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Abstract Recently, layered coding has emerged as a viable solution
for delivering real-time streaming content [3]. This tech-
Peer-to-peer (P2P) live streaming provides a scalablenique not only provides an adaptive support for different
solution to the distribution of multimedia content. Howeve downloading capacities on peers, but also allows IPTV
existing streaming applications are plagued by the problenservice providers to deliver live content at diverse video
of long playback latency, which discourages commerciakefinitions from the same coding process. For example,
IPTV deployment from the ISP end. Moreover, ISP mayjiewers may pay general fees for a standard service, or extra
provide viewers with diverse service options with différen fees for 1080HD video or even 3D video. Unlike traditional
video quality, such as 720HD and 1080HD. Obtaining IPTV service where viewers only download the multimedia
assurances on meeting the delay constraints in such dynamigntent, under the P2P paradigm, substantial bandwidth may
and heterogeneous network environments is a challenge. léxist in viewers who pays only for a standard service, while
this paper, we devise a streaming scheme which optimizasD viewers may instead suffer bad streaming service due
the bandwidth allocation to achieve the minimum averageo the bandwidth deficit among them. To maximize the
end-to-end P2P streaming delay. We first develop a generigandwidth utilization, we should enable peer cooperation
analytical framework to model the minimum average delayamong viewers of different service qualities. Toward thag,
P2P streaming problem, called the MADPS problem. WeHD content can be forwarded through peers with standard
then presentiStreamto solve the MADPS problem. The service, but only the HD viewers receive the authorization
core part of iStream is a fast approximation algorithm, key for viewing HD content. This raises a fundamental
called iStream-APX based on primal-dual schema. We question: how to optimally distribute the video content and
prove that the performance of iStream-APX is bounded byonduct sub-stream scheduling among peers with diverse
a ratio of 1 +w, wherew is an adjustable input parameter. service qualities, while achieving the minimum average-end

Furthermore, we show that the flexibility af provides a  to-end P2P streaming (or MADPS) delay. We call this
trade-off between the approximation factor and the runningproblem, the MADPS problem.

time of iStream. N . . .
Minimizing streaming delays for P2P live systems is not

1. Introduction a trivial problem. This is due to the heterogeneous band-
width requirements and network dynamics of P2P systems.
In the recent decade, P2P live media streaming applicaPrevious theoretical works on designing P2P live streaming
tions have exhibited growing popularity, such as IPTV, VOIP usually assume a homogeneous service quality [4], [5]. Thus
and video conferencing. By enabling efficient cooperationobtaining optimal solutions to this problem for large-scal
among end-users, P2P live streaming can distribute thowetworks is expensive in terms of algorithmic computa-
sands of channels to millions of viewers simultaneously [1] tional costs [6]. Approximate or heuristic solutions with
In these classes of applications, the delivery of real-timescalable costs are therefore highly desirable. In this pape
video content imposes rigorous constraints on the end-towe focus on approximate algorithms because we target
end delay. Obtaining assurances on meeting such deldyme-critical P2P applications (e.g., video conferenciag
constraints for multiple channels is a challenging problemcloud computing), for which assured bounds on end-to-end
especially in highly dynamic and heterogeneous P2P neddelays are more desirable than heuristic (or empirically-
work environments. The long playback latency has negaestablished) gains in end-to-end delays. In addition, the a
tively affected the extensive commercial deployment of P2Ralytical foundation that is necessary for developing agpro
systems. For example, IPTV deployment from commercialmate algorithms can contribute to a greater understanding o
service providers is far below the industry expectation [2] the problem and can provide deeper insights on designing
Motivated by these, in this paper, we focus on minimizingefficient algorithms, be they approximate or heuristic. We
average end-to-end streaming delay in P2P networks. take the first such steps toward this. The paper is theory-



oriented. and derives its performance. Section 4.6 extends iStream to
Existing works on P2P streaming can be broadly classifiea distributed version, where resilience to network chures a
into two classes: (1) multiple tree-based overlays, and (2fonsidered in design. Section 5 concludes the paper.
mesh-based overlays [7]-[9]. Recent studies have shown tha
the mesh-based approach consistently exhibits a superi@. Related Work
performance over the tree-based approach [10], [11]. Moti-
vated by these promising advantages, we study the MADPS Theoretical works on the minimum delay P2P streaming
problem under the mesh-based model. problem are limited, though recently a growing number of
For a feasible solution, we start with the assumptionstudies have focused on P2P live streaming [4]—[6], [9]].[12
of a static network—i.e., no churn. In this way, we can[13]. Due to the lack of formal theoretical bounds, intuitso
devise a framework which is analytically achievable. Theand heuristics have driven the design of P2P schemes so
method will be most suitable for the scenario where a servicéar [4], [12]. For example, Rept al. [4] propose a heuristic
provider deploys a set-top box at viewers’ homes. In thato reduce the delay on mesh topology, where peers select
case, even when a viewer turns off the TV, the set-top boxheir parents based on the metric of link capacity divided
can still contribute its bandwidth to other viewers. Foisthi by communication delay. In this algorithm, peers located
scenario, we first develop an analytical model that fornaslat at the edge of mesh may only download the data without
the MADPS problem as an optimization problem. Thenuploading, which may lead to low bandwidth utilization in
we propose an algorithm calleé&treamto solve MADPS  P2P networks. Thus, when the total uploading capacity is
problem. Inspired by the primal-dual schema, we develoglose to the downloading capacity in the P2P community,
an approximation algorithm as the core of iStream, calledsome peers may not be able to receive a live streaming.
iStream-APXfor optimally utilizing the bandwidth among Wu et al. [6] present a distributed algorithm for optimal
peers subscribing to different video qualities, while aghi average streaming delay. They apply several techniques in
ing the minimum average streaming delay. We show thatinear programming, such as Lagrangian relaxation and sub-
iStream-APX’s performance in terms of delay is bounded bygradient algorithm. To reduce the computational compyexit
a factor of1 + w, wherew is an input parameter. iStream’s they strictly limit the potential connections for each peer
running time is also bounded. We show that there existsvhich may restrict their algorithm’s practical applicat In
a trade-off between iStream-APX'’s approximation factor their simulation results, it can be observed that conshlera
and its running time. The approximation factor is adjustabl time costs are incurred to achieve an optimal result. For
in the range of(1,n], wheren is the number of peers in a large-scale network, the convergence of their algorithm
the network. This trade-off allows users to flexibly tune thecannot be easily guaranteed, which may cause significant
performance bound according to running time requirementd2P start-up delay. In contrast, iStream ensures a near-
Having developed an approximate algorithm for the no-optimal performance with a reasonable bound on running
churn case, we turn our attention to P2P applications withime.
high network churns. We develop a distributed version of In our previous work [5], we developed an approximation
iStream, calledStream-D which can be easily deployed in algorithm to minimize the maximum P2P streaming delay
a fully dynamic network environment. iStream-D provides aby clustering and filtering methods with an approximation
feasible way to deploy the core idea of iStream in practicabound of O(y/logn). The minimum delay P2P streaming
applications and employs the idea of backup link to manag@roblem (or MDPS) presented in [5] focuses on minimizing
network churns. Although algorithm iStream and iStream-Dthe maximum end-to-end streaming delay. The MDPS prob-
are developed with a mesh paradigm, they can be readillem is significantly different from the problem of minimizgjn
adapted to fit the multiple tree-based model after simplehe average end-to-end delay problem which we focus here.
modifications. For example, the simulation results in [5] show that mini-
Thus, the paper’s contribution is an approximation algo-mizing the maximum delay does not necessarily minimize
rithm for the MADPS problem with bounded performancethe average end-to-end delay. Furthermore, the work in [5]
and running time (which can be traded-off, one for gainsassumes a network model with a symmetric graph and
in the other), and its adaptive distributed version to ofgera satisfying the triangle inequality. In contrast, in thisppa
in high-churn networks. iStream is the first approximation-we remove those assumptions in modeling the minimum
based solution for the MADPS problem, and we are notaverage delay P2P streaming problem and present a near-
aware of any other past efforts on approximating theoptimal algorithm with adjustable approximation ratie:w.
MADPS problem. The MADPS problem that we focus has some similarity
The rest of the paper is organized as follows. Section 2vith the minimum-cost multi-commodity flow problem (or
overviews past and related works. In Section 3, we describ®ICMF) [14], [15]. iStream is inspired by the primal-dual
our network model and formulate the MADPS problem.schema from Garg and Konemann [14]. However, previous
Section 4 presents our proposed approximation algorithrapproximation solutions to the MCMF problem generally



assume flow conservation on nodes—i.e., incoming com-
modities and outgoing commodities are exactly equal in
amount. This is not true in P2P streaming, where peers
can reproduce whatever commaodities they receive—i.e., flow
conservation does not hold. In addition, the MCMF problem
considers only the capacities on edges, whereas in P2P
streaming, the capacities actually exist on nodes instéad o
edges. This distinction (for the MADPS problem) further
requires optimal flow scheduling among edges departing
from the same node. All these differences make the MADPS
problem more complex than the MCMF problem. Our work
tackles these complexities and achieves a solution with- nea
optimal performance bound.

3. Problem Formulation Figure 1:A P2P network with 4 nodeS, A, B, C. Node$
is the source and set of receivels= {A, B,C}. A node
In this Section, we forma”y state the minimum aVeragecan receive flow via mu|t|p|e pathS' for examp|e’ nodes-
end-to-end delay P2P streaming (MADPS) problem and.eijves 3 flowd:, f3 and fs via paths(S, 4, C), (S, A, B, C)
present the problem in linear programming (LP) framework.and (s, B, C) respectively. There can be multiple flows
through an edge to the same destination; for example, flow
3.1. Preliminaries and Modeling f1 and f3 to receiver C' through (S, A). There are two
other flowsf, and f4 through (S, A) to receiversA and B,
We model an overlay network as a directed gréph=  respectively. We can observe these flows actually originate
(V,E), whereV is the set of vertices representing peerfrom one merged flow fron§ to A, which is reproduced

nodes, and is the set of overlay edges representing directeqreplicated) at noded again. Thus, the actual flow through
overlay links. Letn represent the number of peers in the |jnk (S, A) is max(fa, f1, f1 + f3)-

network, i.e.n = |V|. Each overlay link(i,j) € E is
associated with a communication delay In the rest of this

paper, we define the length of edgej) asli;, (i, /) € E. () from the source to receiver, i.@nd-to-end delaywhere
For every peei € V, we define an upload capacity of; I(p) = X (;_jyep lii- We define the average end-to-end delay
units/second and a download capacity ofunits/second. o the Gniiact flowl; as the weighted average of end-to-
For ease of presentation, we defineit as the minimum g |atencies of all its fractional flows, where the weight is
flow size in P2P streaming, which may vary in different e nortion of fractional flow rate to the total streamingerat

applications [16], [17]. Denote f(p) as the streaming rate of fractional flqw For

We consider a peer-to-peer streaming session to originaigeyer j, the weighted average of end-to-end latencies can
from a single source nodg to a set of receiver®, where 4 expressed by

V = {S}UR. Peers may receive the streaming data from the

source node directly or indirectly from multiple P2P paths. 1

In practical applications, receivers may pay for services o Z Z Lp)f(p)-

different streaming qualities, e.g., 720i/p and 1080i/pick pel;

leads to different streaming rates correspondingly. Ssppo  To stream multimedia content to multiple receivers, we
peerj selects a service that has a constant streaming ratgan envision multiple unicast flows from the source to
of d; units/second. We denotg; as the rate at which peer receivers. Thus, thaverage end-to-end delay in P2P stream-
i streams to peey. If peer j receives the aggregated non- ing is defined as the weighted average latency of all frac-

identical streams at; units/second from its parents, we call tional flows to all receivers, which can be described by
peer; asfully served[4]. Mathematically, the fully served

requirement of peej can be expressed as,.,.; . fi; = d;, 1 1(p)f(p) 1)
where L; is the set of parents of pegr We assume that >ierd — PIJAP),

a fully served peer can smoothly play back the streaming ' b

content at its original rate of; units/second [4]. whereP = J;., U;. Since the tern} _,  d; has no effect

We call the stream from the source to one recejvers  on the optimal solution, i.e., the solution that minimiza} (
the P2P unicast flowto j. Each P2P unicast flow; may  also minimizes)_ . l(p)f(p), we will focus on minimiz-
consist of streams from multiple P2P paths, caftedtional  ing ZpGP I(p)f(p). It is easy see that removal of the term
flows[6]. Each fractional flowp € U; has the arrival latency .. d; also preserves the approximation factor. For ease



of presentation, we simply refer & . 1(p)f(p) asthe To ensure a solution exists to the MADPS problem, it is
cumulative delayn the later sections. reasonable to assume the total bandwidth resources in P2P
To help understand the concept of average end-to-endetworks is sufficient to support the full services on all the
delay, we use the term: “envision” in the above paragraph. Iviewers. Hence, we deduct the bandwidth requirement in
reality, there exists only one stream through each €dge Corollary 1.
instead of multiple fractional flows and pegcan reproduce Corollary 1: If the instance of MADPS problem has a
any part of the stream content it receives and send it tsolution, then the sum of the upload capacities, including
other peers. Therefore, the actual data rate on an @dge  source and receivers, must be no less than the sum of fully
IS maxscr Zpepg, f(p), wherePfj is the set of fractional served streaming rates at all receivers, i.e.,

J

flows through edg€:, j) to receivert. Figure 1 shows an > d: 7

illustration with example. ; " j;% 7 ™

Next we provide a formal description of the problem. - )
In addition, we presume that the download capaéiti

32 MADPS Problem d;,¥vi € V for a smooth playback at the receiver.

Definition 1: Minimum Average End-to-End Delay 4. Approximation Algorithm

P2P Streaming Problem (MADPS problem): Given the In this section we devise an approximation algorithm to

Capac'ty. and data rate constramt; that are ment|oneq 'find the near-optimal solution with provable bounds on the
this section, the MADPS problem is to devise a Stream'anorst-case performance and running time

scheme which minimizes the maximum average end-to-en
streaming delay with all receivers fully served.

More formally, we formulate the problem in the linear
programming framework, as follows:

4.1. Overview of Techniques

There are two fundamental techniques used in this work,
including primal-dual schemaand binary searchbased on

min Z l(p)f(p) (2) the result of primal-dual schema.
peP First, we describgrimal-dual schemd14], [18]. Given
subject to a linear programming problem, also referred to gwienal
problem we can convert it to a@ual problem Due to space
Z max Z flp) <G, VieV 3) limitation, we do not present the detailed mechanics of this
j:(i,5)EE teh pEP, conversion here, which can be found at [18]. Primal and
, dual problems are in a “mirror” relation. If one problem is a
_ Z YR Z fp) < L vieVv ) maximization problem, the other problem is a minimization
:GDeE PeP); problem, and vise versa. Suppose we have a primal problem:
Z f(p) > dy, Vte R (5) maxc'x, and the corresponding dual problenin b™y. Ac-
pePt cording to the weak duality theorem X andY are feasible
f(p) >0, vpe P. (6) solutions for the primal and dual problems respectively, it

follows thatc"X < b'Y. Moreover, the primal and dual

Equation (3) ensures the sum of actual streaming rategroblems share the same optimum, denoted by OPT. Given
on all edges coming out from the same noddoes not  an approximation factos, p boundsSE!. Since any feasible
exceed the uploading capacity ©fSimilarly, Equation (4) solution to the dual also provides an upper bound on OPT,
constrains the downloading capacity on nédEquation (5) the approximation factor can be established by comparing
entails each viewer is fully served by the scheduled daga ratthe primal and dual solutions. In light of this, the primal-
where P* denotes the set of fractional flows to viewer dual schema starts with a feasible solution for dual problem

There is no known efficient algorithm with a practically- and relax the conditions for primal problem. Then, iStream
feasible running time to solve this problem optimally. An iteratively improves the feasibility of primal conditioasd
exact algorithm for this problem was given in [6] without the optimality of the dual solution. iStream winds up with
any analysis for the running time. Simulation results werefeasible solutions for both primal and dual problems. Se, th
given only for a very small network (couple of hundreds of gap between them makes the approximation factor.
nodes and edges). Running time of their algorithm can be In detail, iStream employs the primal-dual schema to
prohibitively large for a larger network. solve the delay-bounded maximum streaming rate problem

Therefore, we are motivated to develop a near-optima(DBMSR problem) defined as follows.
approximation algorithm with significantly smaller rungin Definition 2: Delay-bounded Maximum  Streaming
time. Rate problem (DBMSR problem): Given a boundl on



the average delay, i.ezpepl(p)f(p) < L, the DBMS_R_ demand, expressed byax;cr d;, it ie reasonak_JI.e to remove
problem is to devise a streaming scheme which maximizethe constraints on the downloading capacities in the LP
A, wherezpept f(p) = Ads,Vt € R._ _ expression withou? affecting the optimal squt.ions. E'cp_rat.

In the next step, we can do a binary searchioto find  (11) means the objective of DBMSR problem is to maximize
the smallest\ that satisfies\ > 1. Towards that purpose, the minimum demand on nodes. Equation (12) puts a bound
a reasonable initial value af should be set in the range L on the cumulative delay. As stated in Section 4.1, we can
of X icr dj - mingep U(p), > jepdj - maXpelpl(p)]. The conduct a binary search ah until X is very close to 1 to
result of this procedure leads to a near-optimal solutian foachieve a solution to the MADPS problem.

MADPS problem. Next, we convert the primal to its dual problem, or simply

In the rest of this section, we formulate the DBMSR called dual.
problem by primal-dual schema. Then, we discuss the details

of iStream and derive its performance bound. Dual:

min Z Ciw; + oL (15)
4.2. Formulation about Primal and Dual eV
subject to
We refer to DBMSR problem as the primal problem here,
or simply called primal. According to its definition, we Zdt'zt =1, Vte R (16)
t

formulate the primal as following.
S shtwi+llp) >z, (It) €EpVEER,

Primal: (i,7)Ep i’
max )\ (8) vp c Pt (17)
subject to st >0, Y(i,j) € E\Nt € R
. 18
S <Y fp), i )eEVeR (9) | (18)
peP»;tj pGng w; Z 0, VZ S V (19)
zt > 0, Vte R 20
o> e < VieV (10) “;O 521;
Ji(i)€E pePy, v
o .
Z F(p) > M, VieR (11) where ' is the peer one hop away from the vieweon
et routed path.
b Generally, there is no direct physical meaning to the dual
Z Up)fp) < L (12) problem because it comes from a mechanical conversion
pepr of the primal problem. To help the analysis on iStream,
f(p) =0, VpePr (13)  we hereby assign a logical explanation to the dual after
A > 0. (14) investigating its formulation. We envision each edggj)

_ , has multiple copiesi,7)*, (i,5)2,--- , (i, 5)/Fl, where any
Since DBMSR problem is an accessory to selve t.hecopy(i’j)t exclusively represents to the usage of eigg)
MADPS problem, its LP expression has close similarityqr flows to viewert. Each edgéi, j) is associated with a
with that of MADPS problem in Section 3.2. Equation (9) ength metricst., and each nodgis associated with a length
presents the fact that the amount of fractional flow throughyetric . Thus. we VIEWS ;oo st 4wy + ol(p) as

edge (i, j) to any viewer will always be bounded by the {hq |en . " = () epazd’ g 1 :

) Y gth function associated with flow pathwherey is
total fractional flow sent to nodg, i.e. ZpePg; f®) = the weight associated with the delay mefiig). According
maxe r Zpep;j f(p). Because we attempt to utilize the to Equation (17),2; can be comprehended as the shortest
bandwidth from peers scribing to the standard video qualitylength to node based on the length function.
it is possible to see the amount of fractional flow fo
from all incoming edges of exceeds viewey's demand, 4.3, Approximation Algorithm
€., i i)eE Zpepjj f(p) > d;. Equation (10) ensures
no conflicts in terms of the uploading capacities, which iStream-APX is the core part of iStream, which is built
actually express the same constraint in Equation (4). Iwith approximation algorithm. iStream-APX proceeds in
terms of the downloading capacities, which can be writterphases. Each phase is completed |B/ iterations with
as i ier Zpepiii f(p) < I;,Vi € V, we assumd; >  each iteration satisfy the demand of one viewer. Due to
maxjer d;, Which is practical with the wide deployment the constraints from LP conditions, each iteration may be
of high-speed internet. Since the actual flow sent to orcompleted by multiple steps. Inside each step, we route such
relayed by node cannot be larger than the maximum serviceamount of fractional flows that can ensure the constraims ar



not violated. At the end of all phases, iStream-APX will re-

Since the assignments sj‘ are identical in Equation (26),

scale all the flows to ensure a feasible solution to the primalwe simply uses; to represent alls

We express thé™ step in thet™" iteration of m" phase by
(m, t, k). The initial status is marked bi0, 0, 0), or simply
(0).

We start the algorithm with the following initial settings

Algorithm 1 iStream-APX@, {C;},{si}, R,¢€): Approxi-
mation algorithm for the DBMSR problem

on length metrics. ; ;f)r_a(lsl/zLe Vv do
3 w;=0/C;
w;(0) = 6/C;, VieV (22) 4 s=90/C
sL(0) = w, vij)eENeR (@3 @ ° ]?grd;ﬁrp o
»(0) =40/L, (24) 7. flp)=0
whered is an input parameter. The proper assignment of it & F(p) =0
will be discussed in Section 4.4. 9: end for
Throughout the execution of algorithm iStream- 10: While W <1 do
APX, it dynamically updates the length metrics, 11 foralt < Rdo
which are used to built the flowing path. Let 12: N = dy
wi(m,t,k), st;(m,t, k), o(m,t,k) be the length metrics at 1% while W < 1 AND ~; > 0 do t
the end of stepm,t, k). At step (m,t, k), iStream-APX 1% p = SHORTEST-PATHS, ¢, {s; + ¢li;})
first computes the shortest paji from S to viewert 1% Crin :m}niep{ci}
in terms of the length functiory_; ... sti(m,t k — 16: z(p) = min{~y, Crin}
1) + wy(m,t,k — 1) + ¢o(m,t,k — 1)i(p), where 1 L(p) = l(p)x(p)
(i',t) € p,p € P'. Then, it finds the minimum capacity & it L(p) > L then
Cmin On nodes along the shortest path, which can be!® f(p) = (p) L/L(p)
expressed byCmin = min;ep-{C;}. Since the previous 20: L(p) =
steps may already route some flows to the viewernjet 2% else
be the residual amount of demands unsatisfied on rpde 2% f(p) = =(p)
andz(p) = min{y, Cmin}. Next, we routez(p)/n amount 2% end if
of flow to ¢, wheren = Il(p)xz(p)/L if l(p)z(p) > L; 24: Ve = z(p)
otherwise, = 1. So the length bound and the capacities 2> for all i € p\ {t} do

on the path are not violated in each step. At the end of this®
step, we update the length metrics as well as the residud’-
28:

demands according to Equations (25)-(28).

wi(m,t, k) = w;(m,t,k—=1)-[L+e€- f(m,t,k)/Ci],

Vi € p*\ {t} (25)
sgj(m,t,k) =w;(m,t, k),Vi € p*\ {t},Y(i,j) € E,Vt € R
' (26)
o(m,t k) =p(m,t,k—1)- | [T 0+e Lim.tk)/L],
JEP*NR (27)
’Yi(mvt’ k) = %’(mvt’ k — 1) - f(mvt’ k)7Vi € p* \ {t}
(28)

where f(m,t, k) is the amount of flow routed in current
procedure(m,t, k) and L;(m,t, k) means the cumulative
delay of the routed flow through nodewhich is on the path
p* at step(m, t, k). Mathematically, it can be expressed by
Lj(m,t,k) = U(p})z(p}), wherep; is the segmental path
from S to j on pathpx. We can observe in each step for
every capacity-saturated noden the routing path, all the
length metrics regarding increase by a factor of + e.

w; = w; - [1+e€- f(p)/Ci]

8; = W;

p=p
29: repeat
30: f@') = fp)
31 p=p(l+e-1(p)f(P)/L)
32: Fp')=F@)+ ()
33: p' = p’\ {v}, wherev is the target node on

pathp’
34: until p’ = {S}
35: Yi =i — f(m,t, k)
36: end for
37: end while
38: end for
39: end while
40: for all p e P do
41 F(p) = F(p)/logi 5
42: end for
pept F(P)

43: \ = mingep o

We repeat the steps until the demand of viewes fully
satisfied. Then we call the end of iterationand start the
iteration for next viewers which has positive residual datha



in the current phase. After the last step of a phase, all  Proof: From the definition of3,we know thatg =

viewers have no residual demands, ig.,= 0,Vt € R. min W/a. Supposes is achieved whery = o* > 1. We

Then, we start a new round of phase+ 1 after resetting can always proportionally scale down all thg and ¢ by

the residual demands equal to viewer's actual demandsnultiplying a factor of1/a*. As a result,a = 1. Since

i.e., v = di,Vt € R. The whole procedure completes as W will scale down with the same factol//« will keep

soon asW(m,t,k) > 1. Obviously, the cumulative flows the optimal value3. That is to say we can always find the

routed in all phases may strongly violate the capacity anaptimal solutiong with oo = 1.

average delay constraints. Defidgp) as the cumulative According to Lemma 1, it follows thatt = 1 when

flows routed in all phases through pathTo obtain a feasible OPT(W) is achieved. Therefore, we can conclude the prob-

solution to the primal problem, we need to scale downlem of finding OPTW) for the dual is equivalently to

each F'(p) by a factor oflog, . 1/6. We will justify the  solving the optimization problem fdi//a. This completes

correctness of this scaling down factor in Section 4.4. the proof. O
The detailed procedures about the approximation algo- In Algorithm 1, we update the length metries, w;, ¢

rithm are presented in Algorithm 1, where the functionon the routing path. In terms of that, we can conclude the

SHORTEST-PATH:) represents any feasible shortest pathfollowing.

algorithm employed by the user. We continue a binary search Lemma 2:w; increases at least by a factor bft ¢ for

on L by repeating Algorithm 1 until tends to 1, denoted everyC; units of flow through nodé, Vi € V.

as A — 1. The result of the binary search will provide a Proof: Denote the flows routed through noilen every

near-optimal solution to MADPS problem. step of Algorithm 1 byfi, fi,--- | fi, respectively, where
N represents the total number of flows through néodethe

4.4. Algorithm Analysis end phasen. Besides, we denote; (k) as the updated value

after flow f,i is routed through nodé wherel < k£ < N.

In this section, we formally analyze the algorithm and Let w;(0) be the initial value ofw; and w;(m) be the
prove the approximation factor. To facilitate the analysis value ofw; at the end phase:.. According to Algorithm 1,
we make some definitions. L&V = 3, |, Cyw; + ¢L be  we know fi < C;,Vi,v1 < k < N. Therefore, upon
the metric minimized by the dual. Le}; be the shortest completing the algorithm, we have
length fromS to ¢, i.e.,

N
G=min D0 it telp) (29) wi(m) =w;(0)- [[(1+e- £1/C)
(4,3)Ep i 1
. . N
Here ¢, actually represents and interprets the meaning of £/Cs
2. Besides, we define > wi(0) - kli[l(l +e)ls
o= Z (dtg). (30) = w;(0) - (1+ E)Eiv:]f;i’/ci.

t

Lemma 1:Denote the optimal solution to the dual by Consequently, we can observe

OPT(W). When OPTW) is obtainedy is 1.

Proof: We prove this lemma by contradiction. As we w;(m) al i
know, o represents ", d;z; in the dual. Leti = W’ when log . w;(0) Z Z i/ Ci-
a = 1. For the sake of contradiction, we assum& > . h=1
OPT(W), where OPTW) is achieved whemx = o* > 1. This completes the proof. O
Then, we scale down* to 1. Towards that, we can divide Based on proof idea of Lemma 2, we can easily deduce
all the st; and by a factor ofy", dyz;. As a resultuw; will the following corollaries.
proportionally scale down the same factor. Consequertly, i Corollary 2: s; increases at least by a factor bf- ¢ for
leads to an update di’ with a new valugV’, whereW’ =  everyC; units of flow through nodé, vi € V..
OPT(W)/ ", d¢z:. According to the assumptiofl;” should Corollary 3:
be larger than OP(W). However, becaus$, d;z; > 1, m
we haveW’ = OPT(W)/Y, diz < OPT(%E/V), which log1+e% =z Z l(p)f(p)/L,
contradicts the assumption. Thus, the lemma follows[] p inP

Define 8 as the minimum value of¥/a, i.e.,, 5 =  where f(p) represents the cumulative amount of flows

min W/«. We conclude the following theorem. through pattp at the end of phase.

Theorem 1:The optimal solution to the dual, denoted as Given the assumption that the total bandwidth resources
OPT(W), is equivalently to the optimal solutiohiunder the in P2P networks is sufficient to support the full services on
same constraints in the dual. all the viewers, we can do a binary search brso as to



find the smallest\ that satisfies\ > 1. According to the
weak-duality theorem, it follows that > X > 1.
Lemma 3:Given 3 > 1, we have

(M—l)
€)In

<

B < =

Proof: We start the proof by analyzing the change on

W on each step. At the end of this analysis, we will carry
out the cumulative increment o when algorithms stops.

(|V|+1)6

Let p(m,t, k) be the shortest path found at procedure

(m,t, k), and f(m,t, k) be the quantity of flow routed
through pathp(m, ¢, k). Because in our algorithm we assign
s; = w; for any procedurdm,t, k), we can simplify the
length function as

>

(i.4)Ep,iti’

st +wy + @l(p) = Z (wi +¢liz), (31)

(i,5)€p

where (i’,t) € p. Consequently, we can carry out the
following.

Since the objective is to find the cumulative increment, we

can think of the change on length metricsandy regarding
nodei at procedurdm,t, k), wherei # ¢, will hold until
procedure(m,i,0) without loss on the final cumulative
increment oniv/.

W(m,t, k) —W(m,t, k—1)
=Ly (wi/ (ma tv k) - Wy (ma tv k — 1))+
+ ((p(m7ta k) - so(ma tk— 1)) L

>

i€p(m,t,k)\{t}
+ (plm,t = DeL(m, t,k)/L) - L
i€p(m,t,k)\{t}

+ o(m,t,k —1)L(m,t, k)]

Let K,,; be the number of steps in a given iteration
of phasem, (;(m,t, k) be the shortest path at the end of
procedurgm,t, k), andl(m, t, k) be the cumulative latency
on pathp(m,t, k). We have

(ci cwi(m,t,k — Def(m,t, k)/Ci)+

. (wl (m,t,k — 1) f(m,t, k:))+

W(m t+1,0)—

<EZ[ 2

=1 iep(m,t,k)\{t}

+o(m,t, | — 1)L(m,t,k)]

W(m,t,0)

wi(m,t, k — 1)f(m,t,/€))+

Kmt

=c- Z {f(m,t,k)-

k=1

>

i€p(m,t,k)\{t}

+ o(m, t,k — D)i(m,t, k)}

Kmt
=e-Z[f(m,t,k)- Z
(3,9)€p(m;t.k)

1)1--)}
=€ - Zf m,t, k)

SE . dtCt(mv ta k)

w;(m, t, k —

1)+

w;(m,t,k— 1)+
+o(m,t, k—

C(m,t k —

1)

For brevity on notations, we defind (m) as the value
of W at the end of phase:, and make a similar definition
for a(m). Then, it follows that

W(m) —W(m—1)
W(m7 |R|a Km\R\) -
|R|

<e (dtCt(m’thm|R|))

t=1
<ea(m).

W(m,0,0)

(32)

Combining the property ofW(m)/a(m) > § with
Equation (32), we can carry out
W(im—1)

1—¢/8 °

In light of the initial settingsuw;(0) = §/C; and¢(0) =
0/L. Thus, we obtaifdV (0) = (|]V| + 1)d.

Givenm > 1 and 3 > 1, it follows that

W(m) <

(IV]+1)d
w <~
N
_(IVI+1)o
 1—¢/B
(V] +1)d
1—¢/pB
< (V| + 1)
1—¢
Let the last phase in the algorithm be numberedMy

€

(1+ﬁ—

e(m—1)
B—e

)mfl

e(m—

e (-

i)
oy

€(
It follows that 1 < W (M) < (VIEDd, =57 . Hence, we
carry out
g M1
(1 =) ln
Thus, the lemma follows. O

Lemma 4:Algorithm 1 generates a feasible streaming

solution that makes > %
ogiy1/0"



1
elng

Proof: At the end of thg M — 1) phaseV (M —1) < _
1 for all nodei. Thus, we deduct;(M — 1) = w;(M —1) < (1 - ) In(1 + ) In gy
1/C;.
From Lemma 2 and Corollary 2, we know; and s; Let § — (nl/‘_;l)l/e. We have
increase at least by a factor of+ ¢ for every C; units of
flow through node. Denoting the total flow through node 8 < eln%
i as F;, we can carry out A~ (1—en(l+e) mﬁ
€
F; <C; 1Og1+€ ML(O_)U N (1 — 6)2 111(1 + 6)
w; €
<
1/C; (1 —e€)?(e—€2/2)
< C;l ——
> C O814e 5/01 < (1 _ 6)_3.
1
=Cjlogy . 5 According to the strong duality theorem, if the dual has

I the optimal solutiors, the primal also has an optimal value,
Therefore, dividing all the flows through nodeby a
scaling factor oflog, , . % we obtain feasible flows through denoted as ORR), such that OPT\) = §. Therefore, the

1 without violating its uploading capacitg;. approximation factop can be obtained by
Applying the scaling factor, we can get feasible flows
received byt of a total value(M — 1)d;/log, . L units. » = max OPT(})
Accordingly, a feasible\ will follow
= max —.
(M — 1)dt/10g1+e% A
Az d; Now, we make an assignment of= (1 —¢)~3 — 1. We
(M —1) havep =1+ w.
= m' Thus, the proof is complete.
0 ]
Theorem 2:The result of Algorithm 1 follows the prop- . .
erty of >, 1(p) f(p) < L. 4.5. Running Time
Proof: According to Corollary 3, in our procedure every , ) . ,
time we route every flow with a cumulative delay bf we In this section, we analyze the bound on running time.
increasep by at least a factor of + c. We define maximum binary search bound énasT' =

BecauseW (M — 1) < 1, we deduct thato(M — 1) < 2jerdi- ma}fpePl(P)- _
1/L. Thus, in the firstM — 1 phases, the cumulative Theorem 4:Suppose the shortest path algorithm em-
delay is at mostL - log, , . AP(Mofl) = L-log;., % ie. pIo_yed will consume a running time df. The running time
S 1)) < L-lo , *O of iStream isO(e~2¥|V|log |V|1logT).

pep '\P)J\P) = Blte - . Proof: According to weak duality theorem, we have

In the final procedure of the algorithm, we scale down all 4 .

. . . £ >1, which deduces

the flows proportionally by a scaling factor. Thus, applying *

the scaling factor ofog, , % we have

1
logy . . 5 > 1.

1 M -1
Zl( )f(p) < Llogyic5
— PIJP) = log, . % So the number of phase¥ < 1+ Blog,,. . Because
p 1/e
— I 6= () it follows that
The theorem follows. O
Theorem 3:The approximation factor, denoted as is M= [él . V| + 11
1+ w. 1
Proof:

_ _ i If Algorithm 1 does not stop withir2[ log; , Y111
From Lemma 4, we have a feasible solutiva= g, I° phases, we must havé > 2. We know OPTA) = 3 and

It follows that we are pursuing ORR) = 1. In the case of3 > 2, we
break the current call for Algorithm 1, and continue the
B ﬁlog1+€% binary search orl.. So each call for Algorithm 1 will have
N i-1) 2[Llog, . ] = O(e 2 log|V|) phases.
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