21 (in this example, Pk is the processor

with rank 256), whereas CP shows good performance by executing 28 times

faster on the same graph as shown in Figure 22. An adversary can generate a

similar worse case scenario for the HP-M scheme as well.

 0

 10

 20

 30

 40

 50

 60

 70

HP-D HP-M HP-U CP

Sp
ee

du
p

Partitioning schemes

Figure 22: A comparison of speedup of a worse case scenario for the HP-D scheme with other

schemes on a PA-100M graph using 1024 processors.

Advantage of the HP-U Scheme. The universal hashing randomly se-

lects a hash function from a large set of hash functions. As a consequence, there

is no way for an adversary to know in advance exactly which hash function will

be used. Therefore, the HP-U scheme overcomes the drawbacks of the HP-D

and HP-M schemes. In addition, HP-U demonstrates good speedup for all types

of graphs and outperforms the other schemes in many cases. Although the CP

scheme exhibits the best performance for PA-100M graph, speedup achieved by

the HP-U scheme is very close to that of CP, justifying HP-U as a good choice

in general.

Weak Scaling. Figure 23 shows weak scaling comparison of different

schemes on PA graphs with the same experimental setup as before (Section

4.7). All of the schemes exhibit good weak scaling performance.

37

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

P
ar

al
le

l
ti

m
e

(m
in

u
te

s)

Number of processors

Fixed graph size (HP-D)
Varying graph size (HP-D)

Fixed graph size (HP-M)
Varying graph size (HP-M)

(a) HP-D and HP-M schemes

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

P
ar

al
le

l
ti

m
e

(m
in

u
te

s)

Number of processors

Fixed graph size (HP-U)
Varying graph size (HP-U)

Fixed graph size (CP)
Varying graph size (CP)

(b) HP-U and CP schemes

Figure 23: Weak scaling comparison of the parallel algorithms using the HP-D, HP-M, HP-U

and CP partitioning schemes with fixed and varying size PA graphs. In one experiment, we

use a fixed graph having 102.4M vertices and 1.024B edges while in the other experiment,

we increase (or vary) graph size with the increase of processors. The varying graphs have

(p × 0.1M) vertices and an average degree of 20, where p is the number of processors. For

both experiments, we use t = p× 10M and step-size = t/1000.

Similarity of the Outcomes of the Parallel and Sequential Algo-

rithms and Determining Suitable Step-size. To study the similarity of

the outcomes of the algorithms, we use the same experimental setup as before.

That is, we use visit rate x = 1, p = 1024 processors for the parallel algorithms,

current calendar time as random seed, r = 20 partitions, and average values of

10 experiments to measure the error rate. Table 3 shows the error rate compari-

son of the outcomes of the parallel algorithms using different schemes, with that

Table 3: Error rate comparison of the outcomes of the parallel algorithms using HP-D, HP-M,

HP-U and CP partitioning schemes with that of the sequential algorithm for different graphs.

We use average values of 10 experiments.

Networks

Error rate (%) for different schemes

Sequential

Parallel

Using 1 step Using 100 steps

HP-D HP-M HP-U HP-D HP-M HP-U CP

Miami 0.117 0.118 0.123 0.117 0.111 0.127 0.123 0.164

SmallWorld 0.112 0.100 0.112 0.119 0.106 0.118 0.109 0.115

LiveJournal 0.116 0.117 0.118 0.117 0.116 0.116 0.116 0.115

38

of the sequential one suggesting that even for performing edge switch operations

in one step, the outcomes of the parallel algorithms using the HP schemes are

similar to that of the sequential algorithm with a negligible error rate devia-

tion. Since the HP schemes assign vertices dispersedly among the partitions,

the number of edges initially belonging to the partitions change negligibly with

edge switch operations compared to that of the CP scheme. Hence the HP

schemes can perform edge switch operations in only one step with reasonable

accuracy, which consequently makes computation faster. As a result, the par-

allel algorithms using the HP schemes no longer need a suitable step-size. In

contrast, finding a suitable step-size is important for the CP scheme to obtain

a close approximation of the outcome of the sequential algorithm.

Our experiments show that the average clustering coefficient and average

shortest path distance of a graph change with edge switch operations by the

parallel algorithms exactly the same way for all the schemes as they change

with edge switches by the sequential algorithm. The outcomes are similar to

the results shown in Figure 12 and 13.

Synopsis of the Experimental Results. All of the partitioning schemes

demonstrate reasonably good performance. Below is a summary of the results.

• The hash-based partitioning schemes exhibit better performance for many

graphs (e.g., Miami) because of a well-balanced workload distribution.

• The HP schemes can perform edge switch operations in only one step with

reasonable accuracy, thus eliminating the need for performing edge switch

operations in a number of steps.

• There is a possibility of a worst case scenario arising for the HP-D and

HP-M schemes that may slow down the algorithms significantly. The HP-

U scheme overcomes this drawback by randomly choosing a hash function

from a large set of hash functions, and illustrates good on-average perfor-

mance as well as outperforming the rest of the schemes in many cases.

• The CP scheme shows good performance with some computation overhead

39

by performing edge switch operations with a suitable step-size for all types

of graphs, and in some cases (e.g., PA-100M) outperforms the HP schemes.

• The CP scheme is not vulnerable to adversaries for generating worse case

scenarios as the HP-D and HP-M schemes do.

6. Parallel Algorithm for Computing Binomial and Multinomial Dis-

tribution

In this section we present a parallel algorithm for computing multinomial

distribution of very large numbers. First we briefly review the current state-of-

the-art sequential algorithm.

6.1. Sequential Algorithm for Computing Multinomial Distribution

One simple approach for computing multinomial random variables is to per-

form N independent trials, where the outcome of each trial can be 0, 1, . . . , `−1

with probability q0, q1, . . . , q`−1, respectively. This algorithm takes at least

Ω(N log `) time. An efficient state-of-the-art algorithm is the conditional dis-

tributed method [20], which runs in O(N) time. This method generates multino-

mial random variables 〈X0, X1, . . . , X`−1〉 by iteratively generating ` binomial

random variables:

Xi ∼ B

N −
i−1∑
j=0

Xj ,
qi

1−
i−1∑
j=0

qj

 (11)

Inverse transformation method (BINV) [27] is the best known algorithm for

computing binomial random variables. To generate a binomial random variable

X with parameters N and q, it takes O(X) time. Note that the expected value

of X is Nq.

The algorithms for the inverse transformation method (BINV) [27] to gen-

erate binomial random variables and for the conditional distributed method

[20] to generate multinomial random variables are shown in Algorithm 3 and 4,

respectively. For additional details, see [27] and [20].

40

Algorithm 3 Binomial(N, q)

1: if q = 1 then return N

2: i← 0 {i is the binomial random variable}

3: Generate u ∼ U(0, 1) uniformly at random

4: Q← (1− q)N , S ← Q

5: while S < u do

6: i← i+ 1

7: Q← Q
(
N−i+1

i

) (
q

1−q

)
8: S ← S +Q

9: return i

Algorithm 4 Multinomial(N, q0, q1, . . . , q`−1)

1: Xs ← 0, Qs ← 0

2: for i = 0 to `− 1 do

3: if Qs < 1 then

4: Xi ← Binomial
(
N −Xs,

qi
1−Qs

)
5: Xs ← Xs +Xi

6: Qs ← Qs + qi

7: else Xi ← 0

8: return 〈X0, X1, . . . , X`−1〉

41

The conditional distributed method shown in Algorithm 4 runs in
∑`−1

i=0 O(Xi) =

O(N) time. In the next section, we present an efficient parallelization of Algo-

rithm 4.

6.2. Parallel Algorithm for Computing Multinomial Distribution

Based on the conditional distributed method shown in Algorithm 4, we pro-

pose a parallel algorithm for computing multinomial distribution X ∼M(N, q),

where q denotes probability vector 〈q0, q1, . . . , q`−1〉. One tempting approach to

parallelize the conditional distributed method is to distribute the generation

of Xi, 0 ≤ i < ` (Line 4 of Algorithm 4) among the processors. However, a

difficulty arises from the sequential nature of computing Xis due to the depen-

dencies of Xi on Xi−1 for all i > 0. We overcome this difficulty by exploiting

some properties of binomial and multinomial random variables, as described

below.

Let Ni, for 0 ≤ i < k, be some integers such that N =
k−1∑
i=0

Ni. If Xi ∼

B(Ni, q), then

X =

k−1∑
i=0

Xi ∼ B

(
k−1∑
i=0

Ni, q

)
= B(N, q) (12)

The above property of the binomial random variables leads to the following

property of the multinomial random variables. If

〈X0,i, X1,i, . . . , X`−1,i〉 ∼ M(Ni, q0, q1, . . . , q`−1)

for 0 ≤ i < k, then

〈X0, X1, . . . , X`−1〉 ∼ M(N, q0, q1, . . . , q`−1) (13)

where Xj =
k−1∑
i=0

Xj,i for 0 ≤ j < ` and N =
k−1∑
i=0

Ni.

Now we describe the parallel algorithm for computing multinomial distribu-

tion, which uses the above property. First, we explain the case of p = `. Our

algorithm divides the number of trials N into p almost equal small number of

trials Ni, and assign Ni to Pi. Then each processor Pi computes the multino-

mial distribution of Ni using the same probability vector q. At the end, the

42

results of all the processors are aggregated. The pseudocode is given in Algo-

rithm 5, where processor Pi holds the multinomial random variable Xi at the

end of computation.

Algorithm 5 Parallel Multinomial(N, q0, . . . , q`−1)

1: Each processor Pi executes the following in parallel:

2: if i < N%p then Ni ← bNp c+ 1

3: else Ni ← bNp c

4: 〈X0,i, X1,i, . . . , X`−1,i〉 ∼ M(Ni, q0, q1, . . . , q`−1)

5: Send Xj,i to processor Pj

6: Upon receiving Xi,k from every processor Pk:

7: Xi ←
p−1∑
k=0

Xi,k

For p 6= `, the algorithm is the same up to the multinomial distribution

computation of Ni at Pi, i.e., lines 1-4 of Algorithm 5. The only difference

is how the generated multinomial random variables will be stored among the

processors. The variables can be stored in many ways, e.g., all the Xis can be

gathered to the root processor P0, or they (Xis) can be distributed among the

processors in a round robin fashion, i.e., assigning Xi to processor P(i%p), etc.

Xi is always computed by summing up all the Xi,ks (0 ≤ k < p), after receiving

them from all processors.

The parallel computation is almost perfectly load balanced among the pro-

cessors since each processor computes multinomial distribution of N/p indepen-

dently, taking O
(

N
p

)
time. The communication cost at the end takes O(` log p)

time. Hence, the time complexity of this algorithm is O
(

N
p + ` log p

)
. The

algorithm is almost perfectly parallelized because the number of processors, p

(which is in the range of hundreds or at most thousands), and the number of

outcomes `, are significantly smaller than the number of trials N (which is in the

range of billions), in a general case. Algorithm 5 computes binomial distribution

for ` = 2.

43

During binomial random variable generation, the computation of (1− q)N

(Line 4 of Algorithm 3) results in underflow occurrence for large values of N ,

e.g., billions. Using long double data type cannot solve this underflow occurrence

for large N . In addition, some round off errors may appear. We deal with these

difficulties by using the property of the binomial distribution again, i.e., we

divide N into small Nis such that
∑

iNi = N , compute X using equation (12).

The upper threshold value of Ni is set such that no underflow occurs, that is,

(1− q)Ni ≥ z (14)

Ni ≤
− log z

log(1− q)
≤ − log z

2q
(15)

where z is the smallest positive real number that can be represented by the data

type (e.g., float, double) used and q < 1.

6.3. Performance Analysis of the Parallel Algorithm

In this section, the performance of the parallel algorithm for multinomial

distribution is demonstrated by strong scaling and weak scaling.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

S
p
ee

d
u
p

Number of processors

Figure 24: Strong scaling of the parallel algo-

rithm of multinomial distribution using N =

10000B, ` = 20 and qi = 1/`.

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

P
ar

al
le

l
ti

m
e

(s
ec

o
n

d
s)

Number of processors

Figure 25: Weak scaling of the parallel algo-

rithm of multinomial distribution using N =

p× 20B, ` = p and qi = 1/`.

Strong Scaling. The strong scaling of the parallel algorithm is illustrated

in Figure 24. We keep the problem size fixed (N = 10000B, ` = 20 and

qi = 1/`), and achieve a speedup of 925 using 1024 processors. The speedup

44

increases almost linearly with the increase of processors. The parallel algorithm

can compute a multinomial distribution of 10000B in 71 seconds using 1024

processors.

Weak Scaling. Figure 25 shows the weak scaling of our parallel algorithm.

We use ` = p (i.e., total number of processors), N = p × 20B (i.e., 20B per

processor), and equal probability values, qi = 1/`. The parallel run time is

almost constant indicating a very good weak scaling.

7. Conclusion

We presented several parallel algorithms for switching edges in massive net-

works. They can be used in studying various properties of large dynamic net-

works as well as in generating massive scale random graphs. The algorithms

scale well to a large number of processors and exhibit good speedup. We also

presented the trade-offs of the algorithms. In addition, we developed a parallel

algorithm for generating multinomial random variables that is almost perfectly

parallelized. This algorithm can be of independent interest and prove useful

in parallelizing many other stochastic processes. We believe that the parallel

algorithms will contribute significantly when dealing with big data, one of the

most challenging problems in today’s research world.

Acknowledgment

We thank our external collaborators, members of the Network Dynamics and

Simulation Science Laboratory (NDSSL), and anonymous reviewers for their

suggestions and comments. We are grateful to Anil Vullikanti for interesting

discussions and helpful comments on a draft of this paper. We also sincerely

thank Maureen Lawrence-Kuether and Jim Walke for proof-reading this paper.

References

[1] H. Bhuiyan, J. Chen, M. Khan, M. Marathe, Fast parallel algorithms for

edge-switching to achieve a target visit rate in heterogeneous graphs, in:

45

Proceedings of the 43rd International Conference on Parallel Processing

(ICPP), IEEE, 2014, pp. 60–69.

[2] C. Cooper, M. Dyer, C. Greenhill, Sampling regular graphs and a peer-

to-peer network, Combinatorics, Probability and Computing 16 (4) (2007)

557–593.

[3] T. Feder, A. Guetz, M. Mihail, A. Saberi, A local switch markov chain

on given degree graphs with application in connectivity of peer-to-peer

networks, in: Proceedings of the 47th Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS), 2006, pp. 69–76.

[4] C. Gkantsidis, M. Mihail, E. Zegura, The markov chain simulation method

for generating connected power law random graphs, in: Proceedings of the

Fifth Workshop on Algorithm Engineering and Experiments (ALENEX),

Vol. 111, SIAM, 2003, pp. 16–25.

[5] M. Jerrum, A. Sinclair, Fast uniform generation of regular graphs, Theo-

retical Computer Science 73 (1) (1990) 91–100.

[6] R. Kannan, P. Tetali, S. Vempala, Simple markov-chain algorithms for

generating bipartite graphs and tournaments, Random Structures and Al-

gorithms 14 (4) (1999) 293–308.

[7] J. Ray, A. Pinar, C. Seshadhri, Are we there yet? When to stop a markov

chain while generating random graphs, in: Proceedings of the 9th Workshop

on Algorithms and Models for the Web Graph (WAW), Springer, 2012, pp.

153–164.

[8] I. Stanton, A. Pinar, Constructing and sampling graphs with a prescribed

joint degree distribution, Journal of Experimental Algorithmics (JEA)

17 (3) (2012) 3.5:3.1–3.5:3.25.

[9] A. Stauffer, V. Barbosa, A study of the edge-switching markov-chain

method for the generation of random graphs, Tech. Rep. cs.DM/0512.105

(2005).

46

[10] L. Tabourier, C. Roth, J. Cointet, Generating constrained random graphs

using multiple edge switches, Journal of Experimental Algorithmics (JEA)

16 (1) (2011) 1.7:1.1–1.7:1.15.

[11] M. Newman, The structure and function of complex networks, SIAM Re-

view 45 (2) (2003) 167–256.

[12] J. Blitzstein, P. Diaconis, A sequential importance sampling algorithm for

generating random graphs with prescribed degrees, Internet Mathematics

6 (4) (2011) 489–522.

[13] N. Wormald, Models of random regular graphs, London Mathematical So-

ciety Lecture Note Series (1999) 239–298.

[14] A. Steger, N. Wormald, Generating random regular graphs quickly, Com-

binatorics, Probability and Computing 8 (04) (1999) 377–396.

[15] J. Kim, V. Vu, Sandwiching random graphs: universality between random

graph models, Advances in Mathematics 188 (2) (2004) 444–469.

[16] S. Hakimi, On realizability of a set of integers as degrees of the vertices of a

linear graph, Journal of the Society for Industrial and Applied Mathematics

10 (3) (1962) 496–506.

[17] S. Eubank, A. Vullikanti, M. Khan, M. Marathe, C. Barrett, Beyond de-

gree distributions: Local to global structure of social contact graphs, in:

Proceedings of the Third International Conference on Social Computing,

Behavioral Modeling, and Prediction (SBP), 2010, p. 1.

[18] A. Hagberg, P. Swart, D. Schult, Exploring network structure, dynamics,

and function using NetworkX, in: Proceedings of the 7th Python in Science

Conference (SciPy), 2008, pp. 11–15.

[19] I. Adler, S. Oren, S. Ross, The coupon-collector’s problem revisited, Journal

of Applied Probability 40 (2) (2003) 513–518.

47

[20] C. Davis, The computer generation of multinomial random variates, Com-

putational Statistics & Data Analytics 16 (2) (1993) 205–217.

[21] C. Barrett, R. Beckman, M. Khan, V. Kumar, M. Marathe, P. Stretz,

T. Dutta, B. Lewis, Generation and analysis of large synthetic social con-

tact networks, in: Proceedings of the 2009 Winter Simulation Conference

(WSC), 2009, pp. 1003–1014.

[22] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset

collection, http://snap.stanford.edu/data (Jun. 2014).

[23] D. Watts, S. Strogatz, Collective dynamics of ‘small-world’ networks, Na-

ture 393 (6684) (1998) 440–442.

[24] B. Bollobás, Random graphs, Springer, 1998.

[25] A. Barabási, R. Albert, Emergence of scaling in random networks, Science

286 (5439) (1999) 509–512.

[26] T. Cormen, Introduction to algorithms, MIT press, 2009.

[27] V. Kachitvichyanukul, B. Schmeiser, Binomial random variate generation,

Communications of the ACM 31 (2) (1988) 216–222.

48

http://snap.stanford.edu/data

	Introduction
	Preliminaries
	Sequential Edge Switch
	Determining the Number of Edges to Switch for a Given Visit Rate
	Keeping the Graph Simple
	Switching Edges Sequentially

	Parallel Edge Switch
	Overview of the Algorithm
	Data Structures
	Partitioning the Network
	Switching a Pair of Edges by a Single Processor
	Simultaneous Edge Switches by All Processors
	Properties of Parallel Edge Switch
	Experimental Results

	Parallel Algorithms Using Hash-Based Partitioning
	Hash-Based Partitioning
	Division Hash Function
	Multiplication Hash Function
	Universal Hashing

	Experimental Results on Hash-Based Partitioning

	Parallel Algorithm for Computing Binomial and Multinomial Distribution
	Sequential Algorithm for Computing Multinomial Distribution
	Parallel Algorithm for Computing Multinomial Distribution
	Performance Analysis of the Parallel Algorithm

	Conclusion

