
NDSSL Technical Report 10-087

June, 2010

Title: On Minimizing Average End-to-End Delay in P2P Live Streaming
Systems

Authors: Fei Huang
Maleq Khan
Binoy Ravindran

Acknowledgements: We thank our external collaborators and members of the Network Dynamics and
Simulation Science Laboratory (NDSSL) for their suggestions and comments. This
work has been partially supported by NSF Nets Grant CNS-0626964, NSF HSD
Grant SES-0729441, NIH MIDAS project 2U01GM070694-7, NSF PetaApps Grant
OCI-0904844, DTRA R&D Grant HDTRA1-0901-0017, DTRA CNIMS Grant
HDTRA1-07-C-0113, NSF NETS CNS-0831633, NSF CAREER 0845700, DHS
4112-31805, DOE DE-SC0003957 and NIH/CDC 1P01CD000284-01.

Network Dynamics and Simulation Science Laboratory
Virginia Bioinformatics Institute
Virginia Polytechnic Institute and State University



On Minimizing Average End-to-End Delay in P2P Live Streaming Systems

Fei Huang∗†, Maleq Khan†, Binoy Ravindran∗
∗Dept. of Electrical & Computer Engineering

†Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute
Virginia Polytechnic Institute and State Univeristy

Blacksburg, VA 24061, USA
huangf@vt.edu, maleq@vbi.vt.edu, binoy@vt.edu

Abstract

Peer-to-peer (P2P) live streaming provides a scalable
solution to the distribution of multimedia content. However,
existing streaming applications are plagued by the problem
of long playback latency, which discourages commercial
IPTV deployment from the ISP end. Moreover, ISP may
provide viewers with diverse service options with different
video quality, such as 720HD and 1080HD. Obtaining
assurances on meeting the delay constraints in such dynamic
and heterogeneous network environments is a challenge. In
this paper, we devise a streaming scheme which optimizes
the bandwidth allocation to achieve the minimum average
end-to-end P2P streaming delay. We first develop a generic
analytical framework to model the minimum average delay
P2P streaming problem, called the MADPS problem. We
then presentiStream to solve the MADPS problem. The
core part of iStream is a fast approximation algorithm,
called iStream-APX, based on primal-dual schema. We
prove that the performance of iStream-APX is bounded by
a ratio of 1 + ω, whereω is an adjustable input parameter.
Furthermore, we show that the flexibility ofω provides a
trade-off between the approximation factor and the running
time of iStream.

1. Introduction

In the recent decade, P2P live media streaming applica-
tions have exhibited growing popularity, such as IPTV, VOIP,
and video conferencing. By enabling efficient cooperation
among end-users, P2P live streaming can distribute thou-
sands of channels to millions of viewers simultaneously [1].
In these classes of applications, the delivery of real-time
video content imposes rigorous constraints on the end-to-
end delay. Obtaining assurances on meeting such delay
constraints for multiple channels is a challenging problem,
especially in highly dynamic and heterogeneous P2P net-
work environments. The long playback latency has nega-
tively affected the extensive commercial deployment of P2P
systems. For example, IPTV deployment from commercial
service providers is far below the industry expectation [2].
Motivated by these, in this paper, we focus on minimizing
average end-to-end streaming delay in P2P networks.

Recently, layered coding has emerged as a viable solution
for delivering real-time streaming content [3]. This tech-
nique not only provides an adaptive support for different
downloading capacities on peers, but also allows IPTV
service providers to deliver live content at diverse video
definitions from the same coding process. For example,
viewers may pay general fees for a standard service, or extra
fees for 1080HD video or even 3D video. Unlike traditional
IPTV service where viewers only download the multimedia
content, under the P2P paradigm, substantial bandwidth may
exist in viewers who pays only for a standard service, while
HD viewers may instead suffer bad streaming service due
to the bandwidth deficit among them. To maximize the
bandwidth utilization, we should enable peer cooperation
among viewers of different service qualities. Toward that,the
HD content can be forwarded through peers with standard
service, but only the HD viewers receive the authorization
key for viewing HD content. This raises a fundamental
question: how to optimally distribute the video content and
conduct sub-stream scheduling among peers with diverse
service qualities, while achieving the minimum average end-
to-end P2P streaming (or MADPS) delay. We call this
problem, the MADPS problem.

Minimizing streaming delays for P2P live systems is not
a trivial problem. This is due to the heterogeneous band-
width requirements and network dynamics of P2P systems.
Previous theoretical works on designing P2P live streaming
usually assume a homogeneous service quality [4], [5]. Thus,
obtaining optimal solutions to this problem for large-scale
networks is expensive in terms of algorithmic computa-
tional costs [6]. Approximate or heuristic solutions with
scalable costs are therefore highly desirable. In this paper,
we focus on approximate algorithms because we target
time-critical P2P applications (e.g., video conferencing, or
cloud computing), for which assured bounds on end-to-end
delays are more desirable than heuristic (or empirically-
established) gains in end-to-end delays. In addition, the an-
alytical foundation that is necessary for developing approxi-
mate algorithms can contribute to a greater understanding of
the problem and can provide deeper insights on designing
efficient algorithms, be they approximate or heuristic. We
take the first such steps toward this. The paper is theory-



oriented.
Existing works on P2P streaming can be broadly classified

into two classes: (1) multiple tree-based overlays, and (2)
mesh-based overlays [7]–[9]. Recent studies have shown that
the mesh-based approach consistently exhibits a superior
performance over the tree-based approach [10], [11]. Moti-
vated by these promising advantages, we study the MADPS
problem under the mesh-based model.

For a feasible solution, we start with the assumption
of a static network—i.e., no churn. In this way, we can
devise a framework which is analytically achievable. The
method will be most suitable for the scenario where a service
provider deploys a set-top box at viewers’ homes. In that
case, even when a viewer turns off the TV, the set-top box
can still contribute its bandwidth to other viewers. For this
scenario, we first develop an analytical model that formulates
the MADPS problem as an optimization problem. Then
we propose an algorithm callediStream to solve MADPS
problem. Inspired by the primal-dual schema, we develop
an approximation algorithm as the core of iStream, called
iStream-APXfor optimally utilizing the bandwidth among
peers subscribing to different video qualities, while achiev-
ing the minimum average streaming delay. We show that
iStream-APX’s performance in terms of delay is bounded by
a factor of1 + ω, whereω is an input parameter. iStream’s
running time is also bounded. We show that there exists
a trade-off between iStream-APX’s approximation factorω
and its running time. The approximation factor is adjustable
in the range of(1, n], wheren is the number of peers in
the network. This trade-off allows users to flexibly tune the
performance bound according to running time requirements.

Having developed an approximate algorithm for the no-
churn case, we turn our attention to P2P applications with
high network churns. We develop a distributed version of
iStream, callediStream-D, which can be easily deployed in
a fully dynamic network environment. iStream-D provides a
feasible way to deploy the core idea of iStream in practical
applications and employs the idea of backup link to manage
network churns. Although algorithm iStream and iStream-D
are developed with a mesh paradigm, they can be readily
adapted to fit the multiple tree-based model after simple
modifications.

Thus, the paper’s contribution is an approximation algo-
rithm for the MADPS problem with bounded performance
and running time (which can be traded-off, one for gains
in the other), and its adaptive distributed version to operate
in high-churn networks. iStream is the first approximation-
based solution for the MADPS problem, and we are not
aware of any other past efforts on approximating the
MADPS problem.

The rest of the paper is organized as follows. Section 2
overviews past and related works. In Section 3, we describe
our network model and formulate the MADPS problem.
Section 4 presents our proposed approximation algorithm

and derives its performance. Section 4.6 extends iStream to
a distributed version, where resilience to network churns are
considered in design. Section 5 concludes the paper.

2. Related Work

Theoretical works on the minimum delay P2P streaming
problem are limited, though recently a growing number of
studies have focused on P2P live streaming [4]–[6], [9], [12],
[13]. Due to the lack of formal theoretical bounds, intuitions
and heuristics have driven the design of P2P schemes so
far [4], [12]. For example, Renet al. [4] propose a heuristic
to reduce the delay on mesh topology, where peers select
their parents based on the metric of link capacity divided
by communication delay. In this algorithm, peers located
at the edge of mesh may only download the data without
uploading, which may lead to low bandwidth utilization in
P2P networks. Thus, when the total uploading capacity is
close to the downloading capacity in the P2P community,
some peers may not be able to receive a live streaming.

Wu et al. [6] present a distributed algorithm for optimal
average streaming delay. They apply several techniques in
linear programming, such as Lagrangian relaxation and sub-
gradient algorithm. To reduce the computational complexity,
they strictly limit the potential connections for each peer,
which may restrict their algorithm’s practical applications. In
their simulation results, it can be observed that considerable
time costs are incurred to achieve an optimal result. For
a large-scale network, the convergence of their algorithm
cannot be easily guaranteed, which may cause significant
P2P start-up delay. In contrast, iStream ensures a near-
optimal performance with a reasonable bound on running
time.

In our previous work [5], we developed an approximation
algorithm to minimize the maximum P2P streaming delay
by clustering and filtering methods with an approximation
bound of O(

√
log n). The minimum delay P2P streaming

problem (or MDPS) presented in [5] focuses on minimizing
the maximum end-to-end streaming delay. The MDPS prob-
lem is significantly different from the problem of minimizing
the average end-to-end delay problem which we focus here.
For example, the simulation results in [5] show that mini-
mizing the maximum delay does not necessarily minimize
the average end-to-end delay. Furthermore, the work in [5]
assumes a network model with a symmetric graph and
satisfying the triangle inequality. In contrast, in this paper,
we remove those assumptions in modeling the minimum
average delay P2P streaming problem and present a near-
optimal algorithm with adjustable approximation ratio:1+ω.

The MADPS problem that we focus has some similarity
with the minimum-cost multi-commodity flow problem (or
MCMF) [14], [15]. iStream is inspired by the primal-dual
schema from Garg and Konemann [14]. However, previous
approximation solutions to the MCMF problem generally



assume flow conservation on nodes—i.e., incoming com-
modities and outgoing commodities are exactly equal in
amount. This is not true in P2P streaming, where peers
can reproduce whatever commodities they receive—i.e., flow
conservation does not hold. In addition, the MCMF problem
considers only the capacities on edges, whereas in P2P
streaming, the capacities actually exist on nodes instead of
edges. This distinction (for the MADPS problem) further
requires optimal flow scheduling among edges departing
from the same node. All these differences make the MADPS
problem more complex than the MCMF problem. Our work
tackles these complexities and achieves a solution with near-
optimal performance bound.

3. Problem Formulation

In this section, we formally state the minimum average
end-to-end delay P2P streaming (MADPS) problem and
present the problem in linear programming (LP) framework.

3.1. Preliminaries and Modeling

We model an overlay network as a directed graphG =
(V, E), where V is the set of vertices representing peer
nodes, andE is the set of overlay edges representing directed
overlay links. Letn represent the number of peers in the
network, i.e.n = |V |. Each overlay link(i, j) ∈ E is
associated with a communication delaylij . In the rest of this
paper, we define the length of edge(i, j) aslij , ∀(i, j) ∈ E.
For every peeri ∈ V , we define an upload capacity ofCi

units/second and a download capacity ofIi units/second.
For ease of presentation, we defineunit as the minimum
flow size in P2P streaming, which may vary in different
applications [16], [17].

We consider a peer-to-peer streaming session to originate
from a single source nodeS to a set of receiversR, where
V = {S}∪R. Peers may receive the streaming data from the
source node directly or indirectly from multiple P2P paths.
In practical applications, receivers may pay for services of
different streaming qualities, e.g., 720i/p and 1080i/p, which
leads to different streaming rates correspondingly. Suppose
peer j selects a service that has a constant streaming rate
of dj units/second. We denotefij as the rate at which peer
i streams to peerj. If peer j receives the aggregated non-
identical streams atdj units/second from its parents, we call
peerj as fully served[4]. Mathematically, the fully served
requirement of peerj can be expressed as

∑

i:i∈Lj
fij = dj ,

whereLj is the set of parents of peerj. We assume that
a fully served peer can smoothly play back the streaming
content at its original rate ofdj units/second [4].

We call the stream from the source to one receiverj as
the P2P unicast flowto j. Each P2P unicast flowUj may
consist of streams from multiple P2P paths, calledfractional
flows[6]. Each fractional flowp ∈ Uj has the arrival latency

S
A B C

f 1 f 2 f 4 f 3 f 5 f 6
Figure 1:A P2P network with 4 nodesS, A, B, C. NodeS
is the source and set of receiversR = {A, B, C}. A node
can receive flow via multiple paths; for example, nodesC re-
ceives 3 flowsf1, f3 andf6 via paths〈S, A, C〉, 〈S, A, B, C〉
and 〈S, B, C〉 respectively. There can be multiple flows
through an edge to the same destination; for example, flow
f1 and f3 to receiver C through (S, A). There are two
other flowsf2 andf4 through(S, A) to receiversA andB,
respectively. We can observe these flows actually originate
from one merged flow fromS to A, which is reproduced
(replicated) at nodeA again. Thus, the actual flow through
link (S, A) is max(f2, f4, f1 + f3).

l(p) from the source to receiver, i.e.,end-to-end delay, where
l(p) =

∑

(i,j)∈p lij . We define the average end-to-end delay
of the unicast flowUj as the weighted average of end-to-
end latencies of all its fractional flows, where the weight is
the portion of fractional flow rate to the total streaming rate.
Denotef(p) as the streaming rate of fractional flowp. For
viewer j, the weighted average of end-to-end latencies can
be expressed by

1

dj

∑

p∈Uj

l(p)f(p).

To stream multimedia content to multiple receivers, we
can envision multiple unicast flows from the source to
receivers. Thus, theaverage end-to-end delay in P2P stream-
ing is defined as the weighted average latency of all frac-
tional flows to all receivers, which can be described by

1
∑

j∈R dj

∑

p∈P

l(p)f(p), (1)

whereP =
⋃

j∈R Uj. Since the term
∑

j∈R dj has no effect
on the optimal solution, i.e., the solution that minimizes (1)
also minimizes

∑

p∈P l(p)f(p), we will focus on minimiz-
ing

∑

p∈P l(p)f(p). It is easy see that removal of the term
∑

j∈R dj also preserves the approximation factor. For ease



of presentation, we simply refer to
∑

p∈P l(p)f(p) as the
cumulative delayin the later sections.

To help understand the concept of average end-to-end
delay, we use the term: “envision” in the above paragraph. In
reality, there exists only one stream through each edge(i, j)
instead of multiple fractional flows and peerj can reproduce
any part of the stream content it receives and send it to
other peers. Therefore, the actual data rate on an edge(i, j)
is maxt∈R

∑

p∈P t
ij

f(p), whereP t
ij is the set of fractional

flows through edge(i, j) to receivert. Figure 1 shows an
illustration with example.

Next we provide a formal description of the problem.

3.2. MADPS Problem

Definition 1: Minimum Average End-to-End Delay
P2P Streaming Problem (MADPS problem): Given the
capacity and data rate constraints that are mentioned in
this section, the MADPS problem is to devise a streaming
scheme which minimizes the maximum average end-to-end
streaming delay with all receivers fully served.

More formally, we formulate the problem in the linear
programming framework, as follows:

min
∑

p∈P

l(p)f(p) (2)

subject to
∑

j:(i,j)∈E

max
t∈R

∑

p∈P t
ij

f(p) ≤ Ci, ∀i ∈ V (3)

∑

j:(j,i)∈E

max
t∈R

∑

p∈P t
ji

f(p) ≤ Ii, ∀i ∈ V (4)

∑

p∈P t

f(p) ≥ dt, ∀t ∈ R (5)

f(p) ≥ 0, ∀p ∈ P. (6)

Equation (3) ensures the sum of actual streaming rates
on all edges coming out from the same nodei does not
exceed the uploading capacity ofi. Similarly, Equation (4)
constrains the downloading capacity on nodei. Equation (5)
entails each viewer is fully served by the scheduled data rate,
whereP t denotes the set of fractional flows to viewert.

There is no known efficient algorithm with a practically-
feasible running time to solve this problem optimally. An
exact algorithm for this problem was given in [6] without
any analysis for the running time. Simulation results were
given only for a very small network (couple of hundreds of
nodes and edges). Running time of their algorithm can be
prohibitively large for a larger network.

Therefore, we are motivated to develop a near-optimal
approximation algorithm with significantly smaller running
time.

To ensure a solution exists to the MADPS problem, it is
reasonable to assume the total bandwidth resources in P2P
networks is sufficient to support the full services on all the
viewers. Hence, we deduct the bandwidth requirement in
Corollary 1.

Corollary 1: If the instance of MADPS problem has a
solution, then the sum of the upload capacities, including
source and receivers, must be no less than the sum of fully
served streaming rates at all receivers, i.e.,

∑

i∈V

Ci ≥
∑

j∈R

dj . (7)

In addition, we presume that the download capacityIi ≥
di, ∀i ∈ V for a smooth playback at the receiver.

4. Approximation Algorithm

In this section we devise an approximation algorithm to
find the near-optimal solution with provable bounds on the
worst-case performance and running time.

4.1. Overview of Techniques

There are two fundamental techniques used in this work,
including primal-dual schemaand binary searchbased on
the result of primal-dual schema.

First, we describeprimal-dual schema[14], [18]. Given
a linear programming problem, also referred to as aprimal
problem, we can convert it to adual problem. Due to space
limitation, we do not present the detailed mechanics of this
conversion here, which can be found at [18]. Primal and
dual problems are in a “mirror” relation. If one problem is a
maximization problem, the other problem is a minimization
problem, and vise versa. Suppose we have a primal problem:
max cTx, and the corresponding dual problem:minbTy. Ac-
cording to the weak duality theorem, ifX andY are feasible
solutions for the primal and dual problems respectively, it
follows that cTX ≤ bTY. Moreover, the primal and dual
problems share the same optimum, denoted by OPT. Given
an approximation factorρ, ρ boundsOPT

c
T
x

. Since any feasible
solution to the dual also provides an upper bound on OPT,
the approximation factor can be established by comparing
the primal and dual solutions. In light of this, the primal-
dual schema starts with a feasible solution for dual problem
and relax the conditions for primal problem. Then, iStream
iteratively improves the feasibility of primal conditionsand
the optimality of the dual solution. iStream winds up with
feasible solutions for both primal and dual problems. So, the
gap between them makes the approximation factor.

In detail, iStream employs the primal-dual schema to
solve the delay-bounded maximum streaming rate problem
(DBMSR problem) defined as follows.

Definition 2: Delay-bounded Maximum Streaming
Rate problem (DBMSR problem): Given a boundL on



the average delay, i.e.,
∑

p∈P l(p)f(p) ≤ L, the DBMSR
problem is to devise a streaming scheme which maximizes
λ, where

∑

p∈P t f(p) ≥ λdt, ∀t ∈ R.
In the next step, we can do a binary search onL to find

the smallestλ that satisfiesλ ≥ 1. Towards that purpose,
a reasonable initial value ofL should be set in the range
of [

∑

j∈R dj · minp∈P l(p),
∑

j∈R dj · maxp∈P l(p)]. The
result of this procedure leads to a near-optimal solution for
MADPS problem.

In the rest of this section, we formulate the DBMSR
problem by primal-dual schema. Then, we discuss the details
of iStream and derive its performance bound.

4.2. Formulation about Primal and Dual

We refer to DBMSR problem as the primal problem here,
or simply called primal. According to its definition, we
formulate the primal as following.

Primal:
max λ (8)

subject to
∑

p∈P t
ij

f(p) ≤
∑

p∈P j

ij

f(p), ∀(i, j) ∈ E, ∀t ∈ R (9)

∑

j:(i,j)∈E

∑

p∈P j

ij

f(p) ≤ Ci, ∀i ∈ V (10)

∑

p∈P t

f(p) ≥ λdt, ∀t ∈ R (11)

∑

p∈P

l(p)f(p) ≤ L (12)

f(p) ≥ 0, ∀p ∈ P (13)

λ ≥ 0. (14)

Since DBMSR problem is an accessory to solve the
MADPS problem, its LP expression has close similarity
with that of MADPS problem in Section 3.2. Equation (9)
presents the fact that the amount of fractional flow through
edge(i, j) to any viewer will always be bounded by the
total fractional flow sent to nodej, i.e.

∑

p∈P j

ij

f(p) =

maxt∈R

∑

p∈P t
ij

f(p). Because we attempt to utilize the
bandwidth from peers scribing to the standard video quality,
it is possible to see the amount of fractional flow toj
from all incoming edges ofj exceeds viewerj’s demand,
i.e.,

∑

i:(i,j)∈E

∑

p∈P j

ij

f(p) ≥ dj . Equation (10) ensures
no conflicts in terms of the uploading capacities, which
actually express the same constraint in Equation (4). In
terms of the downloading capacities, which can be written
as

∑

j:(j,i)∈E

∑

p∈P i
ji

f(p) ≤ Ii, ∀i ∈ V , we assumeIi ≥
maxj∈R dj , which is practical with the wide deployment
of high-speed internet. Since the actual flow sent to or
relayed by nodei cannot be larger than the maximum service

demand, expressed bymaxj∈R dj , it is reasonable to remove
the constraints on the downloading capacities in the LP
expression without affecting the optimal solutions. Equation
(11) means the objective of DBMSR problem is to maximize
the minimum demand on nodes. Equation (12) puts a bound
L on the cumulative delay. As stated in Section 4.1, we can
conduct a binary search onL until λ is very close to 1 to
achieve a solution to the MADPS problem.

Next, we convert the primal to its dual problem, or simply
called dual.

Dual:
min

∑

i∈V

Ciwi + ϕL (15)

subject to
∑

t

dtzt ≥ 1, ∀t ∈ R (16)

∑

(i,j)∈p,i6=i′

st
ij + wi′ + ϕl(p) ≥ zt, (i′, t) ∈ p, ∀t ∈ R,

∀p ∈ P t (17)

st
ij ≥ 0, ∀(i, j) ∈ E, ∀t ∈ R

(18)

wi ≥ 0, ∀i ∈ V (19)

zt ≥ 0, ∀t ∈ R (20)

ϕ ≥ 0, (21)

where i′ is the peer one hop away from the viewert on
routed path.

Generally, there is no direct physical meaning to the dual
problem because it comes from a mechanical conversion
of the primal problem. To help the analysis on iStream,
we hereby assign a logical explanation to the dual after
investigating its formulation. We envision each edge(i, j)
has multiple copies(i, j)1, (i, j)2, · · · , (i, j)|R|, where any
copy(i, j)t exclusively represents to the usage of edge(i, j)
for flows to viewert. Each edge(i, j)t is associated with a
length metricst

ij , and each nodei is associated with a length
metricwi. Thus, we view

∑

(i,j)∈p,i6=i′ st
ij + wi′ + ϕl(p) as

the length function associated with flow pathp, whereϕ is
the weight associated with the delay metricl(p). According
to Equation (17),zt can be comprehended as the shortest
length to nodet based on the length function.

4.3. Approximation Algorithm

iStream-APX is the core part of iStream, which is built
with approximation algorithm. iStream-APX proceeds in
phases. Each phase is completed by|R| iterations with
each iteration satisfy the demand of one viewer. Due to
the constraints from LP conditions, each iteration may be
completed by multiple steps. Inside each step, we route such
amount of fractional flows that can ensure the constraints are



not violated. At the end of all phases, iStream-APX will re-
scale all the flows to ensure a feasible solution to the primal.
We express thekth step in thetth iteration ofmth phase by
(m, t, k). The initial status is marked by(0, 0, 0), or simply
(0).

We start the algorithm with the following initial settings
on length metrics.

wi(0) = δ/Ci, ∀i ∈ V (22)

st
ij(0) = wi, ∀(i, j) ∈ E, ∀t ∈ R (23)

ϕ(0) = δ/L, (24)

whereδ is an input parameter. The proper assignment of it
will be discussed in Section 4.4.

Throughout the execution of algorithm iStream-
APX, it dynamically updates the length metrics,
which are used to built the flowing path. Let
wi(m, t, k), st

ij(m, t, k), ϕ(m, t, k) be the length metrics at
the end of step(m, t, k). At step (m, t, k), iStream-APX
first computes the shortest pathp∗ from S to viewer t
in terms of the length function

∑

(i,j)∈p,i6=i′ st
ij(m, t, k −

1) + wi′(m, t, k − 1) + ϕ(m, t, k − 1)l(p), where
(i′, t) ∈ p, p ∈ P t. Then, it finds the minimum capacity
Cmin on nodes along the shortest path, which can be
expressed byCmin = mini∈p∗{Ci}. Since the previous
steps may already route some flows to the viewer, letγt

be the residual amount of demands unsatisfied on nodet,
andx(p) = min{γt, Cmin}. Next, we routex(p)/η amount
of flow to t, where η = l(p)x(p)/L if l(p)x(p) > L;
otherwise,η = 1. So the length boundL and the capacities
on the path are not violated in each step. At the end of this
step, we update the length metrics as well as the residual
demands according to Equations (25)-(28).

wi(m, t, k) = wi(m, t, k − 1) · [1 + ǫ · f(m, t, k)/Ci] ,

∀i ∈ p∗ \ {t} (25)

st
ij(m, t, k) = wi(m, t, k), ∀i ∈ p∗ \ {t}, ∀(i, j) ∈ E, ∀t ∈ R

(26)

ϕ(m, t, k) = ϕ(m, t, k − 1) ·
∏

j∈p∗∩R

[1 + ǫ · Lj(m, t, k)/L] ,

(27)

γi(m, t, k) = γi(m, t, k − 1) − f(m, t, k), ∀i ∈ p∗ \ {t}
(28)

where f(m, t, k) is the amount of flow routed in current
procedure(m, t, k) and Lj(m, t, k) means the cumulative
delay of the routed flow through nodej which is on the path
p∗ at step(m, t, k). Mathematically, it can be expressed by
Lj(m, t, k) = l(p∗j )x(p∗j ), wherep∗j is the segmental path
from S to j on pathp∗. We can observe in each step for
every capacity-saturated nodei on the routing path, all the
length metrics regardingi increase by a factor of1 + ǫ.

Since the assignments ofst
ij are identical in Equation (26),

we simply usesi to represent allst
ij .

Algorithm 1 iStream-APX(G, {Ci}, {si}, R, ǫ): Approxi-
mation algorithm for the DBMSR problem

1: ϕ = δ/L
2: for all i ∈ V do
3: wi = δ/Ci

4: si = δ/Ci

5: end for
6: for all p ∈ P do
7: f(p) = 0
8: F (p) = 0
9: end for

10: while W < 1 do
11: for all t ∈ R do
12: γt = dt

13: while W < 1 AND γt > 0 do
14: p = SHORTEST-PATH(S, t, {st

i + ϕlij})
15: Cmin = mini∈p{Ci}
16: x(p) = min{γt, Cmin}
17: L(p) = l(p)x(p)
18: if L(p) > L then
19: f(p) = x(p) · L/L(p)
20: L(p) = L
21: else
22: f(p) = x(p)
23: end if
24: γt = γt − x(p)
25: for all i ∈ p \ {t} do
26: wi = wi · [1 + ǫ · f(p)/Ci]
27: si = wi

28: p′ = p
29: repeat
30: f(p′) = f(p)
31: ϕ = ϕ(1 + ǫ · l(p′)f(p′)/L)
32: F (p′) = F (p′) + f(p′)
33: p′ = p′ \ {v}, wherev is the target node on

pathp′

34: until p′ = {S}
35: γi = γi − f(m, t, k)
36: end for
37: end while
38: end for
39: end while
40: for all p ∈ P do
41: F (p) = F (p)/ log1+ǫ

1
δ

42: end for

43: λ = mint∈R

∑

p∈P t F (p)

dt

We repeat the steps until the demand of viewert is fully
satisfied. Then we call the end of iterationt, and start the
iteration for next viewers which has positive residual demand



in the current phase. After the last step of a phase, all
viewers have no residual demands, i.e.,γt = 0, ∀t ∈ R.
Then, we start a new round of phasem + 1 after resetting
the residual demands equal to viewer’s actual demands,
i.e., γt = dt, ∀t ∈ R. The whole procedure completes as
soon asW (m, t, k) ≥ 1. Obviously, the cumulative flows
routed in all phases may strongly violate the capacity and
average delay constraints. DefineF (p) as the cumulative
flows routed in all phases through pathp. To obtain a feasible
solution to the primal problem, we need to scale down
eachF (p) by a factor of log1+ǫ 1/δ. We will justify the
correctness of this scaling down factor in Section 4.4.

The detailed procedures about the approximation algo-
rithm are presented in Algorithm 1, where the function
SHORTEST-PATH(·) represents any feasible shortest path
algorithm employed by the user. We continue a binary search
on L by repeating Algorithm 1 untilλ tends to 1, denoted
as λ → 1. The result of the binary search will provide a
near-optimal solution to MADPS problem.

4.4. Algorithm Analysis

In this section, we formally analyze the algorithm and
prove the approximation factor. To facilitate the analysis,
we make some definitions. LetW =

∑

i∈V Ciwi + ϕL be
the metric minimized by the dual. Letζt be the shortest
length fromS to t, i.e.,

ζt = min
p∈P t

∑

(i,j)∈p,i6=i′

st
ij + wi′ + ϕl(p). (29)

Hereζt actually represents and interprets the meaning of
zt. Besides, we define

α =
∑

t

(

dtζt

)

. (30)

Lemma 1:Denote the optimal solution to the dual by
OPT(W ). When OPT(W ) is obtained,α is 1.

Proof: We prove this lemma by contradiction. As we
know,α represents

∑

t dtzt in the dual. LetW = W ′ when
α = 1. For the sake of contradiction, we assumeW ′ >
OPT(W ), where OPT(W ) is achieved whenα = α∗ > 1.
Then, we scale downα∗ to 1. Towards that, we can divide
all thest

ij andϕ by a factor of
∑

t dtzt. As a result,wi will
proportionally scale down the same factor. Consequently, it
leads to an update onW with a new valueW ′, whereW ′ =
OPT(W )/

∑

t dtzt. According to the assumption,W ′ should
be larger than OPT(W ). However, because

∑

t dtzt > 1,
we haveW ′ = OPT(W )/

∑

t dtzt < OPT(W ), which
contradicts the assumption. Thus, the lemma follows.

Define β as the minimum value ofW/α, i.e., β =
min W/α. We conclude the following theorem.

Theorem 1:The optimal solution to the dual, denoted as
OPT(W ), is equivalently to the optimal solutionβ under the
same constraints in the dual.

Proof: From the definition ofβ,we know thatβ =
min W/α. Supposeβ is achieved whenα = α∗ > 1. We
can always proportionally scale down all thest

ij and ϕ by
multiplying a factor of1/α∗. As a result,α = 1. Since
W will scale down with the same factor,W/α will keep
the optimal valueβ. That is to say we can always find the
optimal solutionβ with α = 1.

According to Lemma 1, it follows thatα = 1 when
OPT(W ) is achieved. Therefore, we can conclude the prob-
lem of finding OPT(W ) for the dual is equivalently to
solving the optimization problem forW/α. This completes
the proof.

In Algorithm 1, we update the length metricssi, wi, ϕ
on the routing path. In terms of that, we can conclude the
following.

Lemma 2:wi increases at least by a factor of1 + ǫ for
everyCi units of flow through nodei, ∀i ∈ V .

Proof: Denote the flows routed through nodei in every
step of Algorithm 1 byf i

1, f
i
2, · · · , f i

N , respectively, where
N represents the total number of flows through nodei at the
end phasem. Besides, we denotewi(k) as the updated value
after flow f i

k is routed through nodei, where1 ≤ k ≤ N .
Let wi(0) be the initial value ofwi and wi(m) be the

value ofwi at the end phasem. According to Algorithm 1,
we know f i

k ≤ Ci, ∀i, ∀1 ≤ k ≤ N . Therefore, upon
completing the algorithm, we have

wi(m) = wi(0) ·
N
∏

k=1

(1 + ǫ · f i
k/Ci)

≥ wi(0) ·
N
∏

k=1

(1 + ǫ)fi
k/Ci

= wi(0) · (1 + ǫ)Σ
N
k=1fi

k/Ci .

Consequently, we can observe

log1+ǫ

wi(m)

wi(0)
≥

N
∑

k=1

f i
k/Ci.

This completes the proof.
Based on proof idea of Lemma 2, we can easily deduce

the following corollaries.
Corollary 2: si increases at least by a factor of1 + ǫ for

everyCi units of flow through nodei, ∀i ∈ V .
Corollary 3:

log1+ǫ

ϕ(m)

ϕ(0)
≥

∑

p inP

l(p)f(p)/L,

where f(p) represents the cumulative amount of flows
through pathp at the end of phasem.

Given the assumption that the total bandwidth resources
in P2P networks is sufficient to support the full services on
all the viewers, we can do a binary search onL so as to



find the smallestλ that satisfiesλ ≥ 1. According to the
weak-duality theorem, it follows thatβ ≥ λ ≥ 1.

Lemma 3:Given β ≥ 1, we have

β ≤ ǫ(M − 1)

(1 − ǫ) ln 1−ǫ
(|V |+1)δ

.

Proof: We start the proof by analyzing the change on
W on each step. At the end of this analysis, we will carry
out the cumulative increment onW when algorithms stops.

Let p(m, t, k) be the shortest path found at procedure
(m, t, k), and f(m, t, k) be the quantity of flow routed
through pathp(m, t, k). Because in our algorithm we assign
si = wi for any procedure(m, t, k), we can simplify the
length function as

∑

(i,j)∈p,i6=i′

st
i + wi′ + ϕl(p) =

∑

(i,j)∈p

(wi + ϕlij), (31)

where (i′, t) ∈ p. Consequently, we can carry out the
following.

Since the objective is to find the cumulative increment, we
can think of the change on length metricswi andϕ regarding
node i at procedure(m, t, k), wherei 6= t, will hold until
procedure(m, i, 0) without loss on the final cumulative
increment onW .

W (m, t, k) − W (m, t, k − 1)

=Ci′ ·
(

wi′(m, t, k) − wi′(m, t, k − 1)
)

+

+
(

ϕ(m, t, k) − ϕ(m, t, k − 1)
)

· L

≤
∑

i∈p(m,t,k)\{t}

(

Ci · wi(m, t, k − 1)ǫf(m, t, k)/Ci

)

+

+
(

ϕ(m, t, k − 1)ǫL(m, t, k)/L
)

· L

=ǫ ·
[

∑

i∈p(m,t,k)\{t}

(

wi(m, t, k − 1)f(m, t, k)
)

+

+ ϕ(m, t, k − 1)L(m, t, k)
]

.

Let Kmt be the number of steps in a given iterationt
of phasem, ζt(m, t, k) be the shortest path at the end of
procedure(m, t, k), andl(m, t, k) be the cumulative latency
on pathp(m, t, k). We have

W (m, t + 1, 0) − W (m, t, 0)

≤ǫ ·
Kmt
∑

k=1

[

∑

i∈p(m,t,k)\{t}

(

wi(m, t, k − 1)f(m, t, k)
)

+

+ ϕ(m, t, k − 1)L(m, t, k)
]

=ǫ ·
Kmt
∑

k=1

[

f(m, t, k) ·
∑

i∈p(m,t,k)\{t}

(

wi(m, t, k − 1)
)

+

+ ϕ(m, t, k − 1)l(m, t, k)
]

=ǫ ·
Kmt
∑

k=1

[

f(m, t, k) ·
∑

(i,j)∈p(m,t,k)

(

wi(m, t, k − 1)+

+ ϕ(m, t, k − 1)lij

)]

=ǫ ·
Kmt
∑

k=1

f(m, t, k) · ζt(m, t, k − 1)

≤ǫ · dtζt(m, t, k).

For brevity on notations, we defineW (m) as the value
of W at the end of phasem, and make a similar definition
for α(m). Then, it follows that

W (m) − W (m − 1)

=W (m, |R|, Km|R|) − W (m, 0, 0)

≤ǫ ·
|R|
∑

t=1

(

dtζt(m, t, Km|R|)
)

≤ǫα(m). (32)

Combining the property ofW (m)/α(m) ≥ β with
Equation (32), we can carry out

W (m) ≤ W (m − 1)

1 − ǫ/β
.

In light of the initial settings,wi(0) = δ/Ci andϕ(0) =
δ/L. Thus, we obtainW (0) = (|V | + 1)δ.

Given m ≥ 1 andβ ≥ 1, it follows that

W (m) ≤ (|V | + 1)δ

(1 − ǫ/β)m

=
(|V | + 1)δ

1 − ǫ/β
(1 +

ǫ

β − ǫ
)m−1

≤ (|V | + 1)δ

1 − ǫ/β
e

ǫ(m−1)
β−ǫ

≤ (|V | + 1)δ

1 − ǫ
e

ǫ(m−1)
(1−ǫ)β .

Let the last phase in the algorithm be numbered byM .

It follows that 1 ≤ W (M) ≤ (|V |+1)δ
1−ǫ e

ǫ(M−1)
(1−ǫ)β . Hence, we

carry out

β ≤ ǫ(M − 1)

(1 − ǫ) ln 1−ǫ
(|V |+1)δ

.

Thus, the lemma follows.
Lemma 4:Algorithm 1 generates a feasible streaming

solution that makesλ ≥ M−1
log1+ǫ 1/δ .



Proof: At the end of the(M −1)th phase,W (M−1) ≤
1 for all nodei. Thus, we deductsi(M−1) = wi(M−1) ≤
1/Ci.

From Lemma 2 and Corollary 2, we knowwi and si

increase at least by a factor of1 + ǫ for everyCi units of
flow through nodei. Denoting the total flow through node
i asFi, we can carry out

Fi ≤ Ci log1+ǫ

wi(M − 1)

wi(0)

≤ Ci log1+ǫ

1/Ci

δ/Ci

= Ci log1+ǫ

1

δ
.

Therefore, dividing all the flows through nodei by a
scaling factor oflog1+ǫ

1
δ , we obtain feasible flows through

i without violating its uploading capacityCi.
Applying the scaling factor, we can get feasible flows

received byt of a total value(M − 1)dt/ log1+ǫ
1
δ units.

Accordingly, a feasibleλ will follow

λ ≥ (M − 1)dt/ log1+ǫ
1
δ

dt

=
(M − 1)

log1+ǫ
1
δ

.

Theorem 2:The result of Algorithm 1 follows the prop-
erty of

∑

p∈P l(p)f(p) ≤ L.
Proof: According to Corollary 3, in our procedure every

time we route every flow with a cumulative delay ofL, we
increaseϕ by at least a factor of1 + ǫ.

BecauseW (M − 1) < 1, we deduct thatϕ(M − 1) <
1/L. Thus, in the firstM − 1 phases, the cumulative
delay is at mostL · log1+ǫ

ϕ(M−1)
ϕ(0) = L · log1+ǫ

1
δ , i.e.,

∑

p∈P l(p)f(p) ≤ L · log1+ǫ
1
δ .

In the final procedure of the algorithm, we scale down all
the flows proportionally by a scaling factor. Thus, applying
the scaling factor oflog1+ǫ

1
δ , we have

∑

p∈P

l(p)f(p) ≤ L log1+ǫ
1
δ

log1+ǫ
1
δ

= L.

The theorem follows.
Theorem 3:The approximation factor, denoted asρ, is

1 + ω.
Proof:

From Lemma 4, we have a feasible solutionλ = M−1
log1+ǫ

1
δ

.
It follows that

β

λ
=

β log1+ǫ
1
δ

(M − 1)

=
ǫ ln 1

δ

(1 − ǫ) ln(1 + ǫ) ln 1−ǫ
(|V |+1)δ

.

Let δ =
(

1−ǫ
|V |+1

)1/ǫ

. We have

β

λ
≤ ǫ ln 1

δ

(1 − ǫ) ln(1 + ǫ) ln 1−ǫ
(|V |+1)δ

=
ǫ

(1 − ǫ)2 ln(1 + ǫ)

≤ ǫ

(1 − ǫ)2(ǫ − ǫ2/2)

≤ (1 − ǫ)−3.

According to the strong duality theorem, if the dual has
the optimal solutionβ, the primal also has an optimal value,
denoted as OPT(λ), such that OPT(λ) = β. Therefore, the
approximation factorρ can be obtained by

ρ = max
OPT(λ)

λ

= max
β

λ
.

Now, we make an assignment ofω = (1 − ǫ)−3 − 1. We
haveρ = 1 + ω.

Thus, the proof is complete.

4.5. Running Time

In this section, we analyze the bound on running time.
We define maximum binary search bound onL as Γ =
∑

j∈R dj · maxp∈P l(p).
Theorem 4:Suppose the shortest path algorithm em-

ployed will consume a running time ofΨ. The running time
of iStream isO(ǫ−2Ψ|V | log |V | log Γ).

Proof: According to weak duality theorem, we have
β
λ ≥ 1, which deduces

β

M − 1
log1+ǫ

1

δ
> 1.

So the number of phasesM < 1 + β log1+ǫ
1
δ . Because

δ =
(

1−ǫ
|V |+1

)1/ǫ

, it follows that

M = ⌈β

ǫ
log1+ǫ

|V | + 1

1 − ǫ
⌉

If Algorithm 1 does not stop within2⌈ 1
ǫ log1+ǫ

|V |+1
1−ǫ ⌉

phases, we must haveβ ≥ 2. We know OPT(λ) = β and
we are pursuing OPT(λ) = 1. In the case ofβ ≥ 2, we
break the current call for Algorithm 1, and continue the
binary search onL. So each call for Algorithm 1 will have
2⌈ 1

ǫ log1+ǫ
|V |+1
1−ǫ ⌉ = O(ǫ−2 log |V |) phases.



In order to compute the total running time, we need to
calculate the number of steps in each call for Algorithm 1.
It is easy to see at every step except the the last step in
an iteration, we increase eitherwi of some node orϕ by
a factor at least1 + ǫ. So the number of steps exceeds the
number of iterations by at most

|V | log1+ǫ

wi(M − 1)

wi(0)
= |V | log1+ǫ

1

δ
= O(ǫ−2|V | log |V |).

(33)

Also, the maximum number of iterations in all phases is
|R| · O(ǫ−2 log |V |) = O(ǫ−2|R| log |V |). Combining this
with Equation (33), we have the total number of steps in
each call for Algorithm 1 isO(ǫ−2(|V | + |R|) log |V |) =
O(ǫ−2|V | log |V |).

Considering the number of calls for Algorithm 1 in
binary search is bounded bylog Γ. Consequently, we can
carry out the running time of iStream is bounded by
O(ǫ−2Ψ|V | log |V | log Γ). The theorem follows.

4.6. iStream-D

Due to space limitation, we briefly discuss the possibility
of practical deployment of iStream-D here. iStream-D can
be initiated by servers or superpeers in the network by
broadcasting the initial value ofǫ. Any existing distributed
shortest path algorithm can be employed by iStream-D. In
each step, peers will update the length metric locally and
send back updatedϕ to server. Server will synchronize the
parameters on each peers in the network and monitor the
whole procedures of iStream-D until the minimum latency
is found. Considering network dynamics and startup delay,
we can make iStream-D a hybrid of iStream and heuristics.
On node arrival or departure, heuristics will be called to
help peers influenced by network churn. Once the average
delay is higher than the preset threshold, iStream will be
called. Besides, strategy such as backup links can be used
by iStream-D to make it adaptive to the network churn.

5. Conclusion

We present the design of iStream and derive a near-
optimal approximation bound for its core component
iStream-APX. To achieve a tractable theoretical analysis,we
assume no network dynamics in the first stage of algorithm
design. Although the assumption is strong in practical P2P
applications, the value of this paper lies in the theoretical
framework and analysis, which sheds light on the practical
design. To reduce the complexity of the problem, we focus
only on minimizing the communication delay. For packet
scheduling, there exists a vast array of solutions. The mesh
built from our algorithm can adopt any of these scheduling
algorithms to yield low-delay streaming.
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